
Noname manuscript No.
(will be inserted by the editor)

Efficient Processing of Simple Temporal Networks
with Uncertainty

Algorithms for Dynamic Controllability Verification

Mikael Nilsson · Jonas Kvarnström ·
Patrick Doherty

Received: date / Accepted: date

Abstract Temporal formalisms are essential for reasoning about actions that
are carried out over time. The exact durations of such actions are generally
hard to predict. In temporal planning, the resulting uncertainty is often worked
around by only considering upper bounds on durations, with the assumption
that when an action happens to be executed more quickly, the plan will still
succeed. However, this assumption is often false: If we finish cooking too early,
the dinner will be cold before everyone is ready to eat.

Using Simple Temporal Networks with Uncertainty (STNU), a planner can
correctly take both lower and upper duration bounds into account. It must
then verify that the plans it generates are executable regardless of the actual
outcomes of the uncertain durations. This is captured by the property of dy-
namic controllability (DC), which should be verified incrementally during plan
generation.

Recently a new incremental algorithm for verifying dynamic controllability
was proposed: EfficientIDC, which can verify if an STNU that is DC remains
DC after the addition or tightening of a constraint (corresponding to a new
action being added to a plan). The algorithm was shown to have a worst case
complexity of O(n4) for each addition or tightening. This can be amortized
over the construction of a whole STNU for an amortized complexity in O(n3).

In this paper we improve the EfficientIDC algorithm in a way that prevents
it from having to reprocess nodes. This improvement leads to a lower worst
case complexity in O(n3).

Keywords Simple Temporal Networks with Uncertainty · Dynamic
Controllability · Incremental Algorithm

This paper is based on an earlier paper at TIME-2014 [13]

M. Nilsson · J. Kvarnström · P. Doherty
Department of Computer and Information Science Linköping University
SE-58183 Linköping, Sweden
E-mail: {mikni,jonkv,patdo}@ida.liu.se

2 Mikael Nilsson et al.

1 Introduction and Background

When planning for multiple agents, for example a joint Unmanned Aerial
Vehicle (UAV) rescue operation, generating concurrent plans is usually es-
sential. This requires a temporal formalism allowing the planner to reason
about the possible times at which plan events will occur during execution.
A variety of such formalisms exists in the literature. For example, Simple
Temporal Networks (STNs [4]) allow us to define a set of events related by
binary temporal constraints. The beginning and end of each action can then
be modeled as an event, and the interval of possible durations for each action
can be modeled as a constraint related to the action’s start and end event:
dur = end− start ∈ [min,max].

However, an STN solution is defined as any assignment of timepoints to
events that satisfies the associated constraints. When an action has a duration
dur ∈ [min,max], it is sufficient that the remaining constraints can be satisfied
for some duration within this interval. This corresponds to the case where
the planner can freely choose action durations within given bounds, which is
generally unrealistic. For example, nature can affect action durations: timings
of UAV flights and interactions with ground objects will be affected by weather
and wind.

A formalism allowing us to model durations that we cannot directly control
is STNs with Uncertainty (STNUs) [17]. This formalism introduces contingent
constraints, where the time between two events is assumed to be assigned
by nature. In essence, if an action is specified to have a contingent duration
d ∈ [t1, t2], the other constraints must be satisfiable for every duration that
nature might assign within the given interval.

All constraints modeled in STNs and STNUs are binary. Because of this
we can also model any STN(U) as an equivalent graph, where each constraint
is represented by a labeled edge and each event by a node.

Example 1 Suppose that a man wants to surprise his wife with some nice
cooked food after she returns from shopping. For the surprise to be pleasant
he does not want her to have to wait too long for the meal after returning
home. He also does not want to finish cooking the meal too early so it has to
lay waiting. We can model this scenario with an STNU as shown in Fig. 1.
Here the durations of shopping, driving and cooking are uncontrollable (but
bounded). This is modeled by using contingent constraints between the start
and end events of each action. The fact that the meal should be done within
a certain time of the wife’s arrival is modeled by a requirement constraint
which must be satisfied for the scenario to be correctly executed. The question
arising from the scenario is: can we guarantee that the requirement constraint
is satisfied regardless of the outcomes of the uncontrollable durations, assuming
that these are observable.

In general, STNUs cannot be expected to have static solutions where actions
are scheduled at static times in advance. Instead we need dynamic solutions
with a mechanism for taking into account the observed times of uncontrollable

Efficient Processing of Simple Temporal Networks with Uncertainty 3

Requirement Constraint

Contingent Constraint

[x,y]

[x,y]

[35,40]

[-5,5]

Start
Driving

Wife at
HomeDrive

Start
Cooking

Dinner
Ready

[25,30]

Cook

Wife at
Store

[30,60] Shopping

Start
Driving

Wife at
Home

Start
Cooking

Dinner
Ready

Wife at
Store

Conditional Edge

Requirement Edge

Contingent Edge

60

-30

40

-35
5

-560

-25

Fig. 1 STNU model of the cooking example.

events (the observed durations of actions). If such a dynamic solution can be
found, the STNU is dynamically controllable (DC) and the plan it represents
can be executed regardless of the outcomes of the contingent constraints.

Example 2 (Continued) The scenario modeled in Fig. 1 does not have a static
solution. For every fixed time at which cooking could start, there are outcomes
for the action durations where the dinner will be ready too early or too late.
A dynamic execution strategy exists, however: the man should start cooking 10
time units after observing that the wife starts to drive home. This observation
is for instance possible if the wife calls and tells the man that she is about
to start driving home. Starting cooking at this dynamically assigned time
guarantees that cooking is done within the required time interval, since she
will arrive at home 35 to 40 time units after starting to drive and the dinner
will be ready within 10+25 to 10+30 time units after she started driving.

Planning with STNUs. Many automated planners begin with an empty
plan and then incrementally add one new action at a time using some search
mechanism such as forward search or partial-order planning. The initial empty
plan is trivially dynamically controllable. If we add an action to a DC plan,
the result may or may not be DC. On the other hand, the DC property is
monotonic in the sense that if we add an action or a new constraint to a non-
DC plan, the result is guaranteed not to be dynamically controllable. Thus, if
the planner generates a non-DC plan at some point during search, extending
the plan is pointless. In this situation the search tree can be pruned.

The earlier this opportunity for pruning can be detected, the better. Ideally,
the planner should determine after each individual action is added whether the
plan remains DC. Dynamic controllability will then be verified a large number
of times during the planning process, necessitating a fast verification algorithm.
For most of the published algorithms, this would require (re-)testing the entire
plan in each step [6,8,9,15]. This takes non-trivial time, and one can benefit
greatly from using an incremental algorithm instead. The fastest known such
algorithm at the moment is the EfficientIDC (EIDC) algorithm [12]. It has a
worst-case run-time in O(n4) and an amortized run-time in O(n3).

The EIDC algorithm processes nodes one at a time to find all implicit
constraints involving them. However, in some situations it will process nodes
more than once, leading to inefficiency. In this paper we modify the EIDC
algorithm to get the more efficient Efficient2IDC (E2IDC) algorithm. The E2IDC
algorithm does not reprocess nodes, leading to a complexity of O(n3) in the
worst case, not amortized.

4 Mikael Nilsson et al.

2 Definitions

We now formally define certain concepts related to STNs and STNUs.

Definition 1 A simple temporal network (STN) [4] consists of a number
of real variables x1, . . . , xn representing events and a set of constraints Tij =
[aij , bij], i 6= j, limiting the distance aij ≤ xj − xi ≤ bij between these.

Definition 2 A simple temporal network with uncertainty (STNU)
[17] consists of a number of real variables x1, . . . , xn, divided into two disjoint
sets of controlled events R and contingent events C. An STNU also contains a
number of requirement constraints Rij = [aij , bij] limiting the distance aij ≤
xj − xi ≤ bij , and a number of contingent constraints Cij = [cij , dij] limiting
the distance cij ≤ xj − xi ≤ dij . For the constraints Cij we require xj ∈ C
and 0 < cij < dij <∞.

Definition 3 A dynamic execution strategy [9] is a strategy for assigning
timepoints to controllable events during execution, given that at each time-
point, it is known which contingent events have already occurred. The strategy
must ensure that all requirement constraints will be respected regardless of the
outcomes for the contingent timepoints.

Definition 4 An STNU is dynamically controllable (DC) [9] if there ex-
ists a dynamic execution strategy for executing it.

Any STN can also be represented as an equivalent distance graph [4]. Each
constraint [u,v] on an edge A −→ B in an STN is represented as two corre-

sponding edges in its distance graph: A
v−→ B and A

−u←−− B. The weight of an
edge X −→ Y then always represents an upper bound on the temporal distance
from its source to its target: time(Y)− time(X) ≤ weight(X −→ Y). Comput-
ing the all-pairs-shortest-path (APSP) distances in the distance graph yields
a minimal representation containing the tightest distance constraints that are
implicit in the STN [4]. This directly corresponds to the tightest interval con-
straints [u′, v′] implicit in the STN. If there is a negative cycle in the distance
graph, then no assignment of timepoints to variables satisfies the STN: It is
inconsistent.

Similarly, an STNU always has an equivalent extended distance graph (EDG)
[15]. All graphs in this paper, with the exception of Fig. 1, are EDGs of STNUs.

Definition 5 An extended distance graph (EDG) is a directed multi-
graph with weighted edges of three kinds: requirement, contingent and
conditional.

Requirement edges and contingent edges in an STNU are translated into pairs
of edges of the corresponding type in a manner similar to what was described
for STNs. Fig. 2 shows an EDG1 for the cooking example STNU in Fig. 1.

1 Time is assumed to flow from left to right in all figures.

Efficient Processing of Simple Temporal Networks with Uncertainty 5

Requirement Constraint

Contingent Constraint

[x,y]

[x,y]

[35,40]

[-5,5]

Start
Driving

Wife at
HomeDrive

Start
Cooking

Dinner
Ready

[25,30]

Cook

Wife at
Store

[30,60] Shopping

Start
Driving

Wife at
Home

Start
Cooking

Dinner
Ready

Wife at
Store

Conditional Edge

Requirement Edge

Contingent Edge

60

-30

40

-35
5

-530

-25

Fig. 2 EDG for the STNU in the cooking example.

A conditional edge [15] is never present in the initial EDG corresponding to
an STNU, but can be derived from other constraints through calculations
discussed in the following sections.

Definition 6 A conditional edge [15] C −→ A annotated < B,−w >, en-
codes a conditional constraint: C must occur either after B or at least w
time units after A. The node B is called the conditioning node of the con-
straint/edge. The edge is conditioned on the node B.

We will later see that only conditional edges with negative weights are added
to the distance graphs. This is the reason we prefer to annotate these edges
with weight −w.

A conditional edge means that C must be assigned a time dynamically
during execution, when the occurrences of A and B can be observed.

3 DC Verification Techniques

Morris, Muscettola and Vidal [9] were the first to present a way of efficiently
(polynomially) verifying if an STNU is dynamically controllable. Their algo-
rithm makes use of STNU-specific tightening rules, also called derivation rules.
Each rule can be applied to a triangle of nodes, and if certain conditions are
met, new previously implicit constraints are derived and added explicitly to
the STNU. It was shown that if these derivation rules are applied to an STNU
until quiescence (until no rule application can generate new conclusions), any
violation of dynamic controllability can be found through simple localized tests.
The original algorithm makes intermediate checks while adding constraints to
make sure that conditions required for DC are still valid.

The derivation rules of Morris et al. provide a common ancestor theory for
most DC verification algorithms, though some exceptions exist (see section 9).
The original semantics was later revised [5] and the derivations refined [15].
However, the idea of deriving constraints from triangles of nodes remains.

There are two types of DC verification: full and incremental. Full DC veri-
fication is done by an algorithm which verifies DC for a full STNU in one step.
Incremental DC verification, in contrast, only verifies if an already known DC
STNU remains DC if one constraint is tightened or added. Since incremental
algorithms may keep some internal information, it is assumed that the same

6 Mikael Nilsson et al.

Algorithm 1: FastIDC– sound version [10]

function FastIDC(EDG G, CCGraph C, edges e1, . . . , en)
Q ← sort e1, . . . , en by distance to temporal reference

(order important for efficiency, irrelevant for correctness)
Update CCGraph with negative edges from e1, . . . , en
if cycle created in CCGraph then return false
for each modified edge ei in ordered Q do

if IS-NON-NEG-LOOP(ei) then SKIP ei
if IS-NEG-LOOP(ei) then return false
for each rule from Figure 3 applicable with ei as focus do

if applying the rule modified or created an edge zi in G then
Update CCGraph
if cycle created in CCGraph then return false
if G is squeezed then return false
if not FastIDC(G,C, zi) then
return false

end

end

end
return true

incremental algorithm is used to process all increments. In this paper we focus
only on incremental DC verification.

4 FastIDC

FastIDC is the original incremental DC verification algorithm. Though the first
published version was unsound [14], it was later corrected [10]. Algorithm 1
shows the sound version which we for simplicity will refer to only as FastIDC
from now on. Understanding how EIDC works requires understanding of Fast-
IDC. We will therefore now describe this algorithm as well as several of its
interesting properties.

Being incremental, FastIDC assumes that at some point a dynamically con-
trollable STNU was already constructed (for example, the empty STNU is
trivially DC). Now one or more requirement edges e1, . . . , en have been added
or tightened together with zero or more new nodes, resulting in the graph G.
FastIDC should then determine whether G is DC. Contingent edges are handled
by FastIDC at the time when incident requirement edges are created. There-
fore, a contingent edge must be added before any other constraint is added to
its target node.

The algorithm works in the EDG of the STNU. First it adds the newly
modified or added requirement edges to a queue, Q. The queue is sorted in
order of decreasing distance to the temporal reference (TR), a node always
executed before all other nodes at time zero. Therefore, nodes close to the
“end” of the STNU will be dequeued before nodes closer to the “start”. This
will to some extent prevent duplication of effort by the algorithm, but is not
essential for correctness or for understanding the derivation process. The algo-

Efficient Processing of Simple Temporal Networks with Uncertainty 7

A

C

B

v

-x
y

<B,v-y>

A

C

B

v

-uv-u

A

D

C

<B,-u>

-x
y

<B,x-u>

A

C

B

v

<D,-u>

<D,v-u>

A

D

C

<B,-u>

v
<B,v-u>

A

C

B

-u

-x
y

x-u

A

C

B

-u

v
v-u

B ≠ D

A ≠ D

Requirement Edge

Contingent Edge

Conditional Edge

Derived Edge – Leftmost

Focus Edge – Topmost (except in D8 and D9)

A

C

B

-x

-u

<B,-z>

A

C

B

-x

-x

<B,-z>

z ≤ x z > x

Removed Edge

Value Restrictions

v ≥ 0

u, x, y > 0

z - see D8 and D9

Fig. 3 FastIDC derivation rules D1-D9.

rithm checks that the new edges did not cause a negative cycle, more on this
later.

In each iteration an edge ei is dequeued from Q. A non-negative loop
(an edge of weight ≥ 0 from a node to itself) represents a trivially satisfied
constraint that can be skipped. A negative loop entails that a node must be
executed before itself, which violates DC and is reported.

If ei is not a loop, FastIDC determines whether one or more of the derivation
rules in Fig. 3 can be applied with ei as focus. The topmost edge in the figure is
the focus in all rules except D8 and D9, where the focus is the conditional edge
〈B,−u〉. Note that rule D8 is special: The derived requirement edge represents
a stronger constraint than the conditional focus edge, so the conditional edge
is removed.

For example, rule D1 will be matched if ei is a non-negative requirement
edge, there is a negative contingent edge from its target B to some other node
C, and there is a positive contingent edge from C to B. Then a new constraint
(the bold edge) can be derived. This constraint is only added to the EDG if
it is strictly tighter than any existing constraint between the same nodes.

More intuitively, D1 represents the situation where an action is started at
the controllable event C and ends at the contingent event B, with an uncon-
trollable duration in the interval [x, y] where x > 0. The focus edge A

v−→ B

8 Mikael Nilsson et al.

represents the fact that B, the end of the action, must not occur more than v
time units after the event A. We see that if B has already occurred, A can
safely occur without violating the focus edge constraint. Also, if C has occurred
and at least y − v time units have passed, then at most v time units remain
until B, so A can safely occur. This latter condition can also be expressed
by saying that at most v − y time units remain until C will happen (where
v − y may be negative). This can be represented explicitly with a conditional
constraint AC labeled 〈B, v − y〉: Before executing A, wait until B or until
−(v − y) timepoints after C. This ensures that the fact that A may have to
wait for C is available in an edge incident to A, without the need to globally
analyze the STNU.

Whenever a new edge is created, FastIDC tests whether a negative cycle
is generated. In this case there are events that must occur before themselves.
Then the STNU cannot be executed and consequently is not DC. The test is
performed by keeping the nodes in an incrementally updated topological order
relative to negative edges. The unlabeled graph which is used for keeping the
topological order is called the CCGraph. It contains nodes corresponding to
the EDG nodes and has an edge between two nodes if and only if there is
a negative edge between them in the EDG. Note that conditional edges are
always accompanied by requirement edges with negative weight (due to the
D9 derivation). Therefore, there is never any reason to let these directly affect
the CCGraph. Negative contingent edges are however added to the CCGraph.
See [10] for further details.

The algorithm then determines if the new edge squeezes a contingent
constraint. Suppose for example that FastIDC derives a requirement edge

A
−12←−− B, stating that B must occur at least 12 time units after A. Sup-

pose there is also a contingent edge A
−10←−− B of weight greater than -12,

stating that an action started at A and ending at B may in fact take as little
as 10 time units to execute. Then there are possible outcomes that violate the
requirement edge constraint, so the STNU is not DC. The squeeze test is also
sometimes referred to as a local consistency check. It involves checking any way
that edges between two nodes may cause an inconsistency. Another example
is if a positive edge and a conditional edge exist in opposite direction and the
sum of the edges’ weights is negative. This is also a squeeze. In practice there
are many combinations to consider, but they are all carried out in O(1) time.

If the tests are passed and the edge is tighter than any existing edges in
the same position, FastIDC is called recursively to take care of any derivations
caused by this new edge. Although perhaps not easy to see at a first glance,
all derivations lead to new edges that are closer to the temporal reference.
Derivations therefore have a direction and will eventually stop. When no more
derivations can be done the algorithm returns true to testify that the STNU
is DC. If FastIDC returns true after processing an EDG, this EDG can be
executed directly by a dispatching algorithm [16].

Efficient Processing of Simple Temporal Networks with Uncertainty 9

4.1 Properties of FastIDC and its Derivation Rules

We now consider certain important properties of FastIDC. We start with a
sketch of the correctness proof.

Theorem 1 [11] FastIDC correctly verifies whether the STNU remains DC
after an incremental change is made.

Proof (Sketch.) Since FastIDC is not the focus of this paper, we will only
provide the intuitions behind the proof here. The full proof is found in [11].

Suppose FastIDC returns false. The rules applied by FastIDC correspond
directly to the sound rules of the original full DC verification algorithm [9], so
all new constraints that are derived are valid consequences of the information
that is already in the STNU. Since FastIDC returned false, applying these
sound rules must have resulted in a squeeze or a negative cycle. Then the
STNU cannot be DC, and FastIDC returned the correct answer.

Suppose FastIDC returns true. Before the edges e1, . . . , en were added or
tightened, the STNU was dynamically controllable. For each edge ei in this set,
FastIDC applies all possible derivation rules with ei as a focus, thereby deriving
all possible direct consequences of the addition or tightening. When this results
in new additions or tightenings of edges zi, the algorithm recursively handles
these indirect consequences in the same way. This is sufficient to derive all
consequences that can be derived using the specified derivation rules.

It can be shown that if all consequences of a set of modifications are de-
rived and added to an STNU, and if this does not lead to a negative cycle
or a squeeze, then there exists a dynamic execution strategy for the STNU.
Abstractly, the reason for this is that (a) if the STNU had been inconsistent
in the STN sense, the derivations would have resulted in a negative cycle, and
(b) if uncertain durations could have had outcomes that led to violations of
requirement constraints, then the derivations would have resulted in a squeeze.
Since FastIDC returned true, this did not happen. Then the STNU must be
DC, and FastIDC returned the correct answer. ut

Complexity. The efficiency of FastIDC depends on the order in which edges
are selected for processing. Intuitively, the recursive derivation procedure Fast-
IDC uses leads to derivation chains that can be circular, so that tightenings
are often applied repeatedly to the same subset of edges. These edges will
eventually converge to their final weights, but some edge orderings will result
in faster convergence than others. The effect of order on run-time is examined
at length in [12] where it is shown that the best possible efficiency attainable
by FastIDC comes from modifying the algorithm to keep a global queue and
processing edges from the end of the STNU towards the start. However, even
with this modified approach, FastIDC has a worst case complexity of Θ(n4)
per tightened edge [12].

Edge Interactions. The derivation rules prevent constraints from being vio-
lated by placing new constraints on earlier nodes. These new constraints must

10 Mikael Nilsson et al.

be satisfied if the STNU is dynamically controllable. A side effect of this is the
following result:

Lemma 1 (Plus-Minus) Except for rules D8 and D9, derivation of new
edges requires the interaction of a non-negative and a negative edge. The de-
rived edge has either the same source (D1, D4, D5) or the same target (D2,
D3, D6, D7) as the focus edge used in its derivation. If the source stays the
same, the target coincides with that of the negative edge. If the target stays the
same, the source coincides with that of the non-negative edge.

Proof By inspecting the derivation rules D1-D7, it is clear that the existence
of a non-negative edge followed by a negative edge is required in all cases. It
is also seen that the sources and targets behaves as stated in the lemma. ut

Note that calling the lemma Plus-Minus is not entirely accurate since it leaves
out the fact that first edge may have zero weight.

Note also that it is not stated in the lemma which weights are actually used
for deriving the new edge. Rule D1 has plus-minus interaction, but the value
used to find the weight of the derived edge comes from the positive contingent
edge.

The important property captured by the lemma is that the negative edge
must exist, which gives a structure to the derivations: in D1, C must occur
before B, which leads derived edges toward the start of the EDG.

Effects of the Plus-Minus Lemma are studied in detail in a previous paper
[11], but the lemma is not mentioned there directly. Instead positive-negative
or plus-minus interaction were mentioned as an observation in the correctness
proof for EIDC [12].

5 The EfficientIDC Algorithm

FastIDC may derive edges between the same nodes several times, which is
problematic for its performance. Though there are cases where this can be
prevented to a certain degree [12], it remains a problem to efficiently handle
derivations in regions containing many unordered nodes, i.e. nodes that are
mostly connected by non-negative requirement edges.

To overcome these problems a new algorithm was proposed [12]: The Ef-
ficient Incremental Dynamic Controllability checking algorithm (Algorithm 2,
EfficientIDC or EIDC for short). EIDC will now be described in some detail, as
it is the basis for the improved algorithm presented in this paper.

EIDC uses focus nodes instead of focus edges to gain efficiency. It is based
on the same derivations as FastIDC (Fig. 3) but applies them differently. When
EIDC updates an edge in the EDG, the target of the edge, and the source in
some cases, are added to a list of focus nodes to be processed. When EIDC
processes a focus node n, it applies all derivation rules that have an incoming
edge to n as focus edge. This guarantees that no tightenings are missed [12].

Efficient Processing of Simple Temporal Networks with Uncertainty 11

The focus node processing is made possible by the Plus-Minus Lemma. As
an example, suppose we have a negative edge A −→ B. If we derive a new
edge along this negative edge, which means that there was a non-negative
edge targeting A by the lemma, further derivations based on this derived edge
cannot come back to target A (unless non-DC). This follows since, by the
lemma, the target of derived edges follows negative edges and hence coming
a full circle back to the starting position requires the existence of a negative
cycle. Therefore, if nodes are processed in the optimal order there will be no
later stage of the algorithm where a previously derived edge is replaced by
a tighter edge. The behavior of derivation chains (i.e. derivations caused by
derivations), including a detailed proof that derivations cannot cause cycles
has been previously published [11].

EIDC has a worst case run-time for one call in O(n4). However, this worst
case cannot occur frequently. Therefore the complexity can be amortized to
O(n3) per increment. This is a significant improvement over FastIDC which is
either exponential or Ω(n4) depending on the algorithm realization [12].

The use of a focus node allows EIDC to use a modified version of Dijkstra’s
algorithm to efficiently process parts of an EDG in a way that avoids certain
forms of repetitive intermediate edge tightenings performed by FastIDC [12].
The key to understanding this is that derivation rules essentially calculate
shortest distances. For example, rule D4 states that if we have tightened edge
A −→ B and there is an edge C ←− B, an edge A −→ C may have to be tight-
ened to indicate the length of the shortest path between A and C. Dijkstra’s
algorithm cannot be applied indiscriminately, since there are complex interac-
tions between the different kinds of edges, but can still be applied in certain
important cases.

The final tightening performed for each edge will still be identical in EIDC
and FastIDC, which is required for correctness.

As in FastIDC, the EDG is associated with a CCGraph used for detecting cycles
of negative edges. The graph also helps EIDC determine in which order to
process nodes: In reverse temporal order, from the “end” towards the “start”,
taking care of incoming edges to one node in each iteration. The EDG is also
associated with a Dijkstra Distance Graph (DDG), a new structure used for the
modified Dijkstra algorithm as described below. EIDC accepts one tightened
or added edge, e, in each increment. If several edges need to be added, EIDC
must be called for each change.

The EfficientIDC algorithm. The EIDC algorithm is shown in Algorithm 2.
First, the target of e is added to todo, a set of focus nodes to be processed.
If e is a negative requirement edge, a corresponding edge is added to the
CCGraph C. If this causes a negative cycle in the CCGraph, G is not DC.
Otherwise, Source(e) is also added for processing. This is because in order to
find all incoming edges to Target(e) all nodes after Target(e) must have been
processed before Target(e) itself.

Iteration. As long as there are nodes in todo, a node to process, current, is
selected and removed. The chosen node must not have incoming edges in the

12 Mikael Nilsson et al.

Algorithm 2: The EfficientIDC Algorithm

function EfficientIDC(EDG G, DDG D, CCGraph C, Requirement Edge e)

todo ← {Target(e)}
if e is negative and e /∈ C then

add e to C
if negative cycle detected then return false
todo ← todo ∪ {Source(e)}

end

while todo 6= ∅ do
current ← pop some n from todo where

∀e ∈ Incoming(C, n) : Source(e) /∈ todo
ProcessCond(G,D, current)
ProcessNegReq(G,D, current)
ProcessPosReq(G, current)
for each edge e added or modified in G in this iteration do

if Target (e) 6= current then
todo ← todo ∪{Target(e)}

end
if e is a negative requirement edge and e /∈ C then

add e to C
if negative cycle detected then return false
todo ← todo ∪{Target(e), Source(e)}

end

end
if G is squeezed then return false

end
return true

CCGraph from any node which is currently in the todo set. This requirement
forces the algorithm to process temporally later nodes before temporally earlier
ones, which means that when the earlier nodes are processed, there will be no
new edges appearing behind them. Therefore, assuming optimal choices, the
algorithm can finalize nodes as they are processed iteratively. How non-optimal
choices affect the complexity will be discussed later.
As long as todo is not empty, there is always a todo node satisfying this crite-
rion. If not, there would have been a cycle in the CCGraph and consequently
a negative cycle in the EDG, a fact which would have been detected.

When current is assigned, assuming optimal processing order, we are sure
that we have found all externally incoming edges to current and it is time
to process it using the three helper functions shown in Algorithms 3 to 5.
This can derive even more incoming edges and also add some edges targeting
earlier nodes. Processing current thereby determines which earlier nodes will
need processing due to their newly derived incoming edges. These are added
to todo.

Incoming conditional edges are processed similarly to FastIDC focus edges
using ProcessCond. This is equivalent to applying rules D2, D3, D8 and D9,
but is done for a larger part of the graph in a single step compared to FastIDC.
There are only O(n) contingent constraints in an EDG and hence only O(n)
conditioning nodes (nodes that are the target of a contingent constraint). All

Efficient Processing of Simple Temporal Networks with Uncertainty 13

Algorithm 3: Process Conditional Edges

function ProcessCond(EDG G, DDG D, Node current)

allcond← IncomingCond(current,G)
condnodes← {n ∈ G | n is the conditioning node of some e ∈ allcond}
for each c ∈ condnodes do

edges← {e ∈ allcond | conditioning node of e is c}
minw← |min{weight(e) : e ∈ edges)}|
add minw to the weight of all e ∈ edges
for e ∈ edges do

add e to D with reversed direction
end
LimitedDijkstra(current, D, minw)
for all nodes n reached by LimitedDijkstra do

e ← cond. edge (n→ current), weight Dist (n) - minw
if e is a tightening then

add e to G
apply D8 and D9 to e

end
Revert all changes to D

end
return

times in conditional constraints/edges are measured towards the source of the
contingent constraint. Therefore, all conditional constraints conditioned on the
same node have the same target.

It is important to note that EIDC processes conditional edges conditioned
on the same node separately. This is possible because the FastIDC derivations
does not “mix” conditional edges with different conditioning nodes in any of
the rules, so they cannot be derived “from each other”.

For each conditioning node c, the function finds all edges that are condi-
tioned on c and have current as target. We now in essence want to create
a single source shortest path tree rooted in current. Derivations over non-
negative requirement edges traverse the edges in reverse order, and so the
DDG contains these edges in reverse order. Derivations over contingent edges
follows the negative contingent edge, but the distance used in the derivation is
the positive weight of this, so this is also contained in the DDG. The section
of the graph which can be traversed contains only non-negative weight edges
and so Dijkstra’s algorithm can be used to find the shortest paths. The only
remaining issue is that the edges connecting the source of the tree we want to
build are negative and in reverse order. Since only one of these edges will be
used by each path, there is no risk of negative cycles so they could be used
directly. However, when EIDC reverses the edges it also adds a positive weight
to them to make all edges used by the Dijkstra calculation non-negative. The
added weight, minw, is the absolute value of the most negative edge weight of
the incoming conditional edges. This value also serves as a cut-off for stopping
the Dijkstra calculation. Once the distance is longer than minw the derived
result will be a positive edge which cannot further react to cause more deriva-
tions. Running Dijkstra calculations will in a single call derive a final set of

14 Mikael Nilsson et al.

shortest distances that FastIDC might have had to perform a large number of
iterations to converge towards. An example in the next section shows how this
is carried out. We will see a detailed implementation of the LimitedDijkstra
function in section 8.

After this the algorithm checks whether any calculated shortest distance
corresponds to a new derived edge, corresponding to applying D2 and D3 over
the processed part of the graph. It then applies the “special” derivation rules
D8 and D9, which convert conditional edges to requirement edges. Note that if
a conditional edge is derived and reduced by D8 rather than D9, it will cause
a negative requirement edge to also be added for a total of two new edges.

This function may generate new incoming requirement edges for current,
and must therefore be called before incoming requirement edges are processed.

Incoming negative requirement edges are processed using ProcessNeg-
Req. This function is almost identical to ProcessCond with the only differences
being that the edges are negative requirement instead of conditional and thus
there is no need to apply the D8 and D9 derivations. Applying the calculated
shortest distances in this case corresponds to applying the derivation rules D6
and D7.

Algorithm 4: Process Negative Requirement Edges

function ProcessNegReq(EDG G, DDG D, Node current)

edges← IncomingNegReq(current,G)
minw← |min{weight(e) : e ∈ edges)}|
add minw to the weight of all e ∈ edges
for e ∈ edges do

add e to D with reversed direction
end
LimitedDijkstra(current, D, minw)
for all nodes n reached by LimitedDijkstra do

e ← req. edge (n→ current) of weight Dist (n) - minw
if e is a tightening then add e to G

end
Revert all changes to D
return

This function may generate new incoming positive requirement edges for cur-
rent, which is why it must be called before incoming positive requirement edges
are processed.

Incoming positive requirement edges are processed using ProcessPosReq,
which applies rules D1, D4 and D5. These are the rules that may advance
derivation towards earlier nodes. By deriving a new edge targeting an earlier
node, the node is put in todo by the main algorithm.

After processing incoming edges. These are the only possible types of
focus edge in FastIDC derivations (Fig. 3). Therefore all focus edges that could
possibly have given rise to the current focus node have now been processed.

Efficient Processing of Simple Temporal Networks with Uncertainty 15

Algorithm 5: Process Positive Requirement Edges

function ProcessPosReq(EDG G, Node current)

for each e ∈ IncomingPosReq(current,G) do
apply derivation rule D1, D4 and D5 with e as focus edge
for each derived edge f do

if f is conditional edge then
apply derivations D8-D9 with f as focus edge

end
if derived edge is a tightening then

add it to G
end

end

end
return

EIDC then checks all edges that were derived by the helper functions. Edges
that do not have current as a target need to be processed, so their targets are
added to todo. If there is a negative requirement edge that is not already in
the CCGraph, this edge represents a new forced ordering between two nodes.
It must then update the CCGraph and check for negative cycles. If a new edge
is added to the CCGraph, both the source and the target of the edge will be
added to todo.

Finally, EIDC verifies that there is no local squeeze when a new edge is
added, precisely as FastIDC does.

Updating the CCGraph. A novel feature of EIDC as compared to Fast-
IDC is that the CCGraph now contains the transitive closure of all edges
added to it. This prevents reprocessing when new orders are found through
ProcessPosReq. How the transitive closure is derived and the gains from using
it will be discussed later.

Updating the DDG. The DDG contains weights and directions of edges that
FastIDC derivations use to derive new edges, and is needed to process edges
effectively. Edges in the DDG have no type, only weights that are always
positive. The DDG contains:

1. The positive requirement edges of the EDG, in reverse direction
2. The negative contingent edges of the EDG, with weights replaced by their

absolute values

To make the algorithm easier to read, updates to the DDG have been omitted.
Updating the DDG is straight forward and quite simple. When a positive edge
is added to the EDG it is added to the DDG in reversed direction. Negative
contingent edges also have to be added to the DDG (with the absolute value
of their weight as new weight). In case a positive requirement edge disappears
from the EDG it is removed from the DDG.

Complexity. The complexity of EIDC depends on how many new orderings
are discovered while processing nodes [12]. If no new orderings between nodes

16 Mikael Nilsson et al.

are discovered the algorithm runs in O(n3) since the total processing of condi-
tional edges takes O(n3) and the rest of the derivations takes O(n2) per node
for a total of O(n3). New orderings involving current that are discovered when
processing current will cause current to be reprocessed. However, there is no
need to do this if the discovered “later node” was already processed in the
right order, i.e. before current. This will be handled in the new version of the
algorithm, to be presented later.

Each new ordering requires a negative requirement edge between the nodes
involved. This limits the number of such reprocessings to n2 times in total and
bounds it by n per node. This gives an upper bound of O(n4) for all possible
reprocessings of requirement edges. The bound for reprocessing conditional
edges also becomes O(n4) since each such edge will only be reprocessed when
its target node is reprocessed and this happens at most n times per condi-
tioning node. In the next section we give an example of how EIDC processes
an STNU. We then follow this up with an example showing that reprocess-
ing cannot be avoided by EIDC, a fact which motivates the presentation of
Efficient2IDC in section 8.

Correctness. We end this section with a short sketch of EIDC correctness,
which is a building block for Efficient2IDC correctness. Correctness for EIDC
builds on the fact that it generates the same EDG as FastIDC.

Theorem 2 [12] EIDC correctly verifies whether the STNU retains DC after
an incremental change is made.

Proof (Sketch) Soundness follows since the derivations performed by EIDC
are either through direct use of FastIDC derivation rules or through the use of
Dijkstra’s algorithm in a way that corresponds directly to repeated application
of derivation rules. Since these rules are sound, EIDC is sound in terms of edge
generation.

Completeness requires that for every tightened edge, all applicable deriva-
tion rules are applied. When an edge is tightened, EIDC always adds the target
node to todo. All nodes in todo will eventually be processed, and when a node
current is removed from todo, all derivation rules applicable with any incom-
ing edge as focus are applied. This is guaranteed since the last time a node
is processed as current all nodes that will be executed after it have been pro-
cessed and it is only via these that new incoming edges can be derived. Since
all these nodes have had all derivation rules applied to them, this will also
become the case for current. Applying the rules is done either directly or in-
directly through the use of Dijkstra’s algorithm. Therefore no derivations can
be missed and EIDC is complete in terms of edge generation.

Thus, the algorithms eventually derive the same edges. Since they both
check dynamic controllability in the same way they also agree on which STNUs
are DC and which are not. ut

Efficient Processing of Simple Temporal Networks with Uncertainty 17

X Y

X

a

b

10

20

10

10

10
10

-5-5

-10

-5

-5

-5

10 -6

<Y,-25>

<Y,-20>

Y Z

50

-9 -10

50

25

30

40

35

a

10

20

10

10

10

-5
-5

-10

-5

-5

10 -6
Z

50

-9

50

35

b

10

-5 40

-9

1

-9

1

-9

1

-9

1

Fig. 4 Initial EDG.

6 EfficientIDC Processing Example

We now go through a detailed example of how EIDC processes the three kinds
of incoming edges. Like before, dashed edges represent conditional constraints,
filled arrowheads represent contingent constraints, and solid lines with unfilled
arrowheads represent requirement constraints.

Fig. 4 shows an initial EDG constructed by incrementally calling EIDC
with one new edge at a time. We will initially focus on the nodes and edges
marked in black, while the gray part will be discussed at a later stage.

In the example we add a new requirement edge2 Y
−10←−− Z as shown in the

rightmost part of Fig. 5. When we call EIDC for this edge, both Y and Z will
be added to todo. Z must be processed first because of the ordering between
Z and Y . Since Z has no incoming conditional or negative requirement edges
only ProcessPosReq will be applied. This results in the bold requirement edges

a
25−→ Y and b

30−→ Y . The node Y is then selected as current in the next iter-
ation. Even though Y has an incoming negative edge, no new derivations are
done by ProcessNegReq. However, Y also has two incoming positive require-
ment edges that are processed (using D1) to generate the conditional edges

X
〈Y,−25〉←−−−−− a and X

〈Y,−20〉←−−−−− b. Two negative requirement edges, X
−9←−− a and

X
−9←−− b, are also derived alongside the conditional edges due to D9 but these

are not stronger than the already existing identical edges. Since there were
already edges X ←− a and X ←− b in the CCGraph, a and b are not added
to todo. However, X is added as the target of a newly derived edge is always
added to todo. Since the derived edges are not incoming to Y they require no

2 When possible we will use the arrow direction from the figures in the text.

18 Mikael Nilsson et al.

X Y

X

a

b

10

20

10

10

10
10

-5-5

-10

-5

-5

-5

10 -6

<Y,-25>

<Y,-20>

Z

50

-9 -10

50

25

30

40

35

a

10

20

10

10

10

-5
-5

-10

-5

-5

10 -6
Z

50

-9

50

35

b

10

-5 40

-9

1

-9

1

-9

1

-9

1

Y

Fig. 5 Derivation of the smaller scenario.

a

b

10

20

10

10

10

10

-5-5

-10

-5

-5

-5

10
-6

<Y,-25>

<Y,-20>

a

b

10

20

10

10

10

10

6

0

5

X

X

1

1

-9

-9

Fig. 6 Example scenario for conditional edges.

further processing at the moment. This leaves only X in the todo set for the
next iteration.

In the next iteration, X is selected as current. No more edges will be
derived in the rightmost black part of the example EDG, so we focus on
the previously gray part of the EDG shown in Fig. 6. We see that X has
two incoming conditional edges with the same conditioning node Y . These
edges are processed together, resulting in a minw value of 25. After adding
edges corresponding to the reversed conditional edges, each with a weight
increase of minw, we get the DDG that is used for Dijkstra calculations when

Efficient Processing of Simple Temporal Networks with Uncertainty 19

processing X. The DDG is shown in Fig. 7. Recall that in the DDG all positive
edges are present with reversed direction and all negative contingent edges are
present with positive weight. Note that the weight 1 edges from X are left out
of the DDG in Fig. 7. These are present in the DDG but cannot be used when
X is current since using them would require that the source and target of the
conditional edge used for derivation was the same. This is a degenerate case
which cannot occur in the EDG. Such an edge would either be removed before
addition or responsible for non-DC of the STNU. In Fig. 7 we have labeled
each node with its shortest distance from X in the DDG.

0

10

515

16

26
10

20

10

10

10

10

6

0

5

X

a

b

10

20

10

10

10

10

-5-5

-10

-5

-5

-5

10
-6

<Y,-25>

<Y,-20>

X

<Y,-15>

<Y,-10>

-9

1

Fig. 7 Dijkstra Distance Graph of the small scenario.

Processing current = X gives rise to the bold edges in Fig. 8. We consider how
the −9 edge is created. First the distance from X to the source node of the −9

0

10

515

16

26
10

20

10

10

10

10

6

0

5

X

a

b

10

20

10

10

10

10

-5-5

-10

-5

-5

-5

10
-6

<Y,-25>

<Y,-20>

X

<Y,-15>

<Y,-10>

-9

1

Fig. 8 Result of processing current = X.

20 Mikael Nilsson et al.

edge is calculated by Dijkstra’s algorithm. This is 16 (see Fig. 7). Subtraction
of 25 gives a conditional edge with weight −9. However, since the lower bound
of the contingent constraint involving X is 9, D8 is then applied to remove the
conditional edge and create a requirement edge with weight −9. The distance
calculation corresponds in this case to what FastIDC would derive by applying

first D3 and then D6, starting with the conditional X
〈Y,−25〉←−−−−− a edge as focus.

The example shows how EIDC adds minw to the negative edges from the
source to get non-negative edges for Dijkstra’s algorithm to work with.
Finally, all new derived edges need to be checked so they do not squeeze
existing edges, and negative edges should be added to the cycle checking graph
when needed.

7 Reprocessing by EfficientIDC

The following example shows a situation in which EIDC could reprocess a node.
The STNU involved, shown in Fig. 9, contains the following two components:
A split which causes derivations to take two alternate paths toward X, and
a region of non-negative edges where the nodes can be processed in a non-
optimal way.

Suppose that an edge a
17−→ g is added as an incremental change and EIDC

is called. This first adds g to todo. When g is chosen for processing, the new
incoming edge is combined with the two outgoing edges, so the new edges

X
−20←−− a and a

7−→ f in Fig. 10 are derived through the ProcessPosReq func-
tion. A consequence is that a, f and X are added to todo.

EIDC could then choose to process a first, which leads to addition of the

edges X
−17←−− b and X

−10←−− c. Since these two edges are negative and not in
the CCGraph both b and c are added to the todo set. At this point todo =

Exempel på när EIDC
måste reprocessa.
Används i Acta2

X

a

b

c

d

e f

g

-10

-10

3

4

10

-37

11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-10,-13

17

-37

7
1,-2 11

1-1

-3

Fig. 9 Start situation of the EIDC reprocessing example.

Efficient Processing of Simple Temporal Networks with Uncertainty 21

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10 17

-37

7
11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-10

17

-37

7
11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-10

17

-37

7
1 11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-13

17

-37

7
1 11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-13

17

-37

7
-2 11

1-1

Fig. 10 Processing the a −→ g edge.

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10 17

-37

7
11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-10

17

-37

7
11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-10

17

-37

7
1 11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-13

17

-37

7
1 11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-13

17

-37

7
-2 11

1-1

Fig. 11 After just processing a and c.

{b, c, f,X}. EIDC could then choose to process c which adds only the X
1←− d

edge. Note that d is not added to todo since sources of non-negative edges are
not added to todo by EIDC. The situation at this point is shown in Fig. 11.

If EIDC processes b as its next current it will derive the edge X
−13←−−

c. This tighter edge will replace the existing edge X
−10←−− c, but since the

corresponding ordering between X and c was already known, the source c will
not be added to todo by EIDC. It only attempts to add the target, X, which
in this case is already present.

At this point the cause for reprocessing is passed, namely that c was pro-
cessed before b. This leaves the only way of finding the order between X and
e to be by a ProcessNegReq derivation with X as current. The final situation
when this happens is shown in Fig. 12.

22 Mikael Nilsson et al.

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10 17

-37

7
11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-10

17

-37

7
11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-10

17

-37

7
1 11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-13

17

-37

7
1 11

1

X

a

b

c

d

e f

g

-10

-10

-20 3

4

10-17

-13

17

-37

7
-2 11

1-1

Fig. 12 The final situation when the order between X and e is discovered.

In the example, the ordering between X and e is only found when the negative

requirement edge X
−20←−− a has reacted along the shortest DDG path from a

to e. For EIDC to avoid reprocessing this has to happen before X is processed
at which point it is too late. Reprocessing of X is required since EIDC adds
both source and target to todo when a new ordering is found. It is possible
that EIDC chooses the nodes in an optimal order, but it cannot be guaranteed
or even expected.

We can use the example as an inspiration for a more efficient algorithm. If
we look at the distances calculated by Dijkstra’s algorithm when processing X
we can see that distances from X to nodes visited by Dijkstra prior to reaching
e, are not affected later by the fact that e is processed. By this we mean that
processing e does not add tighter edges to the path between a and e. This is
not a coincidence pertaining only to this example. In the next chapter we prove
that this is universally true and it becomes the basis for how the Efficient2IDC
algorithm avoids reprocessing nodes.

From the example we can also see the two possible ways of discovering a
new ordering:

1. By applying ProcessPosReq which discovers the order between a and X in
the first step.

2. By applying ProcessCond or ProcessNegReq which discovers the order be-
tween X and e.

We will refer to these sources of discovery as type 1 and 2 discoveries. We will
also refer to derivations as type 1 and type 2. In the next section we will show
a way of dealing with these new orderings in a way which allows an O(n3)
worst case complexity.

We end this section by remarking that if EIDC always added the source
of negative/conditional edges to the todo-set instead of doing this only the
first time an order is discovered, all orderings would be discovered by Process-

Efficient Processing of Simple Temporal Networks with Uncertainty 23

PosReq. In fact, EIDC would then become more similar to FastIDC. In case a
region of non-negative edges was encountered, like in the example, the shortest
paths would then be derived from the source side since each time a possible
tightening is found the source would be added until the shortest paths in the
region were found, at which time there would be nothing to do for ProcessCond
or ProcessNegReq when X is processed. However, EIDC would then have the
same problems as FastIDC [12] where edges would be overwritten iteratively
as the weights approached the tightest values, giving the algorithm an O(n4)
run-time complexity.

If, on the other hand, EIDC never added the source, a new ordering of type 2
would not cause a reaction. This could lead EIDC to do much work stemming
from the target before the ordering was discovered by a type 1 discovery later.
At this point, all the previous work would have to be redone.

While none of the discussed alterations render EIDC incorrect they both
impact performance. It seems that processing the source exactly once is a
good idea for discovering as many type 1 new orderings as possible without
the algorithm becoming O(n4). In the next section we see how we can remove
the need for reprocessing altogether.

8 The Efficient2IDC Algorithm

In this section we present the Efficient2IDC (E2IDC) algorithm. It is an im-
proved version of EIDC which is O(n3) non-amortized, even in the worst case.
The intuition behind the improvement is that some of the derived edges will
not be affected by the discovered ordering. Therefore, a full reprocessing of
the target node is not needed. Instead the algorithm can pause the processing
of the target node and come back to finish it later. The resulting EDG of
E2IDC is identical to that of EIDC, so correctness follows directly. We use the
example in the previous section to explain the idea. Throughout we will also
refer to type 1 and 2 derivations/discoveries. The externally added edge of an
increment does not fall into either of these categories since it is not derived.
However, it can act as both, for instance by adding only the source to todo
or both source and target. In the remainder of this section we will treat the
external edge as derived by both a type 1 and a type 2 derivation to cover all
cases. We start by a definition applicable to both algorithms.

Definition 7 If a node is processed by EIDC or E2IDC, to be presented later,
during which no type 2 discovery is made, the node is said to be completely
processed.

We would like to clarify the usage of new and tightening in the coming discus-
sions. By regarding an edge not present in the EDG as present with infinite
positive weight we can label a “new” derived edge as a tightening of an existing
edge. This lets us simplify the presentation, but we need to take care when the
derived edge weight between two nodes becomes negative for the first time.
This is identified as a new ordering as well as a tightening. Note that from

24 Mikael Nilsson et al.

an ordering perspective it does not matter which type of edge that is derived
between two nodes. An ordering follows from a negative requirement edge, a
negative contingent edge or a conditional edge with negative weight.

We are now ready to continue with several lemmas that apply to EIDC and
can be transferred to the new E2IDC algorithm which will be presented after.

Lemma 2 (Requirement Lemma) Suppose that the node n was completely
processed at some point, in this increment or previously, and that n is now
processed again. For this processing to result in the tightening of an incoming
edge to n the following is required: there must be a tightened incoming edge to
n compared to when it was last completely processed.

Proof Note that deriving an incoming edge towards n, when processing n,
requires a type 2 derivation since type 1 derivations that are done when pro-
cessing n targets other nodes. We will therefore show that any type 2 deriva-
tion requires a tightened incoming edge compared to when the node was last
completely processed.

Suppose towards contradiction that no incoming edge was tightened and it
is still possible to make a type 2 derivation. If no incoming edge was tightened,
then all incoming edges have the same weight as the last time n was processed.
Derivations of type 2 takes place when the source of a negative or conditional
edge is derived along a non-negative distance in the DDG. For the type 2
derivation to occur there must be an involved negative or conditional edge e1 =

n
−a←−− s. Furthermore, there must also be a non-negative distance from the

source of this edge in the DDG. Therefore, there must either be a contingent

edge e2 = t
−b←−− s or a non-negative requirement edge e3 = t

c−→ s.
Derivation of a tighter edge when processing n requires that one of the

edges involved in the derivation is tighter than it was the last time n was
processed.

Since the weight −a has not changed by the assumption, the other edge
must be tightened compared to before. A contingent edge cannot be tightened,
that would mean it is squeezed and the STNU become non-DC. Therefore, the
situation must be that e3 = t

c−→ s is present and the weight c is less than it
was when n was processed previously.

At some point after n was completely processed previously, s received a
tighter incoming edge. The node s was therefore put in todo and processed.
When processing s, ProcessPosReq would have derived the result of combining
e3 with the also present e1 edge. This would then have given a tighter incoming
edge to n which contradicts the original assumption. Therefore we conclude
that any type 2 derivation when processing n requires the prior tightening of
an incoming edge to n. ut

We now specify the origin of the incoming edge in a corollary:

Corollary 1 The required incoming edge in the Requirement Lemma must be
the result of a type 1 derivation.

Efficient Processing of Simple Temporal Networks with Uncertainty 25

Proof Type 2 derivation only derives edges that targets the node being pro-
cessed. Therefore, n cannot receive a tighter incoming edge from a type 2
derivation when another node is processed. The same also holds regarding
type 2 derivations when processing n, since any type 2 derivation requires the
presence of an already tightened incoming edge by the lemma. Therefore, the
first derived tighter edge which targets n must be the result of a type 1 deriva-
tion. ut

We follow this with putting the focus on a property of the EIDC algorithm.

Property 1 (Blocking Property) Suppose that n is ordered before m, i.e. there
is a negative edge n←− m. If m is put in todo, from this point on, n cannot be
processed before m is completely processed.

Proof Because of the ordering, m has to be removed from todo before n can
be considered. If time m is processed but does not get completely processed,
a new order of type 2 is found. This causes m to be put back into todo, and it
continues to block n.

If processing m makes it completely processed, m will not enter todo again
before giving EIDC the possibility of processing n. ut

The Blocking Property means that m temporarily blocks n. It follows from the
property that any node which blocks m, due to transitivity in the CCGraph,
also blocks n.

We will now see that the definition of completely processed meets the
expectations.

Lemma 3 (Finished Lemma) If a node is chosen from todo and becomes
completely processed, further processing by EIDC in this increment cannot
cause derivation of tighter incoming edges to it.

Note that the lemma does not state that n cannot be added to the todo set multiple times.

It states that if it should be added after the situation described, no tighter derivations will

be made.

Proof We assume that the node, n, is chosen from todo and becomes com-
pletely processed. We now proceed to show that no tighter incoming edge to
n can be found in this increment.

There are two situations in which an incoming edge to n could be derived.
Either when processing n, through a type 2 derivation, or through another
node ordered after n where a type 1 derivation causes the incoming edge to
be derived. The Requirement Lemma states that for n to derive an incoming
edge through a type 2 derivation, a type 1 derived edge towards n must first be
derived. Therefore, in both cases the possibility for a tightened edge towards
n relies on finding a type 1 derived edge. We will continue to show that no
such edge can be derived.

A type 1 derived edge would have to be derived when processing a node
m that has a negative edge n←− m towards n. We can assume without loss of

26 Mikael Nilsson et al.

n m t1 t2 s

t3 s1

Fig. 13 Reasoning about processing chains. The edges correspond to negative weight edges
in the EDG.

generality that m is the first node, after n was completely processed, that when
processed causes the derivation of a type 1 derived edge towards n. If there
is an edge derived, there must be a first such edge. Since m is the first node
which causes the derivation of an edge towards n the n←− m edge must have
been present when n was processed. Because, if this edge was derived when
processing another node, x, after n was completely processed, the n←− m edge
would be derived before m was processed, contradicting the assumption on m.

Since the n ←− m edge is present when n becomes completely processed,
we know that at this time m cannot be in the todo set. But in order to be
processed, m must have entered the todo set. Therefore, another node, s, must
be in the todo set when n is processed, and processing s at a later time will
start a processing chain that ends up with m being put in the todo set.

We now study this processing chain in detail. Fig. 13 can be used to follow
the reasoning. We first remind the reader that the target of the derived edges
follows negative edges. Therefore, in order for a type 1 derivation to eventually
target n, there must at some point be a negative path from s to n. However,
there cannot be a negative path present all the way from s to n before n is
processed as the transitive closure handling would ensure that the n←− s edge
would be present in the CCGraph, blocking n from being processed until the
sought type 1 edge was already in place. This contradicts that the edge is de-
rived after n is processed. Therefore, at least one of the negative edges required
along the chain must be derived after n has been completely processed.

We now assume the “missing” edge closest to n is t1 ←− t2. This means that
none of the nodes along the negative path between t1 and n could have been
in todo when n was processed. Due to the Requirement Lemma, if the t1 ←− t2
edge is caused by a type 2 derivation, a type 1 derivation is required prior.
Thus, regardless of which type of derivation is responsible for the edge, there
must be a node t3 ordered after t1 by a negative edge, which facilitates the
derivation of the missing edge. For this edge to be derived, t3 must be put in
todo after n is completely processed. But there was a chain of negative edges
from t1 to n when n was chosen to be processed. This means that n ←− t1
existed in the CCGraph and so also for n ←− t3. Therefore, as for m, there
must again be a node s1 (which might be equal to s) which is responsible for
starting the chain that ends with t3 being put in todo so that it may later cause
derivation of the t1 ←− t2 edge. Now, since t3 has a negative path to n this
cannot be the case for s1 by the same reasoning as for s. Therefore, another

Efficient Processing of Simple Temporal Networks with Uncertainty 27

edge must be missing at the moment between t3 and s1. If we continue the
same reasoning as before we see that each missing edge requires a new t-node
which requires another missing edge and so on. This leads to a growing chain
of different t nodes until one of the t nodes must equal one of the s nodes. At
this final point we see that there is a chain of negative edges from one of the
s nodes in todo to n which contradicts the possibility of a missing edge and
ultimately a derived edge towards n. ut

The lemma will be used by E2IDC to improve the algorithm’s efficiency. We
are now ready to present this algorithm in listings 6-8.

The algorithm is a modified version of EIDC. We now go through the main
points of modification.

Recursion. A consequence of the Finished Lemma is that if E2IDC process
a node current and do not find any new type 2 ordering it is safe to move on
and process nodes before current. If a new type 2 order is found, the source
node must be processed before E2IDC can continue to process current. This is
done recursively, which leads to a division of the main algorithm into the main
iteration loop and a ProcessNode function. This can then be called recursively
from the LimitedDijkstra function when new orders are detected.

The finished set. The Finished Lemma directly tells us that any node that
is completely processed does not need to be processed again. A call to the
function ProcessNode has this effect for the processed node. To increase the
efficiency of the E2IDC algorithm, completely processed nodes are kept in a
finished set. If a node in the finished set is encountered in a type 2 derivation,
we now know that reprocessing it will not give it any tighter incoming edges,
and so this encounter should not cause any reprocessing.

The processing set. This set keeps track of nodes that are being processed.
If more than one node is in the set, recursive processing is ongoing. The set
has two uses. First, it prevents recursively processed nodes from adding nodes
earlier in the recursion chain to the todo set. These nodes are already being
handled. Second, if a negative cycle is derived via recursive calls to ProcessNode
and LimitedDijkstra this recursion may loop unless the cycle is detected. Detec-
tion in this case happens when LimitedDijkstra finds a new ordering for which
the source node is already in the processing set.

The TCGraph. To ensure the correctness of FastIDC, negative cycles had to
be detected. The CCGraph was introduced for this purpose [10], and was up-
dated using a fast but complex incremental topological ordering algorithm [1].
EIDC additionally needs to keep track of the transitive closure of all negative
edges. The transitive closure can of course directly be used to find cycles of
negative edges, which makes the CCGraph redundant. In E2IDC we therefore
change from the CCGraph as cycle detector to the TCGraph, containing the
transitive closure of all negative edges.

From the Finished Lemma we know that no edges that targets a node will
be generated after it is completely processed. Therefore, the transitive closure
can be updated to include all the effects of processing a node at the end of

28 Mikael Nilsson et al.

Algorithm 6: The Efficient2IDC Algorithm

function Efficient2IDC(EDG G, DDG D, TCGraph C, Requirement Edge e)

finished ← {}
processing ← {}
todo ← {Target(e)}
/* With the exception of e, all in-parameters and the sets finished,

todo and processing are considered globally visible. G, D and C
are modified by the algorithm. */

if e is negative and e /∈ C then
add e to C
if negative cycle detected then return false

end

while todo 6= ∅ do
current ← pop some n from todo where

∀e ∈ Incoming(C, n) : Source(e) /∈ todo
if ProcessNode(G,D,C, current) = false then return false

end
return true

function ProcessNode(EDG G, DDG D, TCGraph C, Node current)
processing ← processing ∪{current}
ProcessCond(G,D,C, current) // Edges target current. Applies D2,D3

ProcessNegReq(G,D,C, current) // Edges target current. Applies D6,D7

ProcessPosReq(G,C, current) // Other targets. Applies D1,D4,D5

for each edge e added to G while processing current do
if e is a non-negative requirement edge then add e to D

if Target(e) 6= current and Target(e) /∈ processing then
todo ← todo ∪{Target(e)} // Target needs processing

end
if e is a negative requirement edge and e /∈ C then

add e to C
remove e from D if present
if negative cycle detected then return false
if Source(e) /∈ finished then // Process unprocessed nodes only

todo ← todo ∪{Source(e)}
end

end

end
if G is squeezed then return false
finished← finished ∪ {current}
processing ← processing − {current}
UpdateTCGraph ()
return true

ProcessNode when it is completely processed. Each call to ProcessNode use
up to O(n2) time. This means that E2IDC may use any algorithm within this
complexity class for generating the transitive closure.

It turns out that the naive algorithm is enough to meet our requirement:
First, all negative requirement edges that was derived in this iteration are
added to the TCGraph. Then find all edges that targets current in the TC-
Graph and the predecessors of their sources. These are then connected in

Efficient Processing of Simple Temporal Networks with Uncertainty 29

Algorithm 7: The Edge Derivation Functions
function ProcessCond(EDG G, DDG D, TCGraph C, Node current)

// Indirectly applies D2 and D3

allCond← IncomingCond(current,G) // conditional edges into current

condNodes← {n ∈ G | n is the conditioning node of some e ∈ allCond}
for each c ∈ condNodes do // For each conditioning node

edges← {e ∈ allCond | conditioning node of e is c} // Collect its edges
minw← |min{weight(e) : e ∈ edges)}| // Find the lowest weight
sourceEdges← {}
for e ∈ edges do

d← reversed e with added weight minw // Non-negative distances
sourceEdges← sourceEdges ∪ d

end
LimitedDijkstra (G, D, C, sourceEdges, current, minw)

// Returns a set of reachable nodes and their distances

for all nodes n 6= c reached by LimitedDijkstra do // Guarantees B 6= D in D3
e ← cond. edge (n→ current), weight Dist (n) - minw
if e is a tightening then

add e to G
apply D8 and D9 to e

end

end

end
return

function ProcessNegReq(EDG G, DDG D, TCGraph C, Node current)
// Indirectly applies D6 and D7

edges← IncomingNegReq(current,G)
minw← |min{weight(e) : e ∈ edges)}| // Find the lowest weight
sourceEdges← {}
for e ∈ edges do

d← reversed e with added weight minw // Non-negative distances
sourceEdges← sourceEdges ∪ d

end
LimitedDijkstra (G, D, C, sourceEdges, current, minw)

// Returns a set of reachable nodes and their distances
for all nodes n reached by LimitedDijkstra do

e ← req. edge (n→ current) of weight Dist (n) - minw
if e is a tightening then add e to G

end
return

function ProcessPosReq(EDG G, Node current) // Directly applies D1, D4 and D5

for each e ∈ IncomingPosReq(current,G) do
apply derivation rule D1, D4 and D5 with e as focus edge
for any derived edge d do

if d is a conditional edge then
apply derivations D8-D9 with d as focus edge

end
for each derived tightening do // This could be d or a derived

add tightened edge to G // requirement edge, or both
end

end

end
return

30 Mikael Nilsson et al.

Algorithm 8: The Limited Dijkstra Function
function LimitedDijkstra(EDG G, DDG D, TCGraph C, Edge Set sourceEdges,

Node cur, Number maxDist)

for each node n in D do // Initialization
Distcur[n]←∞

end
toV isit←Priority queue sorted on distance to cur
for each edge e in sourceEdges do

Distcur[Target(e)]← Weight(e) // One of these will have distance 0
Add Target(e) to toV isit

end
visited← {}
while toVisit is not empty do

visiting ← dequeue from toV isit
visited← visited ∪ {visiting}
if Distcur[visiting] < maxDist then

for each outgoing edge e from visiting in D do
p← Target(e)
if p=cur then continue // We don’t follow paths into cur
if Distcur[p] > Distcur[visiting] + Weight(e) then

Distcur[p]← Distcur[visiting] + Weight(e)
Update key for p in toV isit

// Is a new ordering detected?
if the edge (p, cur) /∈ C and Distcur[p] < maxDist then

if p ∈ processing then
return visited, Dist // Negative cycle detected

end
if p /∈ finished then ProcessNode (G, D, C, p)

end

end

end

end

end
return visited, Dist

the TCGraph to all TCGraph successors of current. This simple algorithm
is enough to guarantee that the transitive closure is found. The complexity
is within O(n2) since there are O(n) incoming edges and sources, for which
at most O(n) time is needed to find its predecessors. Connecting these O(n)
predecessors to the O(n) successors of current takes at most O(n2) time.

Dijkstra Distance Graph Handling. The last major point of modification
is due to the recursive nature of E2IDC. Because of this the source edges used in
the Dijkstra calculations are not added to the DDG. This is a necessity since by
recursion several Dijkstra calculations may run in parallel. Instead, whenever
a new Dijkstra calculation is started, the first step is done before entering
the iterative loop. E2IDC initializes the distances to all nodes reachable from
the source before starting the iterations. This makes it possible for concurrent
Dijkstra calculations to progress without adding these special edges. In order to
allow several Dijkstra’s in parallel, there is a need to index the node distances
by the current node. In the LimitedDijkstra function the index is shown in the
subscript current to the Dist array. The LimitedDijkstra function needs some
clarification. The function will continue to add nodes to the queue as long as
the distance of the visiting node is less than maxDist. The reason for this

Efficient Processing of Simple Temporal Networks with Uncertainty 31

is that once the distance exceeds maxDist any derived edges will be positive
and hence further derivations from these are not possible. There are also two
special cases that needs to be explained. We prevent cur from being added
to toV isit. Any path into cur corresponds to a derivation of a loop, i.e. an
edge from cur to cur. Such loops can be disregarded if positive and leads to
non-DC if negative. We prevent it from causing loops in the recursion. The
fact that the STNU is non-DC in these cases is caught be the local squeeze at
the point just before creation of the loop edge was possible. The last special
case is the one mentioned when the processing set was introduced. Detecting
if a new order is found which involves a node in the processing set. This means
that there must be a negative loop and the STNU is non-DC.

A final small modification is that there is no need to process the source of
an externally tightened negative edge. The edge could only react with non-
negative edges that are incoming to the source. There are two cases:

1. The source has incoming edges that are negative. These were then present
in a previous increment, when the node was completely processed. Process-
ing it again will not result in new non-negative edges.

2. If the source node only has incoming non-negative edges, then only D7
derivations are applicable, but these are isomorphic to D4 which will be
applied when the target is processed.

We now show that discovering and processing another node while processing
current does not affect the previous work done in current.

Lemma 4 (Pausing Lemma) Suppose that while node n is being processed,
it is discovered (type 2) that node m is after n. Suppose also that m is the
first such node discovered while processing n. Then the Dijkstra calculations
made before m was discovered are not affected by processing m intermediately
before continuing with n. As a result the processing of n can “pause” until m
is completely processed.

Proof If m was already in finished, it would not need to be processed and the
lemma holds. We now assume that it was not yet completely processed. There
are two ways in which performed Dijkstra calculations could become obsolete
by processing a later node:

1. A tighter distance towards m is found which later propagates to replace
existing distances to nodes already visited by Dijkstra.

2. Edge weights between nodes that were already visited by Dijkstra shrinks,
resulting in shorter distances from n.

In the first case note that the further along the Dijkstra calculation goes, the
farther the distances become, i.e. the more positive the weights become. This
means that the tightest replacement edge for the n ←− m edge is a tighter
negative n ←− m edge that was derived when processing m. Recall that the
only way of deriving an edge which targets an earlier node is by the interaction
of a non-negative edge followed by a negative edge. In this case the negative

32 Mikael Nilsson et al.

edge is the n ←− m edge. Therefore, any derivation results in an edge with a
weight that consists of a non-negative value added to the weight on the n←− m
edge. This means that the weight of the derived edge cannot be tighter than
the existing edge and the derived edge will be discarded.

In the second case an important aspect of the requirement in the lemma is
that m must be the first node for which a new order is found. This means that
any distance calculated by Dijkstra prior to finding m only involved nodes
that were known to be after n. We can therefore apply a similar reasoning to
that which is done in the Requirement Lemma and conclude that these nodes
cannot be added to todo at a later time. As in the lemma this would lead to a
contradiction regarding the possibility of choosing n for processing. Since the
nodes will not be processed later they cannot receive tighter incoming edges
during this increment. Therefore, any Dijkstra calculation over these edges is
still valid after the recursive processing of m.

We see in both cases that the Dijkstra distances cannot be compromised
by the intermediate processing of m. ut

Note that ProcessNode can be seen as a sequence of Dijkstra calculations:
First each conditioning node of incoming conditional edges requires a separate
Dijkstra calculation and after this the incoming negative requirement edges
requires an additional Dijkstra calculation. The pausing lemma states that it
does not matter if a new ordering is found during the Dijkstra calculations.
They can each be paused and resumed to complete the calculation. The lemma
focuses on one such calculation. If a discovery of a new ordering takes place at
a certain Dijkstra calculation then all Dijkstra calculations carried out before
with the current focus node still remain valid. To see this assume that with n
as current, ProcessCond processed the conditional edges conditioned on nodes
A1, . . . , An and when calculating the distances for conditioning node An+1 a
new ordering is discovered. Let m be the source node of the negative edge re-
sponsible for the new ordering. The fact that the ordering was only discovered
at this point means that any edge derived by ProcessCond for the previous
conditioning nodes which has m as source has non-negative weight. Therefore,
there can be no later interaction in this increment from edges targeting m
with the previously derived edges from ProcessCond and hence the distances
previously calculated by ProcessCond are valid. All nodes from which negative
edges were derived, or existed previously, during the prior conditional pro-
cessings must have been processed before the current focus node was selected
as current (same reasoning as in both proofs) and therefore they cannot re-
ceive additional incoming edges which could affect the so far executed Dijkstra
calculations.

The lemma shows that it is safe to recursively handle any found ordering
and then continue as if that ordering was in fact known when processing
started. Therefore, the Dijkstra calculations for a particular node are only run
in its entirety once before the node is finished. This gives the final result of
the paper.

Efficient Processing of Simple Temporal Networks with Uncertainty 33

Corollary 2 (E2IDC Complexity) The run-time of E2IDC is O(n3) in the
worst case.

Proof The worst case time complexity when no new order was found by EIDC
is O(n3). Since this amounts exactly to the work done by E2IDC, even when
new orderings are handled, the latter is O(n3). ut

9 Related Work and Conclusion

In this paper we presented the Efficient2IDC version of EIDC. It is an improve-
ment which reaches a true O(n3) worst case per call, as compared to EIDC’s
worst case of O(n4). The result was reached through an in-depth analysis of
which parts of the work done by EIDC that could be saved in case a new or-
dering was detected. The EIDC algorithm always remake Dijkstra calculations
in case a node was re-processed. By recursively processing nodes until they
are completely processed we prove that an O(n3) bound is attained.

We wish to clarify the relation between this work and that of Morris [7],
which presents an algorithm for verification of dynamic controllability in a
full STNU. Throughout our work, the main focus has been incremental veri-
fication. Though EIDC and Morris’ algorithm have similar complexity results
and share certain concepts, they were developed independently and the key
ideas underlying EIDC were submitted and finalized before the publication of
Morris’ paper. That said, the recursion part of E2IDC was applied after Mor-
ris’ paper. The key contribution of E2IDC is an improvement of the previous
EIDC incremental DC verification algorithm, which is based on different graph
representation, derivation rules and underlying theory than Morris’ algorithm.

Other recent related work includes the Timed Game Automata (TGA)
approach which allows inclusion of other aspects into STNUs, such as resource
constraints and choice [2,3]. This approach works on a smaller scale and does
not exploit the inherent structure of STNUs as distance graphs. Therefore it is
more useful in networks that are small in size but involve additional capabilities
which cannot be handled by pure STNU algorithms.

Acknowledgements This work is partially supported by the Swedish Research Council
(VR) Linnaeus Center CADICS, the ELLIIT network organization for Information and Com-
munication Technology, the Swedish Foundation for Strategic Research (CUAS Project), the
EU FP7 project SHERPA (grant agreement 600958), and Vinnova NFFP6 Project 2013-
01206.

References

1. M.A. Bender, J.T. Fineman, S. Gilbert, and R.E. Tarjan. A new approach to incremental
cycle detection and related problems. arXiv preprint arXiv:1112.0784, 2011.

2. Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini, and Enrico Tronci.
Analyzing flexible timeline-based plans. In Proceedings of the 2010 conference on ECAI
2010: 19th European Conference on Artificial Intelligence, pages 471–476. IOS Press,
2010.

34 Mikael Nilsson et al.

3. Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, and Marco Roveri. Using timed
game automata to synthesize execution strategies for simple temporal networks with
uncertainty. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence, July 27 -31, 2014, Québec City, Québec, Canada., pages 2242–2249, 2014.

4. Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial
Intelligence, 49(1-3):61–95, 1991.

5. Luke Hunsberger. Fixing the semantics for dynamic controllability and providing a more
practical characterization of dynamic execution strategies. In Temporal Representation
and Reasoning, 2009. TIME 2009. 16th International Symposium on, pages 155–162.
IEEE, 2009.

6. Paul Morris. A structural characterization of temporal dynamic controllability. In Pro-
ceedings of the 12th international conference on Principles and Practice of Constraint
Programming, pages 375–389. Springer-Verlag, 2006.

7. Paul Morris. Dynamic controllability and dispatchability relationships. In Integra-
tion of AI and OR Techniques in Constraint Programming (CPAIOR), pages 464–479.
Springer, 2014.

8. Paul Morris and Nicola Muscettola. Temporal dynamic controllability revisited. In
In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-2005,
2005.

9. Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with
temporal uncertainty. In Proceedings of the 17th International Joint Conference on
Artificial Intelligence (IJCAI), pages 494–499, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

10. Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Incremental dynamic control-
lability revisited. In Proceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS), 2013.

11. Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Classical Dynamic Control-
lability Revisited: A Tighter Bound on the Classical Algorithm. In Proceedings of the
6th International Conference on Agents and Artificial Intelligence (ICAART), pages
130–141, 2014.

12. Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. EfficientIDC: A Faster Incre-
mental Dynamic Controllability Algorithm. In Proceedings of the 24th International
Conference on Automated Planning and Scheduling (ICAPS), 2014.

13. Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Incremental Dynamic Control-
lability in Cubic Worst-Case Time. In Proceedings of the 21th International Symposium
on Temporal Representation and Reasoning (TIME), 2014.

14. Julie A. Shah, John Stedl, Brian C. Williams, and Paul Robertson. A fast incremental
algorithm for maintaining dispatchability of partially controllable plans. In Mark S.
Boddy, Maria Fox, and Sylvie Thibaux, editors, Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS), pages 296–303. AAAI
Press, 2007.

15. John L. Stedl. Managing temporal uncertainty under limited communication: A formal
model of tight and loose team coordination. Master’s thesis, Massachusetts Institute of
Technology, 2004.

16. I. Tsamardinos. Reformulating temporal plans for efficient execution. Master’s thesis,
University of Pittsburgh, 2000.

17. Thierry Vidal and M. Ghallab. Dealing with uncertain durations in temporal constraints
networks dedicated to planning. In Proceedings of the 12th European Conference on
Artificial Intelligence (ECAI), pages 48–52, 1996.

