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Abstract. Inhabiting the complex and dynamic environments of modern computer
games with autonomous agents capable of intelligent timely behaviour is a sig-
nificant research challenge. We illustrate this using our own attempts to build a
practical agent architecture on a logicist foundation. In the ANDI-Land adventure
game concept players solve puzzles by eliciting information from computer char-
acters through natural language question answering. While numerous challenges
immediately presented themselves, they took on a form of concrete and accessible
problems to solve, and we present some of our initial solutions. We conclude that
games, due to their demand for human-like computer characters with robust and
independent operation in large simulated worlds, might serveas excellent test beds
for research towards artificial general intelligence.
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1. Introduction

Two topics that have seen a recent boost of interest are research on artificial general in-
telligence (AGI) and the use of modern computer games as AI research test beds. There
is much to say in favour of combining these trends, though we confine ourselves to two
important observations. First, games are readily accessible both for the scientist who
can use existing games with exposed APIs, or relatively easily implement entirely new
games, and for the peer researcher or student who can download and experiment with
the software themselves. Second, their demand for human-like behaviour in complex en-
vironments necessitates a certain amount of generality in any proposed solution. Game
environments are much more complex than classical benchmark problems such as the
blocks world, which are often criticised for their limited scope (e.g. by Hayes [1]). In
contrast, most computer games are incompatible with simplifying assumptions such as
the (in)famous closed world assumption and call for many of the capabilities needed for
general intelligence such as an agent architecture that integrates everything from percep-
tion to action, robustness and responsiveness in sometimesunpredictable environments,
goal-directed action planning, multi agent communication, reasoning about knowledge
and how to obtain it, and natural language understanding fordialog interaction.

Our own work involves research on topics relevant to an adventure game project
where a human player solves simple puzzles through natural language question answer-



ing dialogs with ANDIs, agents with Automated Natural Deduction based Intelligence,
who inhabit ANDI-Land. Present day games almost universally adopt straight jacketed
exchanges typically featuring a choice between three canned sentences, two of which are
humorous sidetracks and one that will move the dialog forward to the next set of sen-
tences. Our aim is to eliminate the forced linearity of scripted dialogs through artificial
intelligence technology. Rather than mindlessly trying all alternatives, we would have
the player think1. The reader is encouraged to evaluate the results we describe below
through experimentation with our demonstrator available for download (as a Windows
binary) atwww.andi-land.com.

The long term aim is wide coverage natural language understanding, which requires
both extensive knowledge of the topics under discussion andthe capability to reason with
it. Such demands can ultimately only be satisfied by true AGI,while our efforts to date
are certainly not in that ballpark. But our initial experiences with ANDI-Land indicate
that a computer game setting enables an incremental approach where reasonably difficult
challenges can be attacked while keeping the long term goal in mind. The work presented
below is, for this reason, based on a logicist foundation. Webelieve the best way to
approach general intelligence is by formulating most typesof reasoning in a unified
proof system for deductive and non-monotonic types of inference in a, not necessarily
purely classical, logical formalism expressive enough to capture all the subtleties and
distinctions that humans make in their reasoning. If successful, such an endeavour will
allow the use of efficient specialized reasoning processes when applicable, yet always
providing the option to fall back on more general but less efficient methods of proof in
new and unforeseen situations.

Rather than expanding further on this nebulous conjecture we will discuss the spe-
cific research problems that immediately suggested themselves when we initiated work
on our question answering adventure game concept, in Section 2. Section 3 presents ex-
ample dialogs from an in-game scenario that illustrate somecapabilities of the archi-
tecture built in response to the challenges. A hopelessly inadequate selection of related
work, squeezed into Section 4, will have to make do for orienting our efforts in relation
to others’. Finally, Section 5 concludes with a look towardsthe future.

2. ANDI-Land

ANDI-Land consists of an isometric graphical representation of a forest that can be ex-
plored by a player through a keyboard controlled avatar. Theforest is inhabited by in-
telligent agents with which the player can initiate question answering conversations, and
who sometimes proactively do so themselves in order to further their own goals. There
is a puzzle element to make interaction interesting, but unlike most other adventure type
games, solving puzzles through a process of eliminating allalternatives is not feasible
since the natural language input is not sufficiently restrictive. Implementing this concept
requires providing ANDI-Land agents with a genuine understanding of questions posed
to them and equipping them with knowledge of their virtual world from which to de-
duce answers. Only the coordination of linguistic and semantic processing can make this
possible.

1Although whether this constitutes an enjoyable game experience depends, of course, on the player.
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Figure 1. Active edges in the chart resulting from parsing “who” show the possibilities for the next word in
the sentence, “owns”, “am”, and “are”.

2.1. Interactive Natural Language Input

As we pointed out in Section 1, it would be unrealistic to expect both broad and deep
natural language understanding sooner than the development of AGI. First, no one has yet
been able to construct a grammar with adequate coverage of the entire English language.
The problem is not just that players of the game will not be able to express themselves in
whatever way they want, but worse, nor will they receive any hints as to how to rephrase
themselves in a way that the parser will understand. Second,the knowledge of the game
characters will, while aiming at generality, realistically start out as downright narrow.
Most sentences would simply be outside the area of competence of the game characters,
and they would have to respond with an honest “I don’t know”.

These two problems threaten to reduce the adventure to a sortof guessing game
where the player, more or less blindly, would have to search for sentences that both avoid
the equivalent of a "parse error" message and whose semanticmeaning happens to pro-
duce something other than a puzzled look on the respondent’sface. Using a very large
wide coverage grammar like the English Resource Grammar [2]would seem to help al-
leviate the first problem, but at the cost of worsening the second. The semantical form it
produces is not detailed enough to suffice for automated reasoning and question answer-
ing. Our project would be quite stranded if these problems left no room for incremental
progress building on a modest start.

ANDI-Land incorporates a unique form of interactive natural language input that
deal with both problems by guiding the player towards sentences that parse correctly and
fall within the AIs competence areas. For example, the sentence “who is the lumber’s
owner” is not supported by our current grammar, but the sentence “who owns the lum-
ber” is. Even though this restriction is arbitrary, the player is spared much frustration due
to the interactive parser. As soon as the player starts typing, a chart parser (as described
in [3])2 starts producing partial parses that cover as many words as possible. Though
the initial word “who” does not constitute a complete sentence, the resulting parse chart
still contains useful information. Specifically, by looking at active chart edges we can
collect all words that would advance the parse if they occurred immediately succeeding
the current input. According to Figure 1, the words “owns”, “am”, and “are” constitute
all the possible continuations of the current input, and choosing among them effectively
circumvents all sentences that have no chance of resulting in a complete parse. The pro-
cess could be likened to the widespread T9 mobile phone text input, except that the sys-
tem understands the grammar of entire sentences rather thanjust the correct spelling of
words. Furthermore, by limiting the grammar to concepts covered by the agent’s back-
ground knowledge we can ensure that most of the input sentences are answered intel-

2The parser and grammar are extremely simple. We would like to improve them at a later date, perhaps
modifying the Linguistic Knowledge Builder [2] for our interactive mode.



Natural language question Who owns the lumber?
Input logical form ∃ans[value(now, owner(lumber)) = ans]
Answer variable binding ans= djak
Answer logical form value(now, owner(lumber)) = djak
Natural language response Djak owns the lumber.

Figure 2. The process from natural language question to natural language response is largely symmetrical,
thanks to a “reversible” grammar.

ligently. Compared to scripted dialogs, the interactive input method presents the player
with a multitude of choices, even using a very small grammar,while also allowing for
gradual improvements in language coverage.

2.2. Reversible Natural Language Grammar

Another challenge, natural language generation, is presented by communication in the
opposite direction. Each grammar rule has an associated lambda expression that repre-
sents its meaning. Meaning fragments are combined by lambdaapplication that eventu-
ally, after a complete parse of the sentence, results in formulas of first-order logic. These
formulas are directly amenable to automated reasoning to produce an answer expression,
encoding the response in first-order logic. Of course, we would prefer the game char-
acters to reply in plain English. Shieber’s uniform architecture [4] for both parsing and
generation addresses this difficulty with minimal machinery. It effectively makes the nat-
ural language grammar reversible with relatively small modifications to the basic chart
parsing algorithm. There is no need for separate generationalgorithms. Furthermore,
extensions to the input grammar that help the ANDI-Land inhabitants understand new
words or grammar automatically increase their proficiency in using them in speech too.
Figure 2 illustrates the question answering process using the example sentence from the
previous section. A question is parsed into a formula that contains ananswer variable.
Its value, found through the theorem proving techniques described in Section 2.6, can be
used to instantiate the query to form an answer expression. Finally, the chart parser is run
in “reverse” to produce a natural language response to the original question.

2.3. Temporal Action Logic

We said that the logical forms resulting from parsing were amenable to automated rea-
soning. Work within the methodology of formal logic provides a comprehensive tool set
for correct reasoning. However, the standard philosophical logic turns out to be inade-
quate to support the thinking processes ofactivecharacters indynamicenvironments.
Researchers in cognitive robotics are therefore creating new powerful logics that are ap-
plicable to commonsense reasoning about action and change as well as more traditional
logical reasoning. We have chosen to work with one such logic, the Temporal Action
Logic (TAL), which adopts an intuitive explicit time line todescribe actions and their
effects in a changing environment. The origins of TAL can be found in the Features
and Fluents framework developed by Sandewall [5], but it wasa new characterization in
terms of first-order logic with circumscription, by Doherty[6], that made automated rea-
soning possible. Many extensions since have turned TAL intoa very expressive language
capable of representing, among other things, actions with durations, context-dependent
and non-deterministic actions, concurrency, and action side-effects.



But the most important feature of TAL might be itsocclusionconcept that serves
as a flexible tool to deal with important aspects of the frame problem, which has long
haunted logical approaches to AI. Properties and relationsthat may change over time are
modelled byfluents, and the valuev of a fluentf can be linked to a time pointt on the
time line using a functionvalue(t, f) = v. Some agenta (denotedself when doing the
thinking) carrying out an actionc during time intervali is specified byOccurs(a, i, c).
The following formula relates a fluentf ’s value at the starting and ending time points of
a time intervali, unless the fluent is occluded, as specified byOcclude(i, f):

∀i, f [¬Occlude(i, f) → value(start(i), f) = value(finish(i), f)] (1)

The role of circumscription is the minimization of action occurrences and occlusion to
implement the blanket assumption that no unexpected actions occur and fluents’ values
persist over time. Exceptions are specified by explicit action occurrences and their oc-
clusion of fluents they affect, thus releasing them from the frame assumption that their
values remain unchanged. E.g., if the game character Djak was to sell the lumber he
possesses in Figure 2, the fluentowner(lumber) would be occluded during any interval
that overlaps the interval during which the selling occurrs, and Formula 1 would not be
applicable.

2.4. Reasoning and Planning

However, one of the most important forms of reasoning is not supported by the TAL
framework as described above, namely proactiveplanning to achieve goals. E.g., if
Djak’s (modest) goal in life is the possession of lumber, he could reason that going to
a shop and buying lumber is one possible plan to satisfy it. But his reasoning must al-
low the consideration of different actions before committing to any particular plan. Djak
should not commence going to the store before considering whether the store actually
sells lumber or not, since if it does not he might have to resort to an alternative sequence
of actions such as cutting down some trees himself. However,committed knowledge
about the set of actions is a prerequisite to automated reasoning using the circumscrip-
tion account of TAL [7]. In contrast, we would like the set of actions to be aconsequence
of reasoning. This was accomplished in previous work [8] in aconstraint logic program-
ming setting. Rather than circumscribing a fixed set of actions, we use constraints to keep
track of assumptions that depend on the set of actions, and reevaluate those assumptions
when the set of actions change. The mechanism was cast as deduction, but the same prin-
ciples are recast as abduction in a new first-order theorem proving setting described in
Section 2.6. Thus equipped, Djak is both able to answer questions and plan his actions
through automated reasoning with TAL.

2.5. Epistemics

Game agents, however, must face an additional complicationwhen planning their ac-
tions. Inhabitants of the game world can not reasonably be assumed to possess complete
knowledge of their entire world, and even if they did, the dynamic nature of game en-
vironments would quickly make this knowledge obsolete. Theclosed world assumption
that is at the foundation of many classical planning systemsis not applicable. Instead,
an intelligent agent must reason with incomplete information and, significantly, plan to



obtain additional information when needed. E.g., suppose another ANDI-Land agent,
Keypr, owns a shop. Although Keypr is all out of lumber, he could sell Djak an axe to
use to cut down a tree with. Being an intelligent and proactive fellow, Djak might come
up with the following plan fragment (excluding the tree cutting part):

∃i1, i2 [Occurs(self, i1,walk(value(start(i2), location(keypr)))) ∧
Occurs(self, i2,buy(axe, keypr)) ∧
finish(i1) = start(i2)]

Though, what if Djak does notknowKeypr’s location? The plan is still correct in the
sense that if Djak executed it, the intended effects would manifest. The problem is that it
is notexecutable. There is no way Djak can (willingly) walk to Keypr’s location without
knowing what that location is, but we have as of yet no means toexpress this additional
knowledge precondition. What is needed is an epistemic logic that includes a notion of
knowledge.

The most common way of introducing such a notion of knowledgeis in the form of
a modal operatorKnowswith a possible worlds semantics. This can be done while re-
maining in classical logic by encoding the possible worlds and the accessibility relation
between them explicitly in the object language, as e.g. in Moore’s pioneering work [9].
But these approaches are associated with some limitations that make them unsuitable
asgeneralframeworks of epistemic reasoning, as pointed out e.g. by Morgenstern [10].
She proposes an alternative treatment that introducesKnowsas a “syntactic” predicate,
which accepts quoted formulas as arguments. Quotation can be seen as an extreme form
of reification where any formula can be turned into a term. It appears to be both simpler
and more intuitive than possible world semantics in many contexts. Unfortunately, quo-
tation is associated with the risk of paradoxes. While it is true that unrestricted quotation
leads to the paradox of the Knower [11], there are methods foravoiding these problems
(a particularly interesting one is Perlis’ [12], which still allows for self-referential for-
mulas). Our work, although adopting the syntactic quotation framework in anticipation
of requirements of generality, has not yet proceeded far enough to utilize the additional
expressivity afforded by syntactical treatments of knowledge over modal variants, a fact
that guarantees consistency [13] and allows us to remain uncommitted as to which more
general treatment to give preference to.

Equipped with the ability to represent knowledge explicitly we add a precondition
to walking that one should know where the destination is. We can also make use of the
Knowspredicate in action effects, thereby formalizing knowledge producing actions and
putting us in a position where planning for knowledge acquisition is possible. Adding an
action for asking another agent (such as the player!) about afluent’s value enables Djak
to come up with a plan that is both executable and that has the intended effect:

∃i1, i2, i3 [Occurs(self, i1, askValue(player, location(keypr))) ∧
Occurs(self, i2,walk(value(start(i3), location(keypr)))) ∧
Occurs(self, i3,buy(axe, keypr)) ∧
finish(i1) = start(i2) ∧ finish(i2) = start(i3)]



2.6. Natural Deductive Theorem Proving

Many agent architectures are built on a logic programming foundation, as was our previ-
ous work [8]. Logic programs incorporate some of the power oftheorem proving while
remaining relatively simple and allowing a high degree of control over the inference
mechanism. But a fundamental limitation of Prolog is the assumption of complete knowl-
edge, which, as we noted in Section 2.5, is unreasonable in complex computer games. In
the interest of overcoming this limitation one can augment Prolog with meta-interpreters
or other add-ons. Though when setting the sights for generalintelligence it seems to us
that augmenting Prolog will, over time, gradually approachgeneral first-order theorem
proving but in a roundabout and unnecessarily complicated way.

An alternative approach is to start with a first-order resolution theorem prover and
complement it with special purpose modules that make some types of reasoning highly
efficient. This is the method taken by the Cyc team, who have gone one step further and
given up completeness in favour of efficiency and expressiveness [14]. Our (limited) ex-
perience with resolution suggests to us that it is not quite the natural fit with common-
sense reasoning that one would hope. For example, the need tocompile the knowledge
base into clause form destroys potentially useful structural information that was previ-
ously implicit in the syntactic form of knowledge and rules,and the use of a single proof
rule based onreductio ad absurdumcould be incompatible with the defeasible reasoning
that has turned out to be so important to commonsense reasoning [15].

Still, resolution completely dominates the field of automated theorem proving, but
it is not the only contender. One particularly interesting alternative isautomated natural
deduction. Rather than compiling the agent’s knowledge into clause form, such a theorem
prover works with the “natural form” directly. And the rule set is extensible, thereby
supporting the addition of special purpose rules, e.g. for defeasible reasoning. Moreover,
whether the term “natural” is grounded in any relation between the deductive system and
human reasoning is an exciting prospect explored by Rips, who argues a positive verdict
[16].

In light of these considerations we have opted for our ANDI-Land inhabitants to
“think” using an automated natural deduction theorem prover. Input formulas use the
quantifier free form described by Pollock [17] and Rips [16].This eliminates the some-
what cumbersome natural deduction rules for quantifier elimination and introduction
while still preserving the knowledge base’s natural form toa large extent. Most impor-
tantly, it provides the opportunity to work with unificationand enables the use ofanswer
extractionfor question answering by binding answer variables to values as exemplified
in Figure 2. Rather than a select few inference rules there isa set offorward rules (four at
the moment), which are applied whenever they become applicable, and a set ofbackward
rules (currently eleven of them), which are used in a goal-directed search for a proof.
Finally, equality is dealt with through a system of rewrite rules, and temporal relations
are added to a general temporal constraint network [18], exemplifying the use of special
purpose reasoning mechanisms for efficiency.

A novel proof rule worthy of mention is a special abduction rule that allows relations
from a set ofabduciblesto be assumed rather than proven, as long as doing so does not
lead to inconsistency. This “natural abduction” rule formsthe basis of the mechanism for
non-monotonic reasoning and planning. As an example, consider the following natural
deduction proof fragment (where the justifications in the right margin denote (P)remises,
(H)ypotheses, the agents background (K)nowledge, and row numbers):



1 value(12:00, location(self)) = loc(1,−1) P

2 start(i37) = 12:00 P

3 finish(i37) = 13:00 P

4 ¬Occlude(i37, location(self)) H

5 value(13:00, location(self)) = loc(1,−1) 1 − 4,K

6 Occurs(self, i38,walk(loc(0, 0))) H

7 value(finish(i38), location(self)) = loc(0, 0) 6,K
8 ∀i [¬Occlude(i, location(self)) → ¬Overlap(i, i38)] 6,K
9 ¬Overlap(i37, i38) 4, 8

The agent starts at the location with coordinate〈1,−1〉 at noon, as in Row 1. Suppose the
agent needs to remain at the same location at 1 p.m. One way of proving this would be to
use persistence. The location fluent is only persistent if itis not occluded, and while the
agent has no knowledge about whether it is occluded or not,¬Occludeis an abducible
and may thus beassumed. Rows 2-4 introduces a new interval constant and indicates
the assumption using a natural deduction style vertical line in the margin. Suppose fur-
ther that the agent, for some other reason, needs to visit location 〈0, 0〉. The only way
of proving this would be if a walk action destined for that coordinate occurred. When
planning,Occursis also abducible, so the agent assumes such an action in Row 6. The
effect on the agent’s location is recorded by Row 7. Walking should occlude the location
fluent, but instead of stating that the fluent is occluded in any interval that overlaps the
walk action, Row 8 uses the contra-position, stating that any interval that has assumed
the location to be persistent must not overlap with the action of walking. This triggers
the forward modus ponens rule to produce Row 9, partially ordering the two intervals to
avoid any conflict between the persistence of the agent’s location, and the agent’s mov-
ing about. The non-overlap constraint is automatically added to the temporal constraint
network. If it is impossible to orderi37 andi38 so that they do not overlap in any way,
the network becomes inconsistent, and the prover needs to backtrack, perhaps cancelling
the most recent assumption. The abduction rule thus enablesboth defeasible conclusions
about the persistence of fluents and, simultaneously, planning of new actions.

The use of the contrapositive form illustrates a case where two logically equiva-
lent formulas have different effects in the system due to their surface form. If the occlu-
sion had been expressed as∀i [Overlap(i, i38) → Occlude(i, location(self))], nothing
would have triggered the non-overlap constraint. This, in turn, illustrates another impor-
tant point. If the non-overlap constraint would make the temporal constraint network in-
consistent, failing to trigger it could result in the agent failing to discover that one of its
assumptions is unreasonable. This would not be a cause of unsoundness, since we are
still within the sound system of natural deduction, but it might result in plans and con-
clusions that rest on impossible assumptions. A conclusionΦ depending on an inconsis-
tent assumption would in effect have the logical form⊥→ Φ, and thus be tautological
and void. This is to be expected though since consistency is not even semi-decidable for
first-order logic. The most we can hope for is for the agent to continually evaluate the
consistency of its assumptions, improving the chances of them being correct over time,
while regarding conclusions as tentative [15].

Another novelty is an execution rule linked to the agent’s action execution mech-
anism, which is used to put plans into effect. Instead of sending the entire plan to a
“dumb” execution module, we use the execution rule in “proving” that the plan is exe-
cuted, thereby enabling the full reasoning power of the natural deduction prover to be



You steer your avatar Magni east-
ward and stumble upon another
ANDI-Land character:

M〉 Hello!
K〉 Hello!
M〉 Who are you?
K〉 I am Keypr.
M〉 What do you own?
K〉 I own the axe.
M〉 What is the axe’s price?
K〉 The axe’s price is 5 gold.
M〉 What is my wealth? (thinking)
M〉 My wealth is 4 gold.
M〉 Goodbye!
K〉 Goodbye!

Dismayed by a sense of acute
poverty, you continue to investi-
gate the great forest. South-west
lives another character, and as
soon as he spots you, he comes
running:

D〉 Hello!
M〉 Hello!
D〉 Who owns the axe?
M〉 Keypr owns the axe.
D〉 What is Keypr’s location?
M〉 Keypr’s location is 1 screen

east and 2 screen north.
D〉 Goodbye!

M〉 Goodbye!

Before you have a chance to ask
his name, he hurries northward.
Curious, you follow. At Keypr’s,
you observe the following dialog:

D〉 Hello!
K〉 Hello!
D〉 Sell the axe to me.
K〉 OK.
D〉 Goodbye!
K〉 Goodbye!

Somewhat envious of the axe-
wielding stranger, you follow him
back and watch him start apply-
ing the axe to the trunk of a tree.
Determined to know his identity
you confront him:

M〉 Hello!
D〉 Hello!
M〉 Who are you?
D〉 I am Djak.
M〉 What happened?
D〉 I bought the axe from Keypr.
M〉 What do you own?
D〉 I own the axe.
M〉 Goodbye!
D〉 Goodbye!

While you watch eagerly as Djak
strikes the tree, it suddenly disap-

pears:

M〉 Hello!
D〉 Hello!
M〉 What do you own?
D〉 I own the axe and I own the

lumber.
M〉 What is the lumber’s price?
D〉 The lumber’s price is 3 gold.
M〉 Sell the lumber to me.
D〉 OK.
M〉 Goodbye!
D〉 Goodbye!

Acting as a middle man, you re-
visit Keypr to try to sell the lum-
ber:

M〉 Hello!
K〉 Hello!
M〉 What is the lumber’s price?
K〉 The lumber’s price is 6 gold.
M〉 Buy the lumber from me.
K〉 OK.
M〉 What is my wealth (thinking)
M〉 My wealth is 7 gold.

Intrigued by Djak and Keypr’s
limited displays of intelligence,
but convinced that more must be
possible, you vow to research AI
in games!

Figure 3. This scenario from the ANDI-Land adventure game concept involves planned use of speech acts to
satisfy the knowledge preconditions of buying an axe.

used in finding the exact action parameters for each step of the plan. Consider, e.g.,
Djak’s plan to ask the player about Keypr’s location in Section 2.5. Depending on the
player’s reply, further reasoning might be needed to convert this reply into a form that is
suitable to pass as an argument to the action execution mechanism. This reasoning might
depend on background knowledge about local geography and, in general, any amount
of deliberation might be required during execution of a planthat involves knowledge
acquisition, a fact respected by our execution proof rule.

3. A Dialog Scenario

Figure 3 illustrates all the components working together through example dialogs from
ANDI-Land. The scenario revolves around our friends Djak and Keypr, from previous
sections, but starts with the human player’s avatar Magni inthe middle of a thick forest.
Djak’s plan was automatically generated by the natural deductive theorem prover and its
abduction rule, while the plan execution and all dialogs arestraight from a running game
session.



4. Related Work

In a spirit similar to ours, Amir and Doyle have proposed the use of text adventure games
as a vehicle of research in cognitive robotics [19]. But instead of intelligent agents acting
in supporting roles to enhance a human player’s experience,they consider what chal-
lenges an agent would face if trying to solve the adventure itself. The agent would start
out with severely limited knowledge, not knowing what actions are available to it, what
fluents it should use to represent the environment, nor even the purpose of the game.
These are some significant challenges, though they say a computer game “[...] allows us
to examine them in a controlled environment in which we can easily change the problems
to be solvable, and then gradually increase the difficulty step by step”. However, their
proposition does not endorse any specific formalism or system.

Shanahan [20] proposes a logicist agent architecture that incorporates planning, per-
ception, and a sense-plan-act loop, all formalized in the Event Calculus and executed
through proof using abductive logic programming. The unified approach makes it possi-
ble to proactively deal with unexpected percepts in a robotic mail delivery domain, due
to humans unpredictably blocking pathways by closing officedoors. The robotic agent
is able to intelligently adapt its behaviour by first reasoning about all percepts using ab-
ductive proof, forming explanations for sensor values thatdeviate from expectations in
terms of actions by other agents or humans, and then adaptingits plans to incorporate the
new knowledge. Hierarchical planning is accomplished through the same abductive proof
mechanism and allows timely reactions by only instantiating the abstract plan enough to
figure out a first action, while leaving the rest a sketchy ideaof how to achieve the goal.

Pollock goes further towards general intelligence and differentiates between goal-
oriented agents, that solve tasks for which a metric of success can be defined, and anthro-
pomorphic agents, that solve tasks that are too complex for it to be possible to identify
such a metric [15]. Such agents must be based on a “general theory of rational cogni-
tion”, and Pollock’s OSCAR agent architecture is an attemptto embody such a theory
in an implemented system. The central component is a naturaldeduction theorem prover
for first-order logic that is capable of planning, reasoningabout percepts and attaching
certainty factors to premises and conclusions. But its mostimportant feature is the mech-
anism for defeasible reasoning that can be used to deal with default reasoning and the
frame problem. Unlike most other formalisms, which are onlyapplicable to problems
conforming to explicit restrictions that ensure computability, Pollock’s anthropomorphic
architecture can be applied to any problem. The inference engine reports solutions based
on defeasible assumptions, while a search for evidence contradicting these assumptions
continues, for which there can be no guarantee of termination.

Wang’s NARS system is similar in that the underlying assumption is the lack of
knowledge and resources sufficient to give optimal answers or even any correctness guar-
antees [21]. Instead, the system continually evaluates theavailable evidence and may
“change its mind” about the best answer to a given query. NARSis based on a novelcate-
gorical logic that differs significantly from classical first-order logic, incorporates uncer-
tainty, and deals with conflicting evidence at a fundamentallevel. While clearly aiming
towards general intelligence, results to date seem limitedto small benchmark problems.

One example of the relatively recent surge of interest in theuse of computer games
for AI research is the Soar/Games project. They report uncovering new research chal-
lenges after coupling the Soar artificial general intelligence architecture to Quake 2 and



Descent 3 [22]. Their emphasis is on generality in their attempts to build reusable rule
bases for agent behaviour. Laird’s and van Lent’s enthusiasm for the use of computer
games in AGI research is evident in their paper “Human-levelAI’s Killer Application:
Interactive Computer Games” [23].

Finally, the 1996 computer game Creatures is an example of AIfrom the game
industry rather than of academic origins. Its artificial life forms use neural net “brains”
that can be trained through interaction with a human player,learn from interaction with
their simulated world, or even from other creatures [24]. The success of Creatures is an
affirmation of the possibility of incorporating AI technology into a commercial computer
game.

5. Conclusions

We hope to have given the impression that our game concept is far from complete. On
the contrary, when working with games interesting problemsabound, and many of them
call for new research in artificial general intelligence. Some old but still open questions
that figure in our work are how to include perception, reasoning, planning, execution, and
failure recovery in an integrated agent architecture, whatto do about conflicting informa-
tion, and how to deal with the accumulation of perceptions and knowledge in persistent
agents without their reasoning slowing down to a crawl. ANDI-Land is fundamentally
a multi agent setting and could involve cooperation betweenmultiple agents, delegation
of goals, and intelligent use of communication. These (and more) topics have concrete
instantiations in the structure of the game environment that make them easier to think
about, discuss, and hopefully to solve.

Traditional AI benchmark problems play an important role inclearly highlighting
specific difficulties that any sufficiently general AI systemwill have to address. Games
can serve to complement them by forcing an integrated view ofautonomous agents in
complex environments, and they possess many positive attributes such as ease of access
for both researchers and their peers, variable challenge level ranging all the way from
simple puzzle games to wide coverage natural language understanding, and the possibil-
ity for applications in the future commercial game industrywhere academic AI technol-
ogy has so far failed to migrate (the prototypical exceptionbeing A* search).

The demand for human-like computer characters is by itself incentive to study all
the key technologies needed for artificial general intelligence, making games an excel-
lent test bed for AGI research. Even some forms of self-awareness would seem to be
desirable to agents acting as if they were “real” live inhabitants of some fictional reality
game world. Such a setting is a sort of Turing test where humanplayers are not neces-
sarily aware of which characters are artificial and which areother humans. It seems to us
that research on game AI could function as a much needed road map towards the fields
original vision.
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