Temporal Action Logic for Question
Answering in an Adventure Game

Martin MAGNUSSON and Patrick DOHERTY

Department of Computer and Information Science
Linkdping University, 581 83 Linkdping, Sweden
E-mail: {marma,patdo}@ida.liu.se

Abstract. Inhabiting the complex and dynamic environments of modern coanput
games with autonomous agents capable of intelligent timelawebr is a sig-
nificant research challenge. We illustrate this using oun @ttempts to build a
practical agent architecture on a logicist foundation he ANDI-Land adventure
game concept players solve puzzles by eliciting informatiomfcomputer char-
acters through natural language question answering. Whiteenous challenges
immediately presented themselves, they took on a form of ctsarel accessible
problems to solve, and we present some of our initial soluti@vesconclude that
games, due to their demand for human-like computer charactésrelust and
independent operation in large simulated worlds, might saswexcellent test beds
for research towards artificial general intelligence.
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1. Introduction

Two topics that have seen a recent boost of interest arerobsea artificial general in-
telligence (AGI) and the use of modern computer games asstlareh test beds. There
is much to say in favour of combining these trends, though evéice ourselves to two
important observations. First, games are readily acdesbitth for the scientist who
can use existing games with exposed APIs, or relativelyyeasplement entirely new
games, and for the peer researcher or student who can daharhobexperiment with
the software themselves. Second, their demand for hurkarbdéihaviour in complex en-
vironments necessitates a certain amount of generalitpyrpeoposed solution. Game
environments are much more complex than classical benéhprablems such as the
blocks world, which are often criticised for their limitedape (e.g. by Hayes [1]). In
contrast, most computer games are incompatible with sfyipdj assumptions such as
the (in)famous closed world assumption and call for manyefdapabilities needed for
general intelligence such as an agent architecture thegjriaties everything from percep-
tion to action, robustness and responsiveness in sometinpgedictable environments,
goal-directed action planning, multi agent communicati@asoning about knowledge
and how to obtain it, and natural language understandindifdog interaction.

Our own work involves research on topics relevant to an atdvergame project
where a human player solves simple puzzles through naamgliage question answer-



ing dialogs with ANDIs, agents with Automated Natural Detiloie based Intelligence,
who inhabit ANDI-Land. Present day games almost univeysadiopt straight jacketed
exchanges typically featuring a choice between three chematences, two of which are
humorous sidetracks and one that will move the dialog fodwarthe next set of sen-
tences. Our aim is to eliminate the forced linearity of seribdialogs through artificial
intelligence technology. Rather than mindlessly tryinigadternatives, we would have
the player think. The reader is encouraged to evaluate the results we desueibw
through experimentation with our demonstrator availabledownload (as a Windows
binary) atww. andi - | and. com

The long term aim is wide coverage natural language undetistg, which requires
both extensive knowledge of the topics under discussiortendapability to reason with
it. Such demands can ultimately only be satisfied by true Abile our efforts to date
are certainly not in that ballpark. But our initial experes with ANDI-Land indicate
that a computer game setting enables an incremental apipndee reasonably difficult
challenges can be attacked while keeping the long term gaairid. The work presented
below is, for this reason, based on a logicist foundation. b&keve the best way to
approach general intelligence is by formulating most typeseasoning in a unified
proof system for deductive and non-monotonic types of ariee in a, not necessarily
purely classical, logical formalism expressive enoughaptare all the subtleties and
distinctions that humans make in their reasoning. If sugfaéssuch an endeavour will
allow the use of efficient specialized reasoning processevapplicable, yet always
providing the option to fall back on more general but lessigffit methods of proof in
new and unforeseen situations.

Rather than expanding further on this nebulous conjectersviV discuss the spe-
cific research problems that immediately suggested thewselhen we initiated work
on our question answering adventure game concept, in &etiBection 3 presents ex-
ample dialogs from an in-game scenario that illustrate soapabilities of the archi-
tecture built in response to the challenges. A hopelesslgaguate selection of related
work, squeezed into Section 4, will have to make do for onenbur efforts in relation
to others’. Finally, Section 5 concludes with a look towatteks future.

2. ANDI-Land

ANDI-Land consists of an isometric graphical represeatatf a forest that can be ex-
plored by a player through a keyboard controlled avatar. féhest is inhabited by in-
telligent agents with which the player can initiate quasamswering conversations, and
who sometimes proactively do so themselves in order to duttieir own goals. There
is a puzzle element to make interaction interesting, bukemhost other adventure type
games, solving puzzles through a process of eliminatingledrnatives is not feasible
since the natural language input is not sufficiently regtec Implementing this concept
requires providing ANDI-Land agents with a genuine undarding of questions posed
to them and equipping them with knowledge of their virtualrlddrom which to de-
duce answers. Only the coordination of linguistic and sdin@nocessing can make this
possible.

1Although whether this constitutes an enjoyable game expegidepends, of course, on the player.



S1 -> who ¢ owns <value+obi>

S1->whoeaml

S1 - who e are you

who

Figure 1. Active edges in the chart resulting from parsing “who” shéw possibilities for the next word in
the sentence, “owns”, “am”, and “are”.

2.1. Interactive Natural Language Input

As we pointed out in Section 1, it would be unrealistic to estgeoth broad and deep
natural language understanding sooner than the develdi®8I. First, no one has yet
been able to construct a grammar with adequate coverage eftire English language.
The problem is not just that players of the game will not be ablexpress themselves in
whatever way they want, but worse, nor will they receive ainyshas to how to rephrase
themselves in a way that the parser will understand. Se¢bhadknowledge of the game
characters will, while aiming at generality, realistigaditart out as downright narrow.
Most sentences would simply be outside the area of competfrtbe game characters,
and they would have to respond with an honest “I don’t know”.

These two problems threaten to reduce the adventure to afsgrtessing game
where the player, more or less blindly, would have to seaschdntences that both avoid
the equivalent of a "parse error" message and whose senmagsicing happens to pro-
duce something other than a puzzled look on the respondants Using a very large
wide coverage grammar like the English Resource Grammaw¢2]d seem to help al-
leviate the first problem, but at the cost of worsening thesdcThe semantical form it
produces is not detailed enough to suffice for automatedné#ag and question answer-
ing. Our project would be quite stranded if these problerfisi@ room for incremental
progress building on a modest start.

ANDI-Land incorporates a unique form of interactive natlaaguage input that
deal with both problems by guiding the player towards sergsithat parse correctly and
fall within the Als competence areas. For example, the seetéwho is the lumber’s
owner” is not supported by our current grammar, but the seetéwho owns the lum-
ber” is. Even though this restriction is arbitrary, the @ais spared much frustration due
to the interactive parser. As soon as the player startsdypirchart parser (as described
in [3])? starts producing partial parses that cover as many wordessilpe. Though
the initial word “who” does not constitute a complete sentgnhe resulting parse chart
still contains useful information. Specifically, by lookirat active chart edges we can
collect all words that would advance the parse if they oemiimmediately succeeding
the current input. According to Figure 1, the words “ownsim”, and “are” constitute
all the possible continuations of the current input, andoslmy among them effectively
circumvents all sentences that have no chance of resuftingomplete parse. The pro-
cess could be likened to the widespread T9 mobile phonertpxt, except that the sys-
tem understands the grammar of entire sentences rathejuitahe correct spelling of
words. Furthermore, by limiting the grammar to conceptsecedt by the agent’s back-
ground knowledge we can ensure that most of the input sezgesre answered intel-

2The parser and grammar are extremely simple. We would like to iepftem at a later date, perhaps
modifying the Linguistic Knowledge Builder [2] for our int&ctive mode.



Natural language question Who owns the lumber?

Input logical form Jans|valugnow, owner (lumber)) = ang
Answer variable binding ans= djak

Answer logical form valugnow, owner(lumber)) = djak
Natural language response Djak owns the lumber.

Figure 2. The process from natural language question to natural Egguvesponse is largely symmetrical,
thanks to a “reversible” grammar.

ligently. Compared to scripted dialogs, the interactiyeuinmethod presents the player
with a multitude of choices, even using a very small grammwaile also allowing for
gradual improvements in language coverage.

2.2. Reversible Natural Language Grammar

Another challenge, natural language generation, is pteddsy communication in the
opposite direction. Each grammar rule has an associatdad@mexpression that repre-
sents its meaning. Meaning fragments are combined by lampplécation that eventu-
ally, after a complete parse of the sentence, results indtarsrof first-order logic. These
formulas are directly amenable to automated reasoningtbyoe an answer expression,
encoding the response in first-order logic. Of course, weldvprefer the game char-
acters to reply in plain English. Shieber’s uniform arctiitee [4] for both parsing and
generation addresses this difficulty with minimal machynireffectively makes the nat-
ural language grammar reversible with relatively small ifications to the basic chart
parsing algorithm. There is no need for separate generatgorithms. Furthermore,
extensions to the input grammar that help the ANDI-Land Irifaats understand new
words or grammar automatically increase their proficiemcysing them in speech too.
Figure 2 illustrates the question answering process ulimgtample sentence from the
previous section. A question is parsed into a formula thatains ananswer variable
Its value, found through the theorem proving techniquesritesd in Section 2.6, can be
used to instantiate the query to form an answer expressioally; the chart parser is run
in “reverse” to produce a natural language response to tgaal question.

2.3. Temporal Action Logic

We said that the logical forms resulting from parsing wereaable to automated rea-
soning. Work within the methodology of formal logic prov&la comprehensive tool set
for correct reasoning. However, the standard philosoplhdcgc turns out to be inade-
quate to support the thinking processesaofive characters irdynamicenvironments.
Researchers in cognitive robotics are therefore creatmgpowerful logics that are ap-
plicable to commonsense reasoning about action and changelleas more traditional
logical reasoning. We have chosen to work with one such Jagie Temporal Action
Logic (TAL), which adopts an intuitive explicit time line tdescribe actions and their
effects in a changing environment. The origins of TAL can benid in the Features
and Fluents framework developed by Sandewall [5], but it vasw characterization in
terms of first-order logic with circumscription, by Dohef6}, that made automated rea-
soning possible. Many extensions since have turned TALantery expressive language
capable of representing, among other things, actions withtabns, context-dependent
and non-deterministic actions, concurrency, and actioe-sifects.



But the most important feature of TAL might be iteclusionconcept that serves
as a flexible tool to deal with important aspects of the framubiem, which has long
haunted logical approaches to Al. Properties and relatlmtamay change over time are
modelled byfluents and the value of a fluentf can be linked to a time poiriton the
time line using a functiowalug(t, f) = v. Some agent (denotedsel f when doing the
thinking) carrying out an action during time interval; is specified byOccurga, i, ¢).
The following formula relates a fluerfts value at the starting and ending time points of
a time interval;, unless the fluent is occluded, as specifiedagludds, f):

Vi, f [-Occluddi, f) — valugstart(i), ) = valug finish(i), f)] (1)

The role of circumscription is the minimization of actioncocrences and occlusion to
implement the blanket assumption that no unexpected actioour and fluents’ values
persist over time. Exceptions are specified by explicitegcticcurrences and their oc-
clusion of fluents they affect, thus releasing them from thenk assumption that their
values remain unchanged. E.qg., if the game character Djaktavaell the lumber he
possesses in Figure 2, the fluentrner (lumber) would be occluded during any interval
that overlaps the interval during which the selling occuarsd Formula 1 would not be
applicable.

2.4. Reasoning and Planning

However, one of the most important forms of reasoning is nppsrted by the TAL
framework as described above, namely proacgilenning to achieve goals. E.g., if
Djak’s (modest) goal in life is the possession of lumber, beld reason that going to
a shop and buying lumber is one possible plan to satisfy it.HBireasoning must al-
low the consideration of different actions before commgtto any particular plan. Djak
should not commence going to the store before consideriregheh the store actually
sells lumber or not, since if it does not he might have to itetsoan alternative sequence
of actions such as cutting down some trees himself. Howegnmitted knowledge
about the set of actions is a prerequisite to automated meapsasing the circumscrip-
tion account of TAL [7]. In contrast, we would like the set atians to be @onsequence
of reasoning. This was accomplished in previous work [8] c@mastraint logic program-
ming setting. Rather than circumscribing a fixed set of astiove use constraints to keep
track of assumptions that depend on the set of actions, avdluate those assumptions
when the set of actions change. The mechanism was cast agidedbut the same prin-
ciples are recast as abduction in a new first-order theorewing setting described in
Section 2.6. Thus equipped, Djak is both able to answer mumssand plan his actions
through automated reasoning with TAL.

2.5. Epistemics

Game agents, however, must face an additional complicatlten planning their ac-
tions. Inhabitants of the game world can not reasonably ®gnasd to possess complete
knowledge of their entire world, and even if they did, the ayric nature of game en-
vironments would quickly make this knowledge obsolete. Glosed world assumption
that is at the foundation of many classical planning systemmot applicable. Instead,
an intelligent agent must reason with incomplete infororatind, significantly, plan to



obtain additional information when needed. E.g., suppaosgh&r ANDI-Land agent,
Keypr, owns a shop. Although Keypr is all out of lumber, heldcgell Djak an axe to
use to cut down a tree with. Being an intelligent and proadi@iow, Djak might come
up with the following plan fragment (excluding the tree mgtpart):

Jiy, 2 [Occurgself, i1, walk(valug(start(iz), location(keypr)))) A
Occurgself, io, buy(axe, keypr)) A
finish(i, ) = start(iz)]

Though, what if Djak does ndtnowKeypr's location? The plan is still correct in the
sense that if Djak executed it, the intended effects wouldifest. The problem is that it
is notexecutableThere is no way Djak can (willingly) walk to Keypr’s locatiavithout
knowing what that location is, but we have as of yet no meamxpoess this additional
knowledge preconditionVhat is needed is an epistemic logic that includes a notion of
knowledge.

The most common way of introducing such a notion of knowleidge the form of
a modal operatoknowswith a possible worlds semantics. This can be done while re-
maining in classical logic by encoding the possible worldd the accessibility relation
between them explicitly in the object language, as e.g. irofds pioneering work [9].
But these approaches are associated with some limitati@mistiake them unsuitable
asgeneralframeworks of epistemic reasoning, as pointed out e.g. bsgktestern [10].
She proposes an alternative treatment that introdoesvsas a “syntactic” predicate,
which accepts quoted formulas as arguments. Quotationeardn as an extreme form
of reification where any formula can be turned into a termppears to be both simpler
and more intuitive than possible world semantics in manytexds. Unfortunately, quo-
tation is associated with the risk of paradoxes. While itug tthat unrestricted quotation
leads to the paradox of the Knower [11], there are methodavoiding these problems
(a particularly interesting one is Perlis’ [12], which kallows for self-referential for-
mulas). Our work, although adopting the syntactic quotaframework in anticipation
of requirements of generality, has not yet proceeded fangimao utilize the additional
expressivity afforded by syntactical treatments of knalgke over modal variants, a fact
that guarantees consistency [13] and allows us to remaiommitted as to which more
general treatment to give preference to.

Equipped with the ability to represent knowledge exphcitle add a precondition
to walking that one should know where the destination is. e also make use of the
Knowspredicate in action effects, thereby formalizing knowleggoducing actions and
putting us in a position where planning for knowledge aditjoisis possible. Adding an
action for asking another agent (such as the player!) abfiueat’s value enables Djak
to come up with a plan that is both executable and that hantaeded effect:

i1, i2, 13 [Occurgself, i1, askValue(player, location(keypr))) A
Occurgself, iy, walk(valugstart(is), location(keypr)))) A
Occurgself, i3, buy(axe, keypr)) A
finish(i1) = start(iz) A finish(iz) = start(is)]



2.6. Natural Deductive Theorem Proving

Many agent architectures are built on a logic programmingpfiation, as was our previ-
ous work [8]. Logic programs incorporate some of the powehebrem proving while
remaining relatively simple and allowing a high degree ofitcal over the inference
mechanism. But a fundamental limitation of Prolog is theiagstion of complete knowl-
edge, which, as we noted in Section 2.5, is unreasonablenplex computer games. In
the interest of overcoming this limitation one can augmentdg with meta-interpreters
or other add-ons. Though when setting the sights for geimgrdligence it seems to us
that augmenting Prolog will, over time, gradually approgeimeral first-order theorem
proving but in a roundabout and unnecessarily complicatagd w

An alternative approach is to start with a first-order resofutheorem prover and
complement it with special purpose modules that make sopestygf reasoning highly
efficient. This is the method taken by the Cyc team, who have gme step further and
given up completeness in favour of efficiency and expressise [14]. Our (limited) ex-
perience with resolution suggests to us that it is not qiigentatural fit with common-
sense reasoning that one would hope. For example, the neednaile the knowledge
base into clause form destroys potentially useful strattinformation that was previ-
ously implicit in the syntactic form of knowledge and rulasd the use of a single proof
rule based omeductio ad absurduraould be incompatible with the defeasible reasoning
that has turned out to be so important to commonsense reasids].

Still, resolution completely dominates the field of autoetatheorem proving, but
it is not the only contender. One particularly interestiitgraative isautomated natural
deduction Rather than compiling the agent’s knowledge into clausafsuch a theorem
prover works with the “natural form” directly. And the ruletsis extensible, thereby
supporting the addition of special purpose rules, e.g. ééeakible reasoning. Moreover,
whether the term “natural” is grounded in any relation betawthe deductive system and
human reasoning is an exciting prospect explored by Rips,anjues a positive verdict
[16].

In light of these considerations we have opted for our ANRRH inhabitants to
“think” using an automated natural deduction theorem prolgut formulas use the
quantifier free form described by Pollock [17] and Rips [TH}is eliminates the some-
what cumbersome natural deduction rules for quantifierieftion and introduction
while still preserving the knowledge base’s natural fornatiarge extent. Most impor-
tantly, it provides the opportunity to work with unificati@md enables the use afiswer
extractionfor question answering by binding answer variables to v@ahgexemplified
in Figure 2. Rather than a select few inference rules thexsét offorward rules (four at
the moment), which are applied whenever they become apydicand a set diackward
rules (currently eleven of them), which are used in a goadetiéd search for a proof.
Finally, equality is dealt with through a system of rewritgders, and temporal relations
are added to a general temporal constraint network [18pkéying the use of special
purpose reasoning mechanisms for efficiency.

A novel proof rule worthy of mention is a special abductiolertnat allows relations
from a set ofabduciblego be assumed rather than proven, as long as doing so does not
lead to inconsistency. This “natural abduction” rule forttms basis of the mechanism for
non-monotonic reasoning and planning. As an example, denghe following natural
deduction proof fragment (where the justifications in tiglatimargin denote (P)remises,
(H)ypotheses, the agents background (K)nowledge, and vomabers):



valug12:0Q location(self)) = loc(1, —1)
start(isy) = 12:00
finish(iz7) = 13:00
—Occlud€is;, location(self))
valug13:0Q location(self)) = loc(1, —1)
Occurgself, isg, walk(loc(0, 0)))
valug(finish(isg ), location(self)) = loc(0, 0)
Vi [~Occluddi, location(self)) — —Overlags, iss)]
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The agent starts at the location with coordindte-1) at noon, as in Row 1. Suppose the
agent needs to remain at the same location at 1 p.m. One wag\afig this would be to
use persistence. The location fluent is only persistenisfribt occluded, and while the
agent has no knowledge about whether it is occluded or-f@tcludeis an abducible
and may thus bassumedRows 2-4 introduces a new interval constant and indicates
the assumption using a natural deduction style verticalilinthe margin. Suppose fur-
ther that the agent, for some other reason, needs to visitiboc(0, 0). The only way
of proving this would be if a walk action destined for that odinate occurred. When
planning,Occursis also abducible, so the agent assumes such an action in Rbwe6
effect on the agent’s location is recorded by Row 7. Walkimgusd occlude the location
fluent, but instead of stating that the fluent is occluded wiaterval that overlaps the
walk action, Row 8 uses the contra-position, stating thatiaterval that has assumed
the location to be persistent must not overlap with the actibwalking. This triggers
the forward modus ponens rule to produce Row 9, partiallgdng the two intervals to
avoid any conflict between the persistence of the agent#tilme, and the agent’s mov-
ing about. The non-overlap constraint is automaticallyeatsh the temporal constraint
network. If it is impossible to ordei;; andisg so that they do not overlap in any way,
the network becomes inconsistent, and the prover needskiraek, perhaps cancelling
the most recent assumption. The abduction rule thus enbbtbslefeasible conclusions
about the persistence of fluents and, simultaneously, plgraf new actions.

The use of the contrapositive form illustrates a case whaeeldgically equiva-
lent formulas have different effects in the system due to theface form. If the occlu-
sion had been expressed\aqOverlap(i,izs) — Occluddi, location(self))], nothing
would have triggered the non-overlap constraint. Thisyin tillustrates another impor-
tant point. If the non-overlap constraint would make thegeral constraint network in-
consistent, failing to trigger it could result in the ageatihg to discover that one of its
assumptions is unreasonable. This would not be a cause ofingdsess, since we are
still within the sound system of natural deduction, but ightiresult in plans and con-
clusions that rest on impossible assumptions. A concludidepending on an inconsis-
tent assumption would in effect have the logical fotr» ®, and thus be tautological
and void. This is to be expected though since consistenagtisven semi-decidable for
first-order logic. The most we can hope for is for the agentaatiaually evaluate the
consistency of its assumptions, improving the chanceseshtheing correct over time,
while regarding conclusions as tentative [15].

Another novelty is an execution rule linked to the agentBoscexecution mech-
anism, which is used to put plans into effect. Instead of s@nthe entire plan to a
“dumb” execution module, we use the execution rule in “pngVithat the plan is exe-
cuted, thereby enabling the full reasoning power of the nahtdeduction prover to be



You steer your avatar Magni east- m) Goodbye! pears:

ward and stumble upon another pgefore you have a chance to ask M) Hello!
ANDI-Land character: his name, he hurries northward. by Hello!

M) Hello! Curious, you follow. At Keypr's, M) What do you own?

K) Hello! you observe the following dialog: D) | own the axe and | own the
M) Who are you? by Hello! lumber.

K) 1 am Keypr. Ky Hello! M) What is the lumber’s price?
M) What do you own? by Sell the axe to me. D) The lumber’s price is 3 gold.
K) | own the axe. Ky OK. M) Sell the lumber to me.

M) What is the axe’s price? by Goodbye! D) OK.

K) The axe’s price is 5 gold. k) Goodbye! M) Goodbye!

M) What is my wealth? (thinking) D) Goodbye!

Somewhat envious of the axe- ) )
wielding stranger, you follow him ~ Acting as a middle man, you re-
back and watch him start apply- visit Keypr to try to sell the lum-
ing the axe to the trunk of a tree. P€r:

Determined to know his identity M) Hello!

M) My wealth is 4 gold.
M) Goodbye!
K) Goodbye!

Dismayed by a sense of acute

poverty, you continue to investi- o, confront him: k) Hello!

gate the great forest. South-west vy Hello! ) What is the lumber’s price?

lives another character, and as o) Helloi k) The lumber’s price is 6 gold.

soon as he spots you, he comes M) Who .are you? wm) Buy the lumber from me.

running: o) | am Diak. K) OK.

D) Hello! M) What happened? M) What is my wealth (thinking)

M) Hello! by | bought the axe from Keypr. M) My wealth is 7 gold.

D) Who owns the axe? M) What do you own? Intrigued by Djak and Keypr's

M) Keypr owns the axe. D) | own the axe. limited displays of intelligence,

D) What is Keypr's location? M) Goodbye! but convinced that more must be

M) Keypr's location is 1 screen ) Goodbye! possible, you vow to research Al
eastand 2 screen north. While you watch eagerly as Djak " games!

Goodbye!
®) y strikes the tree, it suddenly disap-

Figure 3. This scenario from the ANDI-Land adventure game conceptii@goplanned use of speech acts to
satisfy the knowledge preconditions of buying an axe.

used in finding the exact action parameters for each stepeopldm. Consider, e.g.,
Djak’s plan to ask the player about Keypr’s location in Saet?.5. Depending on the
player’s reply, further reasoning might be needed to cdniaés reply into a form that is
suitable to pass as an argument to the action execution misalmar his reasoning might
depend on background knowledge about local geography argkrieral, any amount
of deliberation might be required during execution of a pilaat involves knowledge
acquisition, a fact respected by our execution proof rule.

3. A Dialog Scenario

Figure 3 illustrates all the components working togetheough example dialogs from
ANDI-Land. The scenario revolves around our friends Djall &eypr, from previous

sections, but starts with the human player’s avatar Magtfiemmiddle of a thick forest.

Djak’s plan was automatically generated by the natural diégritheorem prover and its
abduction rule, while the plan execution and all dialogssar@ight from a running game
session.



4. Related Work

In a spirit similar to ours, Amir and Doyle have proposed the af text adventure games
as a vehicle of research in cognitive robotics [19]. Butaastof intelligent agents acting
in supporting roles to enhance a human player’s experigheg, consider what chal-
lenges an agent would face if trying to solve the adventgedfitThe agent would start
out with severely limited knowledge, not knowing what ansare available to it, what
fluents it should use to represent the environment, nor dverptirpose of the game.
These are some significant challenges, though they say autengame “[...] allows us
to examine them in a controlled environment in which we cailgahange the problems
to be solvable, and then gradually increase the difficulyp $ty step”. However, their
proposition does not endorse any specific formalism or syste

Shanahan [20] proposes a logicist agent architecturertbatporates planning, per-
ception, and a sense-plan-act loop, all formalized in thenEalculus and executed
through proof using abductive logic programming. The udiipproach makes it possi-
ble to proactively deal with unexpected percepts in a rahotil delivery domain, due
to humans unpredictably blocking pathways by closing officers. The robotic agent
is able to intelligently adapt its behaviour by first reasgnabout all percepts using ab-
ductive proof, forming explanations for sensor values teatiate from expectations in
terms of actions by other agents or humans, and then adaistipigns to incorporate the
new knowledge. Hierarchical planning is accomplishedugtothe same abductive proof
mechanism and allows timely reactions by only instantgatire abstract plan enough to
figure out a first action, while leaving the rest a sketchy ioiglaow to achieve the goal.

Pollock goes further towards general intelligence ancediffitiates between goal-
oriented agents, that solve tasks for which a metric of ssccan be defined, and anthro-
pomorphic agents, that solve tasks that are too complex forlie possible to identify
such a metric [15]. Such agents must be based on a “genewaytb&rational cogni-
tion”, and Pollock’s OSCAR agent architecture is an attetogmbody such a theory
in an implemented system. The central component is a natadaiction theorem prover
for first-order logic that is capable of planning, reasoréhgut percepts and attaching
certainty factors to premises and conclusions. But its mnggortant feature is the mech-
anism for defeasible reasoning that can be used to deal wfduli reasoning and the
frame problem. Unlike most other formalisms, which are caplicable to problems
conforming to explicit restrictions that ensure computghiPollock’s anthropomorphic
architecture can be applied to any problem. The inferengamemeports solutions based
on defeasible assumptions, while a search for evidenceazbating these assumptions
continues, for which there can be no guarantee of terminatio

Wang’'s NARS system is similar in that the underlying assuompis the lack of
knowledge and resources sufficient to give optimal answessen any correctness guar-
antees [21]. Instead, the system continually evaluatesithdable evidence and may
“change its mind” about the best answer to a given query. NSR&sed on a novehte-
gorical logicthat differs significantly from classical first-order logincorporates uncer-
tainty, and deals with conflicting evidence at a fundameletadl. While clearly aiming
towards general intelligence, results to date seem limdexnall benchmark problems.

One example of the relatively recent surge of interest irufeof computer games
for Al research is the Soar/Games project. They report usrtioy new research chal-
lenges after coupling the Soar artificial general intehicge architecture to Quake 2 and



Descent 3 [22]. Their emphasis is on generality in theimagtis to build reusable rule
bases for agent behaviour. Laird’s and van Lent’s enthosias the use of computer
games in AGI research is evident in their paper “Human-léld Killer Application:
Interactive Computer Games” [23].

Finally, the 1996 computer game Creatures is an example dfokh the game
industry rather than of academic origins. Its artificiak Ifbrms use neural net “brains”
that can be trained through interaction with a human pldgarn from interaction with
their simulated world, or even from other creatures [24} Shccess of Creatures is an
affirmation of the possibility of incorporating Al technagfginto a commercial computer
game.

5. Conclusions

We hope to have given the impression that our game concegt fsoin complete. On

the contrary, when working with games interesting problatmsund, and many of them
call for new research in artificial general intelligencentoold but still open questions
that figure in our work are how to include perception, reasgyplanning, execution, and
failure recovery in an integrated agent architecture, wdeb about conflicting informa-
tion, and how to deal with the accumulation of perceptiors lemowledge in persistent
agents without their reasoning slowing down to a crawl. ANI2hd is fundamentally

a multi agent setting and could involve cooperation betwaaliple agents, delegation
of goals, and intelligent use of communication. These (andetopics have concrete
instantiations in the structure of the game environmentt rieke them easier to think
about, discuss, and hopefully to solve.

Traditional Al benchmark problems play an important roleciearly highlighting
specific difficulties that any sufficiently general Al systeritl have to address. Games
can serve to complement them by forcing an integrated vieauténomous agents in
complex environments, and they possess many positivbwtts such as ease of access
for both researchers and their peers, variable challeng# langing all the way from
simple puzzle games to wide coverage natural language stadeling, and the possibil-
ity for applications in the future commercial game industtyere academic Al technol-
ogy has so far failed to migrate (the prototypical exceplbieing A* search).

The demand for human-like computer characters is by iteelntive to study all
the key technologies needed for artificial general intelice, making games an excel-
lent test bed for AGI research. Even some forms of self-ames® would seem to be
desirable to agents acting as if they were “real” live inkeattis of some fictional reality
game world. Such a setting is a sort of Turing test where hupteyers are not neces-
sarily aware of which characters are artificial and whichadher humans. It seems to us
that research on game Al could function as a much needed rapdowards the fields
original vision.
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