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ABSTRACT
Agent-based simulation can be used for efficient and effective train-
ing of human operators and decision-makers. However, construct-
ing realistic behavior models for the agents is challenging and time-
consuming, especially for subject matter experts, who may not
have expertise in artificial intelligence. In this work, we investigate
how machine learning can be used to adapt simulation contents to
the current needs of individual trainees. Our initial results demon-
strate that multi-objective multi-agent reinforcement learning is a
promising approach for creating agents with diverse and adaptive
characteristics, which can stimulate humans in training.
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1 INTRODUCTION
Agent-Based Simulation (ABS) can be used for study of complex
systems of interacting agents. The purpose of the simulation can
be, e.g., prediction, verification, training and analysis [4]. An im-
portant component of the simulation is the behavior models of the
agents. Constructing realistic behavior models is challenging and
time-consuming [6, 31], especially for subject matter experts, who
may not have expertise in artificial intelligence. In this work, we
investigate how machine learning can be used to construct these
models, and to adapt the contents of agent-based simulation to end-
user needs. As a case study we use a simulation-based air combat
training system. Fighter aircraft are becoming increasingly com-
plex, and there is a growing need for efficient and effective pilot
training solutions. By using simulations to a greater degree, higher
training value can be achieved at lower cost [19]. Ideally, human
participants in a training session would all be receiving training,
i.e., we would like to minimize the dependence on human support
personnel. For instance, synthetic agents could replace human role-
players and real aircraft in training sessions. This would improve
the availability of training and make it possible to realize more
complex training scenarios.
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Figure 1: Architecture of an adaptive training system [10].

2 PROPOSED APPROACH
Our approach for constructing an adaptive training system, with
a high level of autonomy, is illustrated by the system architecture
in Figure 1. For our case study, a Synthetic Trainer should be able
to act as ally or adversary in air combat training scenarios. While
doing so, this agent should consider objectives related to the simu-
lated scenario, as well as the learning objectives of human trainees.
During training sessions the agent forms a high-level perception
of its environment, a World Model, based on observations through
its low-level sensors. The objectives of the agent and their rela-
tive importance are represented by a Reward System and a set of
Preferences. A Decision System, with learning and planning capa-
bilities, is used to select actions based on the current perception
and prioritized objectives. A Profiling function is used to determine
User Training Needs, based on trainees’ historical performance.
User needs may also be partially supplied by external input, for
instance, training goals provided by a human instructor. Based on
the inferred training needs, scenario contents and synthetic agent
characteristics are then adapted to provide effective training.

To move towards the identified goals, we intend to first study
basic principles in simple simulation environments, e.g., gridworlds.
Promising concepts will then be developed further and evaluated
in high-fidelity simulations. Finally, human-agent interaction will
be studied in the target system. We will try to answer the following
overarching research questions:

• RQ1: How can agents learn to act as synthetic trainers for
human trainees?

• RQ2: How can simulation contents be automatically adapted
to fit the training needs of an individual trainee?

• RQ3: What is required for human and synthetic agents to
interact effectively in a simulation-based training environ-
ment?



3 PRELIMINARY RESULTS
Our case study of ABS for air combat training provides several
challenges for learning agents (RQ1):

• Many interacting human and synthetic agents in mixed co-
operative and competitive scenarios

• Multiple conflicting objectives that must be considered by
teams of agents, e.g., tactical mission goals, resource con-
sumption and safety, as well as the learning objectives of
human trainees

• Partial observability of the environment due to limitations in
sensors and data links, as well as effects of electronic warfare

• Decision-making over long time horizons, corresponding to
hundreds or thousands of time steps

• High-fidelity simulation models that are computationally
heavy, resulting in long simulation times during training of
synthetic agents

• Agent behavior needs to be explainable to humans, so that
debriefing of training sessions can be performed effectively

In the early stages of the project we have identified techniques
that could be useful to address these challenges [11]. For the Deci-
sion System in Figure 1 we intend to study multi-objective multi-
agent learning and planning [16, 20]. To tackle the complexity of the
application domain, and to achieve efficient learning, we will com-
bine these techniques with, e.g., reward shaping [5, 15], curriculum
learning [2, 7], and hierarchical learning [1, 23, 32]. Multi-objective
methods will allow us to adjust the agents’ priorities among objec-
tives at runtime, making it possible to adapt agent characteristics
to trainees’ needs, which may vary among training sessions.

In an initial concept study we have investigated how multi-
objective deep reinforcement learning could be used to build agent-
based simulations with tunable dynamics [12]. As illustrated in
Figure 1, we created an agent with a reward system affected by
a set of preferences, which specify the relative importance of the
agent’s objectives. We then conditioned the agent’s policy on these
preferences, so that the agent’s behavior could be adjusted at run-
time. We evaluated this approach in gridworld environments, and
showed that the competitiveness (in a Gathering Environment)
and risk-taking (in a Traffic Environment) of the agent could be
significantly affected after training. Such properties are of interest
when designing air combat training scenarios.

To better understand the limitations of current state-of-the-art
algorithms, we have also evaluated the performance of multi-agent
and multi-objective reinforcement learning in the target system
[10]. We studied scenarios that required agents to coordinate their
actions to efficiently solve tasks, and to take risk into account when
selecting actions. We noted that seemingly simple scenarios can
still be difficult to tackle, and that the geographical extension of the
scenario, in combination with the level of abstraction of the chosen
action space design, had a significant impact on the performance.
The long sequences of actions that are typically required to solve
tasks in the air combat domain makes it challenging for the agents
to explore and find efficient tactics.

In recent work, we have conducted interviews with experienced
pilots to identify important aspects of air combat training (RQ3)
[9]. We have used this information to define scenarios that will be
used for future development and evaluation of learning agents.

4 RELATEDWORK
Learning approaches for agent-based modelling have great poten-
tial, and have been investigated within many application domains.
Some approaches that have been studied for building behavior mod-
els for air combat simulation are evolutionary algorithms [3, 14, 35],
neural networks [8, 18, 24, 25] and dynamic scripting [28–30]. These
attempts have produced some interesting results, but the techniques
have not been used much in operational systems [27], due to limi-
tations in performance. Recent advances in machine learning for
game playing agents, e.g., AlphaGo [21, 22], has sparked interest
in using deep reinforcement learning [13, 17, 26, 34]. However, the
scenarios studied are still quite simple, with only a few interact-
ing agents. We intend to study more complex scenarios, that more
closely resemble those used in actual training.

Recently, it has become possible to train agents to reach human-
level performance in real-time strategy games, such as StarCraft II
[33]. These games have some elements in common with air com-
bat scenarios, e.g., multiple competing agents, partial observability,
and decision-making over long time horizons. However, the ap-
proaches currently used require massive computation resources,
which a typical training facility can not be expected to have access
to. Improving the sample efficiency of algorithms is an important
direction for future research.

5 FUTUREWORK
Based on our initial results, we are currently investigating ways of
improving algorithms for learning and planning in our application
domain. Some directions that we are interested in pursuing are:

• Improving the efficiency of algorithms in multi-objective
multi-agent scenarios through, e.g., reward shaping, curricu-
lum learning, and hierarchical learning (RQ1)

• Learning from demonstration as a way of user preference
elicitation (RQ2)

• Agent modelling to support the decision-making of synthetic
agents (World Model in Figure 1; RQ1), and for inferring
human users’ training needs (Profiling in Figure 1; RQ2)

We note that there is an interesting overlap in performance
evaluation and generation of training curricula for human and
synthetic agents respectively, which we would like to explore in
future work (Profiling, Reward System, and Scenario Adaptation in
Figure 1; RQ1 and RQ2).

We are also currently in the process of planning for evaluations
of our initial findings in experiments with manned simulators. The
intention is to train synthetic agents in 2-vs-2 air combat scenar-
ios, using multi-objective multi-agent reinforcement learning, and
then conduct experiments where some of the synthetic agents are
replaced by human pilots. With these experiments we would like
to find out how humans can cooperate with the synthetic agents,
and how robust their behavior is (RQ3).
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