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A Modeling Framework for
Troubleshooting Automotive Systems

Håkan Warnquist, Jonas Kvarnström, and Patrick Doherty

Dept. of Computer and Information Science, Linköping University

Abstract

This paper presents a novel framework for modeling the troubleshooting process
for automotive systems such as trucks and buses. We describe how a diagnos-
tic model of the troubleshooting process can be created using event-driven non-
stationary dynamic Bayesian networks.

Exact inference in such a model is in general not practically possible. There-
fore we evaluate different approximate methods for inference based on the Boyen-
Koller algorithm. We identify relevant model classes that have particular structure
such that inference can be made with linear time complexity using a novel infer-
ence algorithm called the Quickscore Variant. We show how the algorithm can
be applied for inference when only a single fault is assumed and when multiple
faults are possible. We also show another inference method that can be used when
multiple faults are possible but a single fault is most likely.

We also show how models created using expert knowledge can be tuned using
statistical data. The proposed learning mechanism can use data that is collected
from a heterogeneous fleet of modular vehicles that can consist of different com-
ponents.

The proposed framework is evaluated both theoretically and experimentally on
an application example of a fuel injection system.
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1 Introduction
This paper presents a framework for modeling the troubleshooting process for au-
tomotive systems such as trucks and buses. When the vehicle is not in a workshop,
troubleshooting is done remotely by help-desk personnel who can run remote diag-
nostic tests or interrogate the driver. In the workshop, troubleshooting is done by a
mechanic with access to a wider range of actions for diagnosis and repair. The trou-
bleshooting incurs a repair cost related to both the required materials and the direct
costs of actions performed by mechanics and help-desk personnel. Additionally,
it incurs a downtime cost which includes indirect costs from disrupting operations
and not being able to utilize the vehicle for its purpose. Since trucks and buses are
typically used in commercial applications, all of these costs affect the total cost of
operation and thereby the profit for the vehicle owner. These costs can be large and
should be taken into account when determining which actions to perform. For ex-
ample, the direct repair and maintenance costs for long-haulage heavy trucks can
account for as much as 10000 e per year [7]. When an unexpected breakdown
occurs, the economic loss for the vehicle owner of a long-haulage truck can be on
average 1000e each time [11]. To safeguard against unexpected losses, the vehicle
owner can buy a repair and maintenance contract from the service provider for a
fixed price [20, 34, 40]. Some of these contracts also compensate the owner for
downtime and unexpected breakdowns [35, 41]. This gives the service providers
reason to offer service solutions that are cost-efficient in regards to both repair and
downtime costs as this can improve their margins on these contracts.

1.1 Background

The modeling framework presented here is part of a decision support system for
troubleshooting vehicles for which a problem has been detected on the road or in
the workshop. In [42] methods for cost modeling and an algorithm for decision
making are presented. As presented there, the decision support system is designed
to minimize the overall costs of downtime and repair by integrating the planning
of the actions that can be performed before a workshop visit with those that can
be performed during the workshop visit. Before the workshop visit, remote tests
can be performed that contribute to determining how urgently a workshop visit is
needed. Also decisions can be made of when and where to visit a workshop, tak-
ing into account the different downtime costs of doing so at different times, e.g.
aborting the current assignment for an immediate workshop visit or continuing op-
eration until the next already scheduled workshop visit. During the workshop visit,
repair actions and workshop tests can be carried out. This system takes as input
diagnostic information such as Diagnostic Trouble Codes (DTCs) generated from
the on-board diagnostic system [37], driver observations, diagnostic test results,
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1. Introduction

and information about previous repairs. The output consists of explanations of the
current state of information in the form of probabilities that a component has a par-
ticular fault mode as well as recommendations of possible troubleshooting actions
ranked by the expected cost of troubleshooting the vehicle from the current state.

This decision support system has two important subcomponents: a planner
that computes the recommendations and a diagnoser that supports the planner
with computations of fault probabilities and test outcome probabilities given cur-
rent diagnostic information. [42] uses a diagnoser where a Bayesian network [28]
models causal dependencies between faults on components and observations. This
Bayesian network model is static which means that though the value of a variable
may be uncertain, it is assumed that it does not change during the troubleshooting
session. Using a static Bayesian network has the advantage that fault and obser-
vation probabilities can be computed with sufficient efficiency using a Bayesian
inference algorithm such as the Junction Tree algorithm [19]. However, repairs
do change the state of variables, e.g. those representing faults. This was handled
using the method of [13] where the vehicle is assumed to have a single fault and
it is required that each repair is immediately followed by a function control that
determines whether the repair solved the vehicle problem or not. If after repair-
ing a component the function control indicates that the vehicle problem is still not
solved, this means that the component never was faulty because of the single fault
assumption. Then the repair did not change the state of any variable and the static
model is still valid. If the function control indicated that the vehicle problem was
solved, then we are done and it does not matter that the repair changed the state of a
variable. This type of diagnoser is used in other existing decision support systems
for troubleshooting, e.g. [13, 18].

The static Bayesian network model can be feasible only for shorter trouble-
shooting sessions. When troubleshooting remotely, the time between the first ob-
servation and the end of the troubleshooting session can be several weeks. In this
case it is no longer feasible to assume a static model. New faults could occur and
the behavior of faults may change so that previously observed symptoms appear or
disappear. Further, it is not always possible or cost efficient to perform a function
control after each repair.

1.2 Contributions

In this paper we present how the diagnostic model can instead be created using a
dynamic Bayesian model [5] where causal dependencies between component faults
and observation are modeled over time. The model captures important aspects of
integrated remote and workshop troubleshooting such as how the probabilities of
observations and faults are affected by repairing components and operating the
vehicle for prolonged periods.
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Exact inference in a dynamic Bayesian network is computationally difficult for
larger networks [21]. We explore some general methods for approximate inference
that are suitable for our application and improve on these with a novel approximate
inference algorithm. When the model has a particular structure we can use this
algorithm to compute test outcome probabilities and update fault probabilities after
observations in time linear with the model size. Typically there is at most a single
fault present, but more faults are possible. For this, another inference method is
proposed that combines a single fault model with a multiple fault model so that
multiple faults are supported, but precision is higher for single faults than when
using the basic multiple fault approach.

The task of creating a model is complicated by the fact that modern automotive
vehicles are modular in design [27] which means that many unique instantiations of
vehicles can be created from a smaller set of modules. Each such instantiation may
require a different diagnostic model. It is not feasible to create each such model
from scratch as the work effort would be too large. Therefore, in the proposed
modeling framework, we show how it is possible to create a model of a complete
vehicle from a set of smaller models of individual modules.

To have the models maintainable over time and to be able to learn and adapt to
how the vehicles actually behave, we learn model parameters from statistical data.
However, we cannot solely rely on this because, especially for newer vehicles,
there can be little or no statistical data available. In this case, the experts designing
the vehicle can still have an understanding of how often faults occur and how a
hypothesized fault in a component would manifest itself in terms of observations.
In the proposed method, an initial model is created by experts and then the model
parameters are tuned using statistical data. We use a Bayesian learning approach
that combines the prior knowledge provided by experts with the statistical data
when setting parameter values. The fact that the statistical data is collected from
a population of vehicles that are modular and heterogeneous must be taken into
consideration when designing the learning mechanism. We show theoretically and
experimentally that the proposed learning method works on both synthetic models
and a larger real world model.

For evaluation purposes, the modeling framework has been applied to a real
world example consisting of a truck fuel injection system. This system is partic-
ularly difficult for workshop mechanics to troubleshoot efficiently because many
faults are non-deterministic in their behavior and have common symptoms. Being
a complex system involving a mix of electronically controlled electrical, mechani-
cal, and hydraulic components, it is particularly challenging to model.

The paper is outlined as follows. First we present the application example as a
motivation for the framework. Next we present an overview of the entire decision
support system including the parts described in Warnquist et al. [42] and present
the problem formulation for the diagnoser. Then we will describe and provide the
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Figure 1: An overview of the XPI system and its main components.

theory for all the parts of the novel diagnostic framework: the model, the infer-
ence algorithm, and the learning method. After that we will show an experimental
evaluation of all parts of the diagnostic framework. Finally we will discuss related
work and conclude.

2 Application Example
As an application example for the diagnostic framework we will model the Scania
XPI fuel injection system (eXtreme high-Pressure fuel-Injection), which is respon-
sible for dosing the correct amount of diesel fuel into the cylinders. Figure 1 shows
an overview of the XPI system and its main components.

The XPI system is a common rail fuel injection system. This means that fuel
is injected directly into the cylinder by individually controlled injectors taking fuel
from a highly pressurized common fuel rail. This common rail technology makes
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it possible to inject fuel independently of the camshaft position at much higher
pressures than with unit injection systems where the injection pressure and timings
are controlled by the camshaft.

The low pressure pump (LPP) circulates fuel from the fuel tank through the fuel
filters. The inlet metering valve (IMV) directs some of the fuel to the high pressure
pump (HPP) so that the pressure in the common rail, as measured by the pressure
sensor, is as commanded by the engine management system (EMS). This pressure
typically varies between 800 bars at idle and 2400 bars at maximum engine power
output. From the common rail, fuel is directed to the injectors through a high
pressure line and a connector. When commanded by the EMS, the injectors spray
fuel into the cylinders through a small micrometer-sized valve. Excess fuel from
the injectors is returned to the low pressure side through the return fuel rail. There
is also a mechanical dump valve that protects the common rail from excessive
pressures by releasing fuel into the return fuel rail.

The on-board diagnosis system on the vehicle is very capable of detecting and
isolating electrical faults on the injectors, the IMV, and the rail pressure sensor.
However mechanical faults and leakage problems are typically only detectable by
observing that it is not possible to gain the commanded pressure in the common
rail. If this happens a diagnostic trouble code (DTC) is generated that indicates
that the rail pressure is below commanded. Many faults can cause this DTC, e.g.
leaking injectors, open IMV, failing HPP or LPP, clogged fuel filters, or a fault
in the rail pressure sensor. Faulty behavior is not deterministic, e.g. clogged fuel
filters may or may not cause the engine to stall and a leaking injector may or may
not cause the output effect of one cylinder to deviate from that of the other cylin-
ders. The EMS may respond to failures that have been detected by the on-board
diagnostic system. For example, when a DTC indicates that the rail pressure is
below commanded, the EMS limits the engine torque to protect the engine and the
driver experiences the vehicle as powerless and sees a warning light that prompts
the driver to seek a workshop.

Some of the faults that are indistinguishable by the on-board diagnostic system
can be distinguished by additional testing either remotely or at the workshop. For
example, a mechanic can measure the return fuel pressure by mounting a pressure
meter on the return fuel line or measure the output effect of the cylinders by running
a test on the EMS. Other faults can only be distinguished by trial and error. How-
ever, the mechanic must take care when troubleshooting the XPI system because
many components on the high pressure side must be completely replaced with new
components if they are removed because of strict cleanliness requirements. Some
of the components of the XPI system are also very expensive which means that the
cost of non-efficient troubleshooting can be large.
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3 A Decision Support System for Integrated Remote
and Workshop Troubleshooting

In this section we will describe the decision support system for integrated remote
and workshop troubleshooting proposed in [42] which the modeling framework
presented in this paper supports. An overview of the decision support system is
shown in Figure 2.

The decision support system uses a state to represent all the information that
it needs about the vehicle and its environment. It proposes actions to perform in
order to take the vehicle to a desired state with no faults. Whenever an action is
performed on the vehicle, this is registered as a sequence of time-stamped events
signaling that the state of the vehicle or its environment has changed. A new state
can be computed from a previous state and a sequence of new events that have
occurred since then. The previous state can be another previously computed state
or the initial state when no events have occurred. After each performed action, a
new state and recommendation is computed in the decision support system.

Each state consists of two parts: the environment state and the diagnostic state.
The environment state contains information about the vehicle’s geographical lo-
cation, the current time, and the time and location of the next planned workshop
occasion. The diagnostic state contains information about the marginalized fault
probabilities for each component of the vehicle together with intermediate results
from previous computations that can be reused for further computations.

There are six types of actions:

• Reservation actions that set the time and place for the next planned workshop
visit, creating a reservation event.

• Idling actions that cause the vehicle to await the time of the next planned
workshop visit. While waiting the vehicle can either be operated normally
in which case an operation event is created containing information of the
distance operated, or be put on hold creating a null event that only signals
the time has changed.

• Transport actions that take the vehicle to the location of the planned work-
shop visit either by driving it there or by towing it there. This creates a
location event and possibly an operation event if the vehicle is driven.

• Observing actions that gain information about the vehicle e.g. by asking
the driver questions about the vehicle’s behavior or performing tests. These
actions can either be possible to perform remotely or require a workshop
to be performed. For an observing action one or more observation events
are created containing information of the outcome of the observation and
possibly an operation event if the action requires the vehicle to be operated.
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Figure 2: Architecture of decision support system
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• Repair actions that replace or repair specific components thus removing any
fault present on them creating a repair event. These actions can only be
performed in the workshop.

• The end session action causing the ongoing troubleshooting session to end
and prompting the user to return the vehicle to normal operation.

The planner computes which actions to recommend. The planning algorithm
that is used to select actions is described in Warnquist et al. [42]. It is a look-ahead
search algorithm that evaluates the expected costs of actions a limited number of
steps into the future. The planner uses a model database to determine which actions
are applicable for the current vehicle as well as their costs. The results of performed
actions are stored in the vehicle history database as events.

The planner is supported by the state estimator which, using a previous state
and a sequence of new events, computes a new state and the probability that the
observation events in the sequence have a particular outcome.

In the state estimator, the environment estimator is responsible for updating the
environment state after reservation, location, and null events, and the diagnoser
is responsible for updating the diagnostic state after operation, observation, and
repair events. Updating the environment state is a simple constant time operation,
but updating the diagnostic state is a complex operation depending on how the
diagnoser is implemented. Vehicle-specific models are retrieved from the model
database.

Limitations In [42], fault probabilities and action outcome probabilities are com-
puted by making inference in a static Bayesian network model using the Bayesian
network tool SMILE [6]. As discussed in the introduction, a drawback with using
a static Bayesian network model is that it is incapable of capturing changes in the
presence of faults and their behavior. In particular, every repair action must be
followed up by a function control of the vehicle to test whether the action did or
did not solve the vehicle problem. These are among the issues that are addressed
in the new modeling framework presented in this paper.

The remainder of the paper will describe the new modeling framework and
how diagnostic models that can be used by the diagnoser are created, used, and
maintained. To address the issues with the static Bayesian network this model is
based on a dynamic Bayesian network. Care is taken to make the inference and
learning of model parameters from statistical data tractable. The framework is
applied in the context of troubleshooting trucks for the application example, but
can be used more generally for diagnosing any kind of electromechanical systems
with similar properties.
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4 Problem Formulation
The diagnoser must for every component of the system be able to compute the
probability of a fault being present on that component given the sequence of oper-
ation, observation, and repair events that have occurred so far. It must also be able
to compute the probability of the outcome of a new observation event. Intermedi-
ate computations can be stored in the diagnostic state if that removes the need of
re-evaluating previous events.

For every recommendation, the planning algorithm needs to compute a new
diagnostic state for a number of actions that grows linearly with the number of
components. Hundreds of components can be related to a vehicle problem, and
therefore the diagnoser must be able to able to compute diagnostic states efficiently
for that many components.

The diagnoser will need a diagnostic model that represents the vehicle and
its environment. However, vehicles can come in many different configurations,
e.g. they have different number of cylinders and use different technologies for
fuel injection, leading to a combinatorial explosion. Because of modular design,
different configurations share many components, e.g. the same injectors are used
for all common rail fuel injection systems regardless the number of cylinders. The
diagnostic model must therefore also be modular in the same way. If we know
which components a vehicle consists of, then we should be able to assemble a full
vehicle model from component level submodels.

For new vehicle types, the knowledge of how faults behave comes primarily
from the experts that have engineered the vehicles. However, as the vehicles are
used in the field, more knowledge can be gained from statistical data. The diagnos-
tic model must both function for new vehicle types and be able to be automatically
improved with statistical data.

5 Diagnostic Model
The diagnostic model is a probabilistic model that describes the behavior of faults
with regards to their presence and observations that can be made, and how this be-
havior is affected by events that occur. Properties of the vehicle that are assessed to
be relevant for describing this behavior are modeled with binary discrete random
variables. To be able to model how these properties change over time, probabilistic
relations between variables over time are modeled with a dynamic Bayesian net-
work (DBN). The DBN models the joint probability distribution of the variables
at different discrete time steps. The joint probability distribution over the vari-
ables at a single time step given the variables in the previous time step is a time
slice. The first time slice models the joint probability distribution of the variables
when the vehicle is completely new. In our model, each time step corresponds to
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an event that has occurred since the previous time step. Events do not occur with
regular intervals; the time that passes and the number of kilometers the vehicle has
traveled between each pair of events can vary. This means that the time slices can
differ from each other and the DBN belongs to the class of non-stationary Dynamic
Bayesian Networks [31].

Example 1 (Example System). When describing the diagnostic framework we will
use a small example system consisting of two components from the XPI system:
the high pressure pump (HPP) and a single fuel injector. The components can either
have a mechanical fault or a leakage fault. Any fault on the HPP can cause the feed
pressure to become too low. Any fault on the injector can cause the cylinder effect
to become too low for that cylinder. If either component has a leakage fault, this
can cause the fuel rail to become unable to hold pressure.

There are three possible observations that can be made. One is a DTC for
low fuel pressure that is generated if the rail pressure is below commanded either
because the feed pressure is too low or because the fuel rail is unable to hold
pressure. Another is the fuel rail’s capability to hold pressure which can directly be
measured in the workshop. The third is a test that can be run to detect deviations
in the cylinder output effect.

5.1 Variables

When describing the diagnostic model we will use upper case letters for random
variables. A binary random variable can have two values, a positive value > and a
negative value ⊥. For a binary random variable X , we will write X = > or lower
case x for positive values, and X =⊥ or ¬x for negative values.

The vehicle properties that we model with random variables are described be-
low. Table 1 shows the random variables for the small system described in Exam-
ple 1.

Repairable Components

A component is a physical part of the vehicle that can have faults and is the minimal
repairable unit. Being the minimal repairable unit means that the component is
always replaced or repaired as a whole [29].

Let IC be the set of all components in the model. For each component i ∈ IC
and each time step t, there is a component variable Ct

i that models whether the
component has a fault at time step t. It can have the values faulty ct

i or not faulty
¬ct

i .
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Components IC = {1,2}

Ct
1 high pressure pump

Ct
2 fuel injector

Faults IF = {3,4,5,6}, IF|1 = {3,4}, IF|2 = {5,6}

F t
3 mechanical fault on HPP

F t
4 leakage fault on HPP

F t
5 leakage fault on fuel injector

F t
6 mechanical fault on fuel injector

Symptoms IS = {7,8,9}

St
7 low feed pressure

St
8 unable to hold pressure in fuel rail

St
9 too low cylinder output effect

Symptom causes IS|3 = {7}, IS|4 = {7,8}, IS|5 = {8,9}, IS|6 = {9}

St
3,7 mechanical fault on HPP causes low feed pressure

St
4,7 leakage fault on HPP causes low feed pressure

St
4,8 leakage fault on HPP causes unable to hold pressure in fuel rail

St
5,8 leakage fault on fuel inj. causes unable to hold pressure in fuel rail

St
5,9 leakage fault on fuel inj. causes too low cylinder output effect

St
6,9 mechanical fault on fuel inj. causes too low cylinder output effect

Logical dependencies IL = {10}, IX|10 = {7,8}

Lt
10 DTC: "rail pressure is below command" is generated

Observations IO = {11,12,13}, IX|11 = {10}, IX|12 = {8}, IX|13 = {9}

Ot
11 Observed DTC "rail pressure is below commanded" is generated

Ot
12 Observed "unable to hold pressure in the fuel rail"

Ot
13 Observed "too low cylinder output effect"

Table 1: The random variables in the diagnostic model for the system described in
Example 1.

216



5. Diagnostic Model

Presence of Faults

A fault is a type of failure on a component that can only be solved by repairing or
replacing the component.

Let IF| j be the set of all faults that can affect component j and let IF =⋃
j∈IC IF| j be the set of all faults in the model. A fault only belongs to a single

component: For any components j,k ∈ IC, IF| j and IF|k are disjoint if j 6= k. For
each fault i ∈ IF and each time step t, there is a fault variable F t

i that models
whether the fault is present at time step t. It can have the values present f t

i or not
present ¬ f t

i .

Presence of Symptoms

A symptom is a deviation from normal behavior because of a fault on the vehicle.
This does not necessarily have to be directly observable by an external observer.

Let IS be a set of all symptoms in the model. For each symptom i ∈ IS there
is a symptom variable St

i that models whether the symptom is present at time t. It
can have the values present st

i or not present ¬st
i .

Symptom Causes

A symptom is only present if it is currently being actively caused by one or more
present faults. However, a given fault does not always cause the same symptoms.
We must therefore distinguish between actively causing a symptom and having the
potential to cause a symptom.

Let the IS|i ⊆ IS be the set of all symptoms that potentially can be caused by
fault i. This set does not vary over time. For each fault i ∈ IF, each symptom
j ∈ IS|i, and each time step t, there is a symptom-cause variable St

i, j that models
whether fault i is actively causing symptom j at time step t. It can have the value
active st

i, j or not active ¬st
i, j.

It is possible that several faults are actively causing a symptom. For example,
both a leakage in the injector and a leakage in the high pressure pump could be
causing the fuel rail to be unable to hold pressure. In this case we will not neces-
sarily be able to hold pressure if we repair only one of the faults.

Results of Observations Made by an External Observer

The variables defined above model what is actually true in the world. For example,
in the diagnostic model for the system described in Example 1, the symptom vari-
able St

8 models whether the system is actually unable to hold pressure in the fuel
rail at time t.
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An external observer cannot directly see whether this is the case, but must
make observations that can be noisy and thereby faulty. All such observations are
modeled with observation variables as statements about the value of one of the
other variables in the model. For example, the observation variable Ot

12 models
whether an observer, through an observation action, perceived that the system was
unable to hold pressure in the fuel rail. In other words, Ot

12 models whether the
observer perceived St

8 to be true.
Let IO be the set of all observations that can be made. For each observation i

and each time step t, the observation variable Ot
i models whether observation i is

true at time step t. It can have the values true ot
i or false ¬ot

i . Each observation i is
associated with the single other variable j that the statement is about, contained in
the set IX|i = { j}.

Dependencies between Observations and Multiple Symptoms

Typically there is a one-to-one relation between observations and symptoms. How-
ever, sometimes an observation is dependent on a combination of symptoms. In the
example, the DTC for low fuel pressure is generated when either the symptom "low
feed pressure" or the symptom "unable to hold pressure in the fuel rail" is present.

We call such a case a logical dependency. To each logical dependency i we
associate a boolean function of the symptoms φi and the value of this function at
time t is modeled with a logical variable Lt

i . E.g. φ10(t) = St
7 ∨ St

8. Let IL be the
set of all logical dependencies in the model and let the set IX|i be all symptoms for
dependency i.

5.2 Continuous Quantities

By choosing to model the vehicle with discrete binary variables we risk losing
valuable information from the many measurable continuous signals on board the
vehicle. However workshop tests and on-board diagnostic tests can be designed
to monitor such signals and output a binary result indicating if there is a fault
present among the set of faults for which the test is sensitive. This can for example
be done using Fault Detection and Isolation (FDI) techniques where a state-space
model of the vehicle is used to compare different measurable signals by generating
residual signals [15, 16, 39]. If the value of a residual deviates from zero, a fault
is detected among the components that generate the signals used by that residual.
Such a deviation on a residual can be modeled as a symptom with symptom-cause
variables for all faults on the related components. The workshop test for measuring
the fuel rail’s capability to hold pressure is another such example where a positive
test result is reported if the pressure in the fuel rail drops more than 200 bars during
one minute after being pressurized.
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5.3 Conditional Probability Distributions

Bayesian networks are represented as directed acyclic graphs where the vertices
are random variables and conditional dependencies with other variables are speci-
fied with edges. For each variable, a conditional probability distribution (CPD) is
defined that specifies the probability that the variable has a particular value given
the values of all its parent variables. In a DBN, a variable can only depend on vari-
ables that are in the same or previous time step. A variable is said to be persistent
if there are other variables in the next time step that depend on it, otherwise it is
transient [21]. In the diagnostic model, only fault and symptom-cause variables
are persistent.

We want to define the CPDs with few parameters that can be intuitively be
understood by the experts modeling the system. The definitions must also be such
that the model is modular, the inference is efficient, and it is possible to tune the
parameters with statistical data.

The CPDs of component variables are the same in every time slice, regardless
of the type of event it is associated with. A component i is faulty if one or more of
its faults are present:

Pr(ct
i|F t

j = v j∀ j ∈ IF|i) =





1 if
∨

j∈IF|i
v j =>,

0 otherwise.

For the other variables, different definitions of the CPDs will be needed for
different types of events.

5.4 CPDs for Operation Events

The operation of the vehicle is signaled with an operation event. During operation
new faults may appear and the behavior of present faults may change.

CPDs of Fault Variables after Operation Events

The possibility of having faults on completely new vehicles is modeled with a
manufacturing fault probability parameter pfail,i specifying the probability of fault
i being present when the component is new, e.g. a manufacturing fault. At time
step 0 the probability of a fault i is

Pr( f 0
i ) = pfail,i. (1)

The probability that a new fault occurs during a discrete time step increases
with the duration of the associated operation event. The rate at which faults occur
is called the failure rate. In complex electromechanical systems, the failure rate is
often higher in the beginning when the component is new, so called infant mortality,
and then settles at a constant level for older components [36].
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The manufacturing fault probability can be used to account for infant mortality
by approximating and compressing the initial period of time to t = 0. After the
initial time step, we will assume that the failure rate does not change as the com-
ponent ages. Then fault occurrence is a homogenous Poisson-process where the
probability that a fault occurs in a specific time period is given by the cumulative
exponential distribution. The distribution is parametrized with the failure rate of
the fault measured in units of e.g. expected number of faults per operated kilome-
ter or operated hour. In our application to road vehicles we measure operated time
in kilometers as this measure is readily available from the odometer of the vehicle
and most often reported in statistical data.

Let there be an operation event that occurs between time steps t−1 and t and let
∆t be the distance in millions of kilometers the vehicle has traveled between those
time steps. Let the failure rate parameter λfail,i be the expected number of faults of
type i per million kilometers of operation. Then the CPD of a fault variable F t

i of
fault i at time step t is dependent on whether there is a fault in the previous step. If
fault i is present in the previous time step it will remain:

Pr( f t
i | f t−1

i ) = 1. (2)

If there is no fault present in the previous time step, the probability is the cumula-
tive probability of the exponential distribution with parameter λfail,i at ∆t :

Pr( f t
i |¬ f t−1

i ) = 1− e−λfail,i∆t . (3)

When fault occurrence is modeled as a homogenous Poisson-process we can
treat several consecutive operation events as one with the distances summed. If
another operation event occurs between time steps t and t +1 with duration ∆t+1,
then

Pr( f t+1
i |¬ f t−1

i ) = 1− e−λfail,i(∆t+∆t+1). (4)

This makes it possible to create discrete operation events from the continuous pro-
cess of operating the vehicle.

We can show that a constant failure rate is a reasonable assumption for the
fuel injection system in the application example using data of fault occurrences
labeled with the mileage when the failure occurred that has been collected during
the warranty period. Using a central moving average we can estimate the failure
rate at mileage m as λ̂ (m) = n f (m)/20000nv(m) where n f (m) is the number of
faults of any type that have occurred on the fuel injection system in the mileage
interval m±10000 kilometers and nv(m) is the number of vehicles still contributing
to the data at mileage m. Figure 3 shows a comparison of the estimated failure
rate with a constant failure rate λ̄ estimated using the same data set where λ̄ =

ntot/mtot, ntot is the total number of fault occurrences in the data set, and mtot is
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Figure 3: Central moving average estimate of the failure rate compared to a con-
stant failure rate for the fuel injection system.

the total mileage of all vehicles contributing to the data. The uncertainty in the
estimate increases with the mileage because the number of vehicles contributing
to the data decreases, but we see that there is some infant mortality and then the
failure rate remains near the constant value.

CPDs of Symptom-Cause Variables after Operation Events

Faults do not necessarily cause symptoms deterministically, e.g. a leakage in an
injector does not always cause too low cylinder output effect. We model the prob-
ability that a fault i initially causes a symptom j with a symptom-cause probability
parameter pi, j. If we know that fault i is causing symptom j at one time step it
is reasonable to believe that the probability that fault i is causing j is larger than
pi, j in the next time step, especially if the distance between the time steps is small.
However, when the distance between time steps is large it is unreasonable to be-
lieve that fault i must still be causing symptom j only because it did so in the
past. We model this rate of change of symptom causes with a symptom-cause rate
parameter λi, j that can be interpreted as the number of times per million kilome-
ters a change event happens that (just as when the fault initially occurred) sets
the symptom cause to active with probability pi, j or to non-active with probability
1− pi, j. These events are not observable and therefore not modeled directly with
their own time steps. Instead the probability of such an event occurring for fault
i and symptom j between time steps is modeled using an exponential distribution
with parameter λi, j.
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The symptom-cause variable St
i, j at time step t for a fault i and one of the

symptoms j that it can cause has a CPD that is modeled as follows. If fault i is not
present, then no associated symptom-cause can be active:

Pr(st
i, j|¬ f t

j) = 0. (5)

When the fault occurs sometime between time steps t−1 and t, the symptom cause
becomes active with probability pi, j:

Pr(st
i, j|¬ f t−1

j , f t
j) = pi, j. (6)

If the fault is present at time step t− 1 there is a probability of 1− e−λi, j∆t that at
least one change event has occurred between t−1 and t. If the symptom cause is
not active at time step t− 1, then it will become active with probability pi, j if at
least one change event occurs:

Pr(st
i, j| f t−1

j ,¬st−1
i, j ) = pi, j(1− e−λi, j∆t ). (7)

If the symptom cause is already active at time step t−1, then we add the probability
of having no change event in this time to Eq. (7):

Pr(st
i, j| f t−1

j ,st−1
i, j ) = e−λi, j∆t + pi, j(1− e−λi, j∆t ). (8)

This model for the CPD is chosen so that the transition probabilities are ho-
mogenous. This is a realistic assumption as seen in Figure 3 and it is important in
order to make consecutive operation events equivalent to a single operation event
with combined duration.

Theorem 1 (Symptom-Cause CPD for Consecutive Operation Events). If two con-
secutive operation events occur at time steps t−1 and t with durations ∆t and ∆t+1,
the conditional probability distributions of a symptom-cause variable St+1

i, j given
the values of F t−1

i and St−1
i, j are identical to Eqs. (5)–(8) after a single operation

event with duration ∆t +∆t+1:

Pr(st+1
i, j |¬ f t+1

i ) = 0 (9)

Pr(st+1
i, j |¬ f t−1

i , f t+1
i ) = pi, j (10)

Pr(st+1
i, j | f t−1

i ,¬st−1
i ) = pi, j(1− e−λi, j(∆t+∆t+1)) (11)

Pr(st+1
i, j | f t−1

i ,st−1
i ) = e−λi, j(∆t+∆t+1)+ pi, j(1− e−λi, j(∆t+∆t+1)) (12)

Proof. See A.1

If the symptom-cause behavior of a particular fault is non-intermittent, meaning
that when that fault initially causes a symptom it will always keep causing that
symptom or when that fault initially does not cause a symptom it will never cause

222



5. Diagnostic Model

that symptom. Then λi, j = 0 and Eqs. (7) and (8) can be simplified:

Pr(st
i, j| f t−1

j ,st−1
i, j ) = 1

Pr(st
i, j| f t−1

j ,¬st−1
i, j ) = 0.

When λi, j > 0 and the duration of the operation event approaches infinity, the prob-
ability of having the symptom-cause given the fault approaches pi, j regardless if
the symptom-cause is known to be active or not in the previous time step:

lim
∆t→∞

Pr(st
i, j| f t−1

j ,st−1
i, j ) = lim

∆t→∞
Pr(st

i, j| f t−1
j ,¬st−1

i, j ) = pi, j.

5.5 CPDs for Repair Events

When a repair event occurs for a fault i at time step t, the associated fault variable
is set to not present and all of its symptom-cause variables are set to not active, i.e.:

Pr( f t
i ) = 0 (13)

Pr(st
i, j) = 0 for all j ∈ IS|i. (14)

Repair events are treated as being instantaneous because their durations are
typically short in comparison to normal operation events. We can therefore assume
that no new faults will occur and no symptom-cause variables will have time to
change, i.e. for all k ∈ IF \{i}:

Pr( f t
k| f t−1

k ) = 1

Pr( f t
k|¬ f t−1

k ) = 0

and all j ∈ IS|k

Pr(st
k, j|st−1

k, j ) = 1

Pr(st
k, j|¬st−1

k, j ) = 0.

When a component is repaired this is treated as multiple repair events occurring
in sequence on all of its possible faults. Depending on the inference method used,
these events are processed all at once or sequentially.

5.6 CPDs for Observation Events

When an observation event occurs for an observation i at time step t, we get to
know the value of the observation variable Ot

i . The value of this variable is of-
ten deterministically dependent on the current behavior of the vehicle, i.e. which
symptoms are present at the same time. However, it is also possible that the value
of Ot

i is non-deterministic given the values of the symptoms, e.g. because of erro-
neous perception by the external observer due to noisy measurements.
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An observation variable has a single parent variable in the network representing
the value that the observation attempts to observe. This parent variable can either
be a symptom variable or a logical variable. The non-deterministic property of an
observation variable is modeled with two parameters, a false positive probability
parameter p+,i and a false negative probability p−,i. The probability of observing
Ot

i => given the value of its parent variable X t
j is:

Pr(ot
i|xt

j) = 1− p−,i (15)

Pr(ot
i|¬xt

j) = p+,i. (16)

When X t
j is a logical variable Lt

j, we need the CPD for Lt
j given its parent

symptom variables St
k for all k ∈ IX| j. Let φ j be the boolean function of the values

of the parent symptom variables that describes the logical dependency j. Then

Pr(lt
j|St

k = vk ∀k ∈ IX| j) =
{

1 if φ j((vk : k ∈ IX| j)) =>
0 otherwise.

(17)

We also need the CPD:s for symptom variables given the symptom-cause vari-
ables. For a symptom variable St

k, the CPD is such that symptom k is present if any
symptom cause of a fault that can cause it is active, i.e.:

Pr(st
k|Sj,k = v j ∀ j ∈ Ik) =





1 if
∨

j∈Ik

v j =>,

0 otherwise.
(18)

where Ik = { j ∈ IF : k ∈ IF| j}. This definition of the CPD implies that the prob-
ability of the symptom being present given the values of all the fault variables is
equivalent to a noisy-or distribution [14] where the strength parameters are the
probabilities of the symptom-causes given the faults.

An observation event does not change the value of any persistent variable, i.e.
for all k ∈ IF:

Pr( f t
k| f t−1

k ) = 1

Pr( f t
k|¬ f t−1

k ) = 0

and all j ∈ IS|k
Pr(st

k, j|st−1
k, j ) = 1

Pr(st
k, j|¬st−1

k, j ) = 0.

5.7 Example

Figure 4 shows the non-stationary DBN rolled out for the small example for a
sequence of four events e1, . . . ,e4, where e1 is an operation event of 90000 km, e2

is a positive observation event for the DTC, e3 is a positive observation event for
the cylinder output test, and e4 is a repair event for the HPP. Only variables that
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Figure 4: The Bayesian network for the small example rolled out for four events.

225



Paper E. A Modeling Framework for Troubleshooting Automotive Systems

t 0 1 2 3 4

Pr( f t
3|e1:t) 1.0×10−5 9.1×10−4 0.33 2.7×10−3 2.7×10−3

Pr( f t
4|e1:t) 1.0×10−5 9.1×10−4 0.34 2.7×10−3 2.7×10−3

Pr( f t
5|e1:t) 1.0×10−5 9.1×10−4 0.33 1.0 0

Pr( f t
6|e1:t) 1.0×10−5 9.1×10−4 9.1×10−4 5.2×10−3 0

Pr(ot
11|e1:t) 2.9×10−5 2.6×10−3 1.0 1.0 5.4×10−3

Pr(ot
12|e1:t) 2.9×10−5 1.7×10−3 0.66 1.0 2.7×10−3

Pr(ot
13|e1:t) 2.4×10−5 1.3×10−3 0.17 1.0 1.0×10−5

Table 2: The conditional probabilities of selected variables in the small example
after events e1:t = e1, . . . ,et .

are relevant for inference are shown in the figure. A symptom or logical variable is
only relevant for inference if it is an ancestor of a queried observation variable. A
component variable is only relevant if its probability is queried by a user. This can
occur at any time, but in the figure it is assumed to occur at time 0.

Table 2 shows the conditional probabilities of faults and observations given the
events when the parameters for the small example are as follows:

pfail,i = 10−5 ∀i ∈ {3,4,5,6}
λfail,i = 0.01 ∀i ∈ {3,4,5,6}

pi, j = 0.95 ∀(i, j) ∈ {(3,7),(4,8),(5,8),(6,9)}
pi, j = 0.5 ∀(i, j) ∈ {(4,7),(5,9)}
λi, j = 104 ∀(i, j) ∈ {(3,7),(4,7),(4,8),(5,8),(5,9),(6,9)}
φ10(St

7,S
t
8) = St

7∨St
8

5.8 Modularization

To get a model that is manageable and handles the modularity of the vehicles well,
the diagnostic model is partitioned into modules with one module for each compo-
nent and observation.

A component module for a component i specifies which faults the component
can have, i.e. the set IF|i. For each fault j ∈ IF|i, the module also specifies the
parameters pfail, j and λfail, j and which symptoms this fault can cause, i.e. the set
IS| j. For each symptom k ∈ IS| j, the module specifies the parameters p j,k and λ j,k.

An observation module for an observation i specifies the parameters p+,i and
p−,i and the set IX|i. If IX|i = { j} where j is a logical dependency, then the ob-
servation module also specifies this dependency to the symptoms, i.e. the boolean
function φ j and the set IX| j.
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For a vehicle v consisting of components IC|v ⊆ IC, a diagnostic model is
compiled by joining the component modules of each component i ∈ IC|v and the
observation modules of each observation j that contains a symptom that also exists
in any of the selected component modules. There can be symptoms in the selected
observation modules that are not in the selected component modules. These are
treated as if always not present.

6 Diagnostic Inference
To compute probabilities of faults and observation outcomes we need to make
inference in a dynamic Bayesian network. For larger diagnostic models, exact
methods such as the frontier algorithm [47] or the interface algorithm [21] are not
feasible. To get tractable inference, we will have to approximate.

Approximate inference algorithms based on Monte-Carlo methods such as EPIS
sampling [45] and particle filtering [22] are problematic for making inference in
this diagnostic model because the probability of faults occurring is small. A Monte-
Carlo based algorithm would have to use many samples to be able to compute
probabilities of these rare events accurately.

Another approximate inference algorithm that is not based on sampling is the
Boyen-Koller algorithm [2]. In this section we will describe three different ap-
proaches to make inference in the diagnostic model based on the Boyen-Koller al-
gorithm. The first method is a direct application of the Boyen-Koller algorithm. For
the second method we make an assumption that at most one fault can be present.
The third method is a new method that combines the strengths of the first two
methods.

6.1 Diagnoser using Boyen-Koller Algorithm – The Indepen-
dent Fault Model

The Boyen-Koller algorithm is a frontier algorithm that uses a joint probability
distribution over the persistent variables in a time step t to compute the probability
distribution over the variables in the next time step t + 1. In the worst case, the
space complexity of exactly representing a joint probability distribution of discrete
random variables is exponential in the number of variables. The Boyen-Koller
algorithm approximates this distribution by grouping the persistent variables into
clusters and assuming the clusters to be independent. To compute the posterior
probability distributions of the clusters in the next time step t + 1 given new ev-
idence in time step t + 1, the Boyen-Koller algorithm makes inference in a static
Bayesian network containing only the variables in time steps t and t + 1 where
the joint probability distribution of the persistent variables in time step t is this ap-
proximate distribution. The algorithm can use any standard inference algorithm for
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static Bayesian networks to do this computation. The clusters can also be selected
freely and they do not necessarily have to be completely independent, e.g. it is
possible to have conditionally independent clusters [3].

The size of the joint probability distribution grows exponentially with the num-
ber of variables included in the largest cluster. When we apply the Boyen-Koller
algorithm to the diagnostic model, we form a separate cluster for each fault and a
separate cluster for each symptom-cause. We let each symptom-cause cluster be
conditioned on the corresponding fault variable to ensure that a symptom cause
cannot be present unless the corresponding fault is present at the same time. With
this clustering, the size of the joint probability distribution is linear in the number
of faults and symptom causes. We call this model the independent fault model.

Independent Fault State

The marginalized probabilities for each cluster are stored as intermediate results in
the diagnostic state. When computing the posterior distribution after an event, we
will define the prior distribution to be the joint probability distribution of the inde-
pendent clusters. The posterior distribution can then be computed exactly given the
prior distribution. However, the prior distribution is an approximation and errors
from this approximation are propagated when the posterior becomes the next prior.

Definition 1 (Independent Fault State). An independent fault state is a diagnostic
state s where the intermediate results consist of the values pf(s, i) for all i ∈ IF
representing the probability of having fault i, and the values ps|f(s, i, j) for all i ∈
IF, j ∈ IS|i representing the probability that fault i causes symptom j given that
fault i is present.

The prior distribution of the persistent variables in the time step t represented
by the state s is defined to be:

Pr(F t
i ,S

t
i, j ∀i ∈ IF, j ∈ IS|i) = ∏

i∈IF
Pr(F t

i ) ∏
j∈IS|i

Pr(St
i, j|F t

i )

where

Pr( f t
i ) = pf(s, i),

Pr(st
i, j| f t

i ) = ps|f(s, i, j),

Pr(st
i, j|¬ f t

i ) = 0.
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Transitions

After an event e at time t, we apply the model as it is described in Section 5 to
compute the posterior distribution at time t +1 given the prior distribution defined
by the previous state s. The values of the next state s′ are then set to be:

pf(s′, i) = Pr( f t+1
i ),

ps|f(s′, i, j) = Pr(st+1
i, j | f t+1

i ),

for all i ∈ IF, j ∈ IS|i.

Operation Events If e is an operation event with duration ∆ we can compute the
next state by direct application of Eqs. (2)–(8):

pf(s′, i) = 1− e−λfail,i∆(1− pf(s, i)), (19)

ps|f(s′, i, j) = pi, j +
pf(s, i)e−λi, j∆(ps|f(s, i, j)− pi, j)

pf(s′, i)
, (20)

for all i ∈ IF, j ∈ IS|i.

Repair Events If e is a repair event on fault k, we will apply Eqs. (13) and (14):

pf(s′, i) =

{
0 if i = k,

pf(s, i) if i 6= k,
(21)

ps|f(s′, i, j) =

{
0 if i = k,

ps|f(s, i, j) if i 6= k,

for all i ∈ IF, j ∈ IS|i.

Observation Events If e is an observation event on observation k with outcome
v, we also need to compute the outcome probability Pr(e|s). Because observation
events do not change the values of persistent variables, we can compute the next
state and the outcome probability by making the following queries in a Bayesian
network containing only variables at time step t:

pf(s′, i) = Pr( f t
i |Ot

k =v) (22)

ps|f(s′, i, j) = Pr(st
i, j| f t

i ,O
t
k =v) (23)

Pr(e|s) = Pr(Ot
k =v). (24)

for all i ∈ IF, j ∈ IS|i. The CPDs for the persistent variables are defined by the
previous state s and the CPDs of for the transient variables are given by Eqs. (15)–
(18).
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If we make these queries using an exact inference algorithm such as the Junc-
tion Tree algorithm [19] the complexity is exponential in the tree-width of the static
network. The worst-case tree-width of this network is the number of symptom-
cause variables whose value the observation is dependent on. In many cases the
Junction Tree algorithm is tractable for our application because the number of
symptom-cause variables that a single observation variable depends on typically
does not grow with the number of components in the model. However, if the model
has certain structure we can make even faster inference.

Exploiting Structure

If the parent of an observation variable is a symptom variable or a logical variable
where the boolean function is a disjunction, then for observation events on this
variable we can use a different inference algorithm that is linear in the number of
faults and symptom-causes. We achieve this by adapting the Quickscore algorithm
[12] for our diagnostic model with persistent symptom-causes.

The Quickscore algorithm can make exact inference in two-layer Bayesian net-
works with binary variables where the CPDs for the variables in the bottom layer
are of the type Noisy-Or [14] and the variables in the top layer are independent. Let
X be a variable in the bottom layer with parent variables Y1, . . . ,Yn. The Noisy-Or
CPD of X is such that X = > can independently be caused with probability pi by
any of its parent variables Yi that has the value >:

Pr(x|Y1=v1, . . . ,Yn=vn)

= 1−
n

∏
i=1

Pr(yi|Y1=v1, . . . ,Yn=vn)(1− pi).

The Quickscore algorithm computes the probability of X using:

Pr(x) = 1−
n

∏
i=1

(
Pr(yi)(1− pi)+Pr(¬yi)

)
(25)

and the probability of a parent variable Yi given that X has value v using:

Pr(yi|X =v) =
Pr(X =v|yi)Pr(yi)

Pr(X =v)

where
Pr(x|yi) = 1−Pr(¬x)

1− pi

Pr(yi)(1− pi)+Pr(¬yi)
. (26)

In a diagnostic model where observation i only has disjunctive dependencies
to the symptom-causes, we get a distribution that is similar to a Noisy-Or distribu-
tion where the bottom-layer variable X corresponds to the observation variable and
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the top-layer variables correspond to the fault variables. However, our model dif-
fers from the two-layer model described above because we have symptom-cause,
symptom, and logic variables in intermediate layers. To overcome this, we must
modify the algorithm.

Let state s be an independent fault state corresponding to time step t and let
e be an observation event at time step t on observation k having outcome v. Let
IX|k = {l} so that X t

l is the single other variable associated to observation k (see
Section 5.1). If we can compute Pr(xt

l) and Pr(xt
l | f t

i ) for all faults i, then we can
find simple expressions for computing the next state s′ and outcome probability
(Eqs. (22)–(24)). The outcome probability is:

Pr(e|s) = Pr(Ot
k =v)

= Pr(Ot
k =v|¬xt

l)Pr(¬xt
l)+Pr(Ot

k =v|xt
l)Pr(xt

l). (27)

The posterior fault probability for fault i in state s′ is:

pf(s′, i) = Pr( f t
i |Ot

k =v)

=
Pr(Ot

k =v| f t
i )Pr( f t

i )

Pr(Ot
k =v)

=

(
Pr(Ot

k=v|xt
l)Pr(xt

l | f t
i )+Pr(Ot

k=v|¬xt
l)Pr(¬xt

l | f t
i )
)

Pr( f t
i )

Pr(Ot
k = v)

. (28)

The posterior symptom-cause probability for fault i and symptom j in state s′ is:

ps|f(s′, i, j) = Pr(st
j| f t

i ,O
t
k =v)

=
Pr(Ot

k =v|st
j)Pr(st

i| f t
i )Pr( f t

i )

Pr(Ot
k =v)Pr( f t

i |Ot
k =v)

=
Pr(Ot

k =v|xt
l)Pr(st

i| f t
i )Pr( f t

i )

Pr(Ot
k =v)Pr( f t

i |Ot
k =v)

(29)

if j ∈Ri|k where

Ri|k =

{
IS|i∩{l} if X t

l is a symptom variable,

IS|i∩IX|l if X t
l is a logic variable,

is the set of symptoms that can be caused by fault i and that have a causal depen-
dency to the observation k. If j /∈Ri|k, then Pr(st

j| f t
i ,O

t
k =v) = Pr(st

j| f t
i ).

The probabilities Pr(¬xt
l) and Pr(¬xt

l | f t
i ) can then be computed using analogs

to Eqs. (25) and (26) where (1− pi) is substituted with the probability

qs|i = ∏
j∈Ri|k

Pr(¬si, j| f j) (30)
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1: procedure observationTransition(s, k, v)
2: for i ∈ IF do qs|i ← ∏

j∈Ri|k
(1 − ps|f(s, i, j))

3: qx ← ∏
i∈IF

(pf(s, i)qs|i + 1 − pf(s, i))

4: for i ∈ IF do qx|i ← qx
qs|i

pf(s,i)qs|i+1−pf(s,i)

5: po|¬x, po|x ←


p+,k, (1 − p−,k) if v
(1 − p+,k), p−,k otherwise

6: po ← po|¬xqx + po|x(1 − qx)
7: for i ∈ IF do
8: pf(s′, i)← (

po|x(1 − qx|i) + po|¬xqx|i
) pf(s,i)

po

9: for j ∈ Ri|k do ps|f(s′, i, j)← po|x ps|f(s,i, j)pf(s,i)
po pf(s′,i)

10: for j ∈ IS|i \ Ri|k do ps|f(s′, i, j)← ps|f(s, i, j)
11: end for
12: return s′, po

13: end procedure

Figure 5: The Quickscore Variant algorithm for computing state transitions for
observation events.

that no relevant symptom-cause of fault i is active:

Pr(xt
l) = 1− ∏

i∈IF

(
Pr( f t

i )qs|i +Pr(¬ f t
i )
)

(31)

Pr(xt
l | f t

i ) = 1−Pr(¬xt
l)

qs|i
Pr( f t

i )qs|i +Pr(¬ f t
i )
. (32)

Figure 5 shows the new algorithm, Quickscore Variant, for computing the new
diagnostic state s′ and the outcome probability po = Pr(e|s) after an observation
event e that corresponds to making observation k and getting the result v. The
marginalized posterior probabilities for the observation, the fault probabilities and
symptom-cause probabilities are exact given the prior distribution defined by the
previous state. On lines 2–4 we compute Eqs. (30)–(32), on lines 5–6 we compute
Eq. (27), and on lines 7–11 we compute Eqs. (28)–(29). The complexity of the
algorithm is bounded by the number of symptom-causes in the model.

Even though the inference is exact in one time step, the error introduced by
creating independent clusters can be unreasonably large over several time steps.

Example 2. Table 3 shows the marginalized fault and observation probabilities for
the small example for the same sequence of events as in the example in Section 5.7.
The Quickscore Variant is used to compute the observation probabilities at every
time step and the fault probabilities at time steps 2 and 3 which occur after the
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t 0 1 2 3 4

Pr( f t
3|e1:t) 1.0×10−5 9.1×10−4 0.33 0.33 0.33

Pr( f t
4|e1:t) 1.0×10−5 9.1×10−4 0.34 0.34 0.34

Pr( f t
5|e1:t) 1.0×10−5 9.1×10−4 0.33 1.0 0

Pr( f t
6|e1:t) 1.0×10−5 9.1×10−4 9.1×10−4 5.2×10−3 0

Pr(ot
11|e1:t) 2.9×10−5 2.6×10−3 0.7 1.0 0.56

Pr(ot
12|e1:t) 2.9×10−5 1.7×10−3 0.55 1.0 0.33

Pr(ot
13|e1:t) 2.4×10−5 1.3×10−3 0.17 1.0 1.0×10−5

Table 3: The estimated conditional probabilities of selected variables in the small
example after events e1:t = e1, . . . ,et computed using the independent fault model.

observation events on O2
11 => and O3

13 => respectively. At time step 0 the fault
probabilities are the manufacturing fault probabilities Eq. (1). At time step 1 after
the operation event, the fault probabilities are computed using Eq. (19). At time
step 4 after the repair event, they are computed using Eq. (21). We can compare
these probabilities with the probabilities in Table 2 that are obtained using the ex-
act inference method. After two events, faults 3, 4, and 5 have approximately the
same probability of 1/3 which is correct as they can all explain the first observa-
tion. After the second observation, which can be explained by both fault 5 and the
unlikely fault 6, we correctly deduce that fault 5 is the most probable cause. How-
ever, because of the independence assumption, faults 3 and 4 remain incorrectly at
probability 1/3 because they are independent of the observation variable O3

13.

To create a diagnostic model for which efficient diagnostic inference can be
made, the modeler should avoid using complex non-disjunctive dependencies for
observations that depend on many symptoms. In some cases, it is possible to model
an observation with non-disjunctive dependencies as such without changing the
overall behavior of the model. Assume that in the small example we have an addi-
tional symptom, "engine not starting", and that to produce a meaningful result, the
observation for detecting deviations in the cylinder output effect requires the en-
gine to be starting. We also assume that the user observes whether the engine starts
whenever an attempt to perform the test is made. If we should interpret "engine
not starting" as a negative test result then we will detect a deviation if and only if

¬"engine not starting"∧ "cylinder output effect is too low".

If we instead should interpret "engine not starting" as a positive test result then we
will detect a deviation if and only if

"engine not starting"∨¬"cylinder output effect is too low"
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which is a disjunction. Both interpretations of "engine not starting" are equivalent
in the sense that we cannot draw any conclusions of "cylinder output effect is too
low" when "engine not starting" is true.

6.2 Single Fault Model

Another way to get tractable inference is to assume that at most one fault can be
present at one time. This is the single fault model. The single fault assumption is
reasonable when fault probabilities are small and their prior probabilities are ap-
proximately independent. This assumption is also applied in many other diagnostic
systems [13, 18, 33]. If there can only be at most one fault, then we can accurately
represent the joint probability distribution of all faults with linear space complexity.
However, it is not reasonable to assume that there can only be at most one symptom
present at one time. Because we do not want to increase the space complexity, we
will represent the symptom-cause probabilities as before in the independent fault
model by assuming conditional independence given the faults.

Single Fault State

To the model we add a persistent discrete random variable Φt where Φt = 0 rep-
resents the case when there are no faults and Φt = i represents the case when only
fault i is present. From here on we will use ϕ t

i to denote Φt = i and ¬ϕ t
i to denote

Φt 6= i.

Definition 2 (Single Fault State). A single fault state is a diagnostic state s where
the intermediate results consist of the value pNF(s) representing the probability of
having no fault, the value pϕ(s, i) for all i ∈ IF representing the probability of hav-
ing only fault i, and the probability ps|ϕ(s, i, j) for all i ∈ IF, j ∈ IS|i representing
the probability that fault i causes symptom j given that fault i is present.

The prior distribution of the persistent variables in the time step t represented
by the state s is defined to be:

Pr(F t
i ,S

t
i, j ∀i ∈ IF, j ∈ IS|i)

= ∑
k∈{0}∪IF

Pr(ϕ t
k) ∏

i∈IF
Pr(F t

i |ϕ t
k) ∏

j∈IS|i
Pr(St

i, j|ϕ t
k)
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where

Pr( f t
i |ϕ t

j) =

{
1 if i = j,

0 otherwise,

Pr(ϕ t
i ) =

{
pNF(s) if i = 0,

pϕ(s, i) otherwise,

Pr(st
i, j|ϕ t

k) =

{
ps|ϕ(s, i, j) if i = k,

0 otherwise.

Transitions

In this model, the fault variables are no longer persistent variables since their values
are uniquely determined by the value of Φt . Because of the single-fault assumption,
we will make exceptions from the model described in Section 5 when computing
the posterior distribution after an event. Let e be an event that occurs at time t
where the prior distribution is defined by the single fault state s. The values of the
next state s′ are:

pNF(s′) = Pr(ϕ t+1
0 ),

pϕ(s′, i) = Pr(ϕ t+1
i ) for all i ∈ IF,

ps|ϕ(s′, i, j) = Pr(st+1
i, j |ϕ t+1

i ) for all i ∈ IF, j ∈ IS|i.

The joint probability distribution of the fault variables in time step 0 differ from
that described in Section 5.3:

Pr(ϕ0
0 ) =

1
1+ ∑

j∈IF

pfail, j
1−pfail, j

Pr(ϕ0
i ) =

pfail,i
1−pfail,i

1+ ∑
j∈IF

pfail, j
1−pfail, j

Operation Events When e is an operation event with duration ∆ the posterior is
computed differently than before because with the single fault assumption, no more
faults can occur during operation once a fault has occurred. When there are no
faults we will as before assume that fault occurrence is a homogenous Poisson pro-
cess. The probability that the next event of n homogenous Poisson processes with
parameters λ1, . . . ,λn occurs in process i is λi/∑

n
j=1 λ j. Let Λfail = ∑i∈IF λfail,i.
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Then the CPD for the variable Φt+1 is:

Pr(ϕ t+1
0 |ϕ t

0) = e−Λfail∆,

Pr(ϕ t+1
i |ϕ t

0) =
λfail,i

Λfail
(1− e−Λfail∆) ∀i ∈ IF,

Pr(ϕ t+1
i |ϕ t

i ) = 1 ∀i ∈ IF,

where ∆ is the duration of the operation event. In the next state s′:

pNF(s′) = pNF(s)e−Λfail∆,

pϕ(s′, i) = pϕ(s, i)+ pNF(s)
λfail,i

Λfail
(1−e−Λfail∆) for all i∈IF.

For operation events in the single fault model, the CPDs for the symptom-
cause variables are as before. We can compute ps|ϕ(s′, i, j) in the same way as we
computed ps|f(s′, i, j) in Eq. (20):

ps|ϕ(s′, i, j) = pi, j +
pϕ(s, i)e−λi, j∆(ps|ϕ(s, i, j)− pi, j)

pϕ(s′, i)

for all i ∈ IF, j ∈ IS|i.

Repair Events When e is a repair event on fault i the CPD of Φt is:

Pr(ϕ t
j) =





Pr(ϕ t−1
0 )+Pr(ϕ t−1

i ) if j = 0,

0 if j = i,

Pr(ϕ t−1
j ) otherwise,

and

pNF(s′, j) = pNF(s)+ pϕ(s, i),

pϕ(s′, j) =

{
0 if j = i,

pϕ(s, j) otherwise.

Observation Events If e is an observation event on observation k with outcome
v, we make inference in a Bayesian network containing only the variables in time
slice t. The query Pr(Ot

k = v|ϕi) can be computed with a worst-case time com-
plexity that is exponential in the number of symptoms |Ri|k| of fault i that Ot

k is
dependent on, because all other symptoms are deterministically known to be not
present given ϕi. The sought values in the next state are then obtained by applying
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t 0 1 2 3 4

Pr( f t
3|e1:t) 1.0×10−5 9.1×10−4 0.33 2.0×10−5 2.0×10−5

Pr( f t
4|e1:t) 1.0×10−5 9.1×10−4 0.34 2.1×10−5 2.1×10−5

Pr( f t
5|e1:t) 1.0×10−5 9.1×10−4 0.33 1.0 0

Pr( f t
6|e1:t) 1.0×10−5 9.1×10−4 3.5×10−10 2.0×10−9 0

Pr(ot
11|e1:t) 2.9×10−5 2.6×10−3 1.0 1.0 4.0×10−5

Pr(ot
12|e1:t) 2.9×10−5 1.7×10−3 0.66 1.0 3.0×10−5

Pr(ot
13|e1:t) 2.4×10−5 1.3×10−3 0.17 1.0 1.0×10−5

Table 4: The estimated conditional probabilities of selected variables in the small
example after events e1:t = e1, . . . ,et computed using the single fault model.

Bayes’ rule:

Pr(e|s) = Pr(Ot
k =v) = ∑

i∈{0}∪IF
Pr(Ot

k =v|ϕ t
i )Pr(ϕ t

i ),

pNF(s′) = Pr(ϕ t
0|Ot

k =v) =
Pr(Ot

k =v|ϕ t
0)Pr(ϕ t

0)

Pr(Ot
k =v)

,

pϕ(s′, i) = Pr(ϕ t
i |Ot

k =v) =
Pr(Ot

k =v|ϕ t
i )Pr(ϕ t

i )

Pr(Ot
k =v)

,

ps|ϕ(s′, i, j) = Pr(st
i, j|ϕ t

i ,O
t
k =v) =

Pr(Ot
k =v|st

i, j)Pr(st
i, j|ϕ t

i )

Pr(Ot
k =v|ϕ t

i )
.

The size ofRi|k does not depend on the number of faults in the model and therefore
the time complexity is linear in the number of faults and symptom-causes.

Example 3. Table 4 shows the marginalized fault and observation probabilities
for the small example for the same sequence of events as in the example in Sec-
tion 5.7. When the single fault model is used, the probabilities for faults 3 and 4
are no longer overestimated when compared to the real values in Table 2. Instead,
the fault probabilities of the less likely faults 3, 4, and 6 are underestimated with
several orders of magnitude. If the decision support system would decide to end
the troubleshooting session after the 4th event, it would estimate the expected cost
of doing this to be 100 times smaller than if an exact inference method was used.

6.3 Combined Model

To get around the problems of the single fault assumption and using the indepen-
dent fault state representation, we propose to combine these methods by represent-
ing single faults explicitly and assume the faults to be independent when there are
multiple faults.
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In this model, the combined model, we add several variables to the Bayesian
network for representing the prior distribution in a time slice for an event at time
t. As before, for all i ∈ IF, j ∈ IS|i, the fault variables F t

i represent whether fault
i is present at time t and the symptom-cause variables St

i, j represent whether fault
i is causing j at time t. Similar to the single fault model we let Φt be a random
variable where Φt = 0 represents the case that no faults are present at time t and
Φt = i represents the case that only fault i is present at time t. However, we also
want Φt to represent the case that more than one fault is present at time t by having
the value −1.

When Φt =−1 we will use the independent fault model to represent the proba-
bility distribution over the faults and symptom-causes at time t using variables F̃ t

i
and S̃t

i, j for all i∈ IF, j ∈ IS|i. This distribution is updated after events as described
in Section 6.1 independently of how Φt is updated. We then combine the single
fault model with the independent fault model in the following way. If Φt ≥ 0, then
the value of Φt determines the value of the fault variables and symptom-cause vari-
ables. Otherwise, if Φt = −1, then we let the values of F̃ t

i and S̃t
i, j determine the

values of F t
i and Si, j instead.

Definition 3 (Combined State). A combined state is a diagnostic state s where the
intermediate results consist of the value pNF(s) representing the probability of hav-
ing no faults, the values pϕ(s, i) representing the probability of having only fault
i, the value pMF(s) representing the probability of having multiple faults, the val-
ues ps|ϕ(s, i, j) representing the probability that fault i causes symptom j given that
only fault i is present, the values pf(s, i) representing the probability of having fault
i in the independent fault model, and the values ps|f(s, i, j) representing the proba-
bility that fault i causes symptom j given that fault i is present in the independent
fault model. The joint probability distribution of the persistent variables in time
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slice t is as follows:

Pr(ϕ t
i ) =





pMF(s) if i =−1,

pNF(s) if i = 0,

pϕ(s, i) otherwise,

Pr( f̃ t
i ) = pf(s, i),

Pr(s̃t
i, j|F̃ t

i =v) =

{
ps|f(s, i, j) if v =>,

0 otherwise,

Pr( f t
i |ϕ t

j, F̃
t
i =v) =





1 if j =−1 and v =>,

1 if i = j,

0 otherwise,

Pr(st
i, j|ϕ t

k, S̃
t
i, j =v) =





1 if k =−1 and v =>,

ps|ϕ(s, i, j) if i = k,

0 otherwise.

When computing the marginalized probability of a fault or a symptom-cause in
a time step t represented by a combined state s we will condition every query with
the knowledge that more than one fault is present in the distribution represented by
the independent fault variable. We need to do this because we know that this model
should only be used when there are multiple faults according to Φt . Let Nt be a
discrete variable representing how many of the variables F̃ t

i for all i ∈ IF have the
value >. Then the marginalized probability of fault i given s is

p̄f(s, i) = Pr( f t
i |Nt >1) = pϕ(s, i)+ pMF(s)Pr( f̃ t

i |Nt >1) (33)

and the marginalized probability of symptom j being caused by fault i given s is

p̄s|f(s, i, j) = Pr(st
i, j|Nt >1)

= ps|ϕ(s, i, j)pϕ(s, i)+ pMF(s)Pr( f̃ t
i |Nt >1)ps|f(s, i, j). (34)

To compute Eq. (34), we need a computable expression for Pr( f̃ t
i |Nt >1). First

we compute the distribution of Nt :

Pr(Nt >1) = 1−Pr(Nt =0)−Pr(Nt =1)

Pr(Nt =0) = ∏
i∈IF

Pr(¬F̃ t
i ) = ∏

i∈IF
(1− pf(s, i))

Pr(Nt =1) = ∑
i∈IF

Pr(F̃ t
j )∏
j∈IF\{i}

Pr(¬F̃ t
j ) = Pr(Nt =0)∑

i∈IF

pf(s, i)
1−pf(s, i)

.

Using Bayes’ rule, we have

Pr( f̃ t
i |Nt >1) =

Pr( f̃ t
i )Pr(Nt >1| f̃ t

i )

Pr(Nt >1)
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Φt

F t
1 · · · F t

n

St
1,1 · · · St

1,m

N t

F̃ t
1
· · · F̃ t

n

· · ·

S̃t
1,1 · · · S̃t

1,m

Figure 6: The conditional dependencies of the variables in the combined model.

where we identify that

Pr(Nt >1| f̃ t
i ) = 1−Pr(Nt≤1| f̃ t

i ) = 1−Pr(Nt =1| f̃ t
i )

= 1− Pr(Nt =1, f̃ t
i )

Pr( f̃ t
i )

= 1−
Pr( f̃ t

i )∏
j∈IF\{i}

Pr(¬ f̃ t
j)

Pr( f̃ t
i )

= 1− Pr(Nt =0)
Pr(¬ f̃ t

i )
= 1− Pr(Nt =0)

1− pf(s, i)
.

Thus,

Pr( f̃ t
i |Nt >1) = pf(s, i)

1− Pr(Nt=0)
1−pf(s,i)

Pr(Nt >1)
(35)

If Pr(Nt >1) = 0 then we substitute Pr( f̃ t
i |Nt >1) with zero in Eqs. (33) and (34).

If pf(s, i) = 1 then Pr( f̃ t
i |Nt >1) = 1.

The conditional dependencies of the variables in the combined model are sh-
own in Figure 6.

Transitions

Let e be an event that occurs at time t where the prior distribution is defined by
the combined state s. When computing the next state s′ we treat the independent
fault model as a separate process. Therefore, we update the values pf(s′, i) and
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ps|f(s′, i, j) as previously described in Section 6.1 for all events. The remaining
values are in the next state s′:

pNF(s′) = Pr(ϕ t+1
0 |Nt >1)

pϕ(s′, i) = Pr(ϕ t+1
i |Nt >1) for all i ∈ IF,

pMF(s′) = Pr(ϕ t+1
−1 |Nt >1)

ps|ϕ(s′, i, j) = Pr(st+1
i, j |ϕ t+1

i ,Nt >1) for all i ∈ IF, j ∈ IS|i.

We must condition on Nt >1 because we define the prior distribution at time step
t such that the independent fault model is only used when there are two or more
faults present among F̃ t

i . For certain transitions, the values of Φt+1 and St+1
i, j in the

posterior time slice are influenced by the values of F̃ t
i and S̃t

i, j.

Operation Events When e is an operation event with duration ∆, new faults can
be introduced. No faults can become single and multiple faults and single faults
can become multiple faults. The probability of having no faults at time t +1 is the
probability that we had no faults and no new faults occur:

pNF(s′) = Pr(ϕ t
0)∏

i∈IF
Pr(¬ f t+1

i |¬ f t
i ) = pNF(s)e−Λfail∆

where Λfail = ∑i∈IF λfail,i.
The probability of having a single fault i at time t +1 is the probability that we

had no faults and only fault i occurs or that we had fault i and no other faults occur:

pϕ(s′, i) = Pr(ϕ t
0)Pr( f t+1

i |¬ f t
i )∏
j∈IF\{i}

Pr(¬ f t+1
j |¬ f t

j)

+Pr(ϕ t
i )∏
j∈IF\{i}

Pr(¬ f t+1
j |¬ f t

j)

= e−Λfail∆

(
1− e−λfail,i∆

e−λfail,i∆
pNF(s)+

pϕ(s, i)

e−λfail,i∆

)
. (36)

Because ∑i∈{−1,0}∪IF Pr(ϕ t+1
i |Nt >1) = 1, the probability of having multiple

faults at time t +1 is

pMF(s′) = 1− pNF(s′)− ∑
i∈IF

pϕ(s′, i). (37)

The symptom-cause probabilities ps|ϕ(s, i, j) are computed as previously in Eq.
(20) for all i ∈ IF, j ∈ IS|i:

ps|ϕ(s′, i, j) = pi, j +
pϕ(s, i)e−λi, j∆(ps|ϕ(s, i, j)− pi, j)

pϕ(s′, i)
.
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In the combined model the transitions for operation events are approximate
because the state parameters for the independent fault probabilities are updated
independently of Φt . However, we can derive a bound on the maximum error
on the marginalized posterior fault probabilities after an operation event using the
combined model.

Theorem 2 (Error of Operation Event Transitions in the Combined Model). Let
e be an operation event with duration ∆ that occurs at time step t where the prior
distribution is defined by the combined state s. Let εNF, εi for all i ∈ IF, and
εMF be the difference between the estimated fault probabilities according to the
independent fault model and the single fault model given state s:

εNF = pNF(s)−Pr(Nt =0), (38)

εi = pϕ(s, i)−Pr( f̃i|Nt =1) for all i ∈ IF, (39)

εMF = pMF(s)−Pr(Nt >1). (40)

Then the error between the marginalized fault probability p̄f(s′, i) for fault i in the
next state s′ and the exact posterior probability Pr( f t+1

i |Nt >1) is:
∣∣p̄f(s′, i)−Pr( f t+1

i |Nt>1)
∣∣=
∣∣Pr( f t+1

i |Nt+1>1)−Pr( f t+1
i |Nt>1)

∣∣
≤
∣∣Pr( f̃ t−1

i |Nt−1>1)−Pr( f̃ t
i |Nt>1)

∣∣|εMF|

+(1−e−Λfail∆)
(

2|εNF|+|εMF|+|εi|+∑
j∈IF
|ε j|
)
. (41)

Proof. See A.2.

The bound is small when the no-fault, single-fault, or multiple-fault probabil-
ities according to the independent fault model are similar to the values pNF(s),
pϕ(s, i), and pMF(s). The bound grows with the duration of the event and the
probabilities of new faults occurring.

Repair Events If e is a repair event on fault i, then a multiple fault consisting of
fault i and exactly one other fault will become a single fault. Therefore the appro-
priate amount of probability mass needs to be transferred from the multiple fault
value pMF(s) to the single-fault values pϕ(s′, j) of all other faults j. The propor-
tion of pMF(s) that should be transferred to pϕ(s′, j) is given by the independent
fault state. Let probability di, j be the probability that exactly two faults, fault i and
fault j, are present at time t given the distribution defined by the combined state s
where Nt >1. When there are exactly two faults in this distribution, then Φt =−1
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and Nt = 2.

di, j = Pr( f t
i , f t

j ,ϕ
t
−1,N

t = 2|Nt >1)

= Pr(ϕ t
−1|Nt >1)Pr( f̃ t

i , f̃ t
j ,N

t =2|Nt >1)

= Pr(ϕ t
−1|Nt >1)

Pr( f̃ t
i )Pr( f̃ t

j)∏
k∈IF\{i, j}

Pr(¬ f̃ t
k)

Pr(Nt >1)

= pMF(s)
pf(s, i)pf(s, j)Pr(Nt =0)

(1− pf(s, i))(1− pf(s, j))Pr(Nt >1)
.

This probability is then added to the single fault probability of fault j in the next
state

pϕ(s′, j) =

{
0 if j = i

pϕ(s, j)+di, j if j 6= i

and removed from the multiple fault probability:

pMF(s′) = pMF(s)−∑
j∈IF\{i}

di, j.

If no fault or only fault i is present at time t then we have no faults at time t+1:

pNF(s′) = pNF(s)+ pϕ(s, i).

The single fault symptom-cause probability ps|ϕ(s′, j,k) for each unrepaired
fault j ∈ IF \{i} and symptom k ∈ IS| j also needs to be updated. This probability
is the probability of having the symptom cause and the single fault j plus the prob-
ability of having the symptom cause and the double fault i and j in the previous
time step:

Pr(st+1
j,k ,ϕ t+1

j |Nt >1) = Pr(st
j,k|ϕ t

j)Pr(ϕ t
j)

+Pr(s̃t
j,k| f̃ t

j)Pr( f t
i , f t

j ,ϕ
t
−1,N

t =2|Nt >1)

thus

ps|ϕ(s′, j,k) =
ps|ϕ(s, j,k)pϕ(s, j)+ ps|f(s, j,k)di, j

pϕ(s, j)+di, j
.

Probability mass is properly transferred from the multiple fault case to the sin-
gle fault case which makes the repair transition exact in the combined model.
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Observation Events When e is an observation event on observation k with out-
come v we need to know Pr(Ot

k=v|ϕi,Nt > 0) for all i ∈ IF∪{−1,0} and Pr(Ot
k=

v,st
i, j|ϕi,Nt > 0) for all i ∈ IF, j ∈ IS|i in order to compute

Pr(e|s) = Pr(Ot
k =v|Nt >1)

= ∑
l∈IF∪{−1,0}

Pr(Ot
k =v|ϕ t

l ,N
t >1)Pr(ϕ t

l |Nt >1)

pNF(s′) = Pr(ϕ t
0|Ot

k =v,Nt >1)

=
Pr(Ot

k =v|ϕ t
0,N

t >1)Pr(ϕ t
0|Nt >1)

Pr(Ot
k =v|Nt >1)

pϕ(s′, i) = Pr(ϕ t
i |Ot

k =v,Nt >1)

=
Pr(Ot

k =v|ϕ t
i ,N

t >1)Pr(ϕ t
i |Nt >1)

Pr(Ot
k =v|Nt >1)

pMF(s′) = Pr(ϕ t
−1|Ot

k =v,Nt >1)

=
Pr(Ot

k =v|ϕ t
−1,N

t >1)Pr(ϕ t
−1|Nt >1)

Pr(Ot
k =v|Nt >1)

ps|ϕ(s′, i, j) = Pr(st
i, j|ϕ t

i ,O
t
k =v,Nt >1)

=
Pr(Ot

k =v,st
i, j|ϕ t

i ,N
t >1)

Pr(Ot
k =v|ϕ t

i ,Nt >1)

for all i ∈ IF, j ∈ IS|i.
For the no fault and single fault case (when i≥ 0), the desired probabilities

Pr(Ot
k =v|ϕi,Nt >0) = Pr(Ok =v|ϕi)

Pr(Ot
k =v,st

i, j|ϕi,Nt >0) = Pr(Ok =v,si, j|ϕi)

can be computed as previously described for the single fault model.
For the multiple fault case we need to formulate the probability Pr(Ot

k=v|ϕ t
−1,

Nt >1) in terms of the probabilities Pr(Ot
k=v|ϕ t

−1,N
t =0), Pr(Ot

k=v| fi,ϕ
t
−1,N

t =

1), and Pr(Ot
k=v|ϕ t

−1) which can be computed as before using the single fault and
independent fault models respectively:

Pr(Ot
k =v|ϕ t

−1,N
t >1) =

Pr(Nt >1|Ot
k =v,ϕ t

−1)Pr(Ot
k =v|ϕ t

−1)

Pr(Nt >1|ϕ t
−1)

=
Pr(Ot

k=v|ϕ t
−1)−Pr(Ot

k=v,Nt=0|ϕ t
−1)−Pr(Ot

k=v,Nt=1|ϕ t
−1)

Pr(Nt >1)

244



7. Parameter Learning

t 0 1 2 3 4

Pr( f t
3|e1:t) 1.0×10−5 9.1×10−4 0.33 2.4×10−3 2.4×10−3

Pr( f t
4|e1:t) 1.0×10−5 9.1×10−4 0.34 2.4×10−3 2.4×10−3

Pr( f t
5|e1:t) 1.0×10−5 9.1×10−4 0.33 1.0 0

Pr( f t
6|e1:t) 1.0×10−5 9.1×10−4 4.6×10−6 3.8×10−5 0

Pr(ot
11|e1:t) 2.9×10−5 2.6×10−3 1.0 1.0 4.0×10−3

Pr(ot
12|e1:t) 2.9×10−5 1.7×10−3 0.66 1.0 2.4×10−5

Pr(ot
13|e1:t) 2.4×10−5 1.3×10−3 0.17 1.0 1.0×10−5

Table 5: The estimated conditional probabilities of selected variables in the small
example after events e1:t = e1, . . . ,et computed using the combined model.

where

Pr(Ot
k =v,Nt =0|ϕ t

−1) = Pr(Ot
k =v|ϕ t

−1,N
t =0)Pr(Nt =0)

Pr(Ot
k =v,Nt =1|ϕ t

−1)

= ∑
i∈IF

Pr(Ot
k =v| f t

i ,ϕ
t
−1,N

t =1)Pr( f t
i ,N

t =1|ϕ t
−1)

= ∑
i∈IF

Pr(Ot
k =v| f t

i ,ϕ
t
−1,N

t =1)
Pr(Nt =0)Pr( f t

i |ϕ t
−1)

Pr(¬ f t
i |ϕ t
−1)

Given the distribution modeled by s, the observation transition in the com-
bined model is exact with regard to the observation outcome probability and the
marginals of the fault and symptom-cause probabilities. It can be computed in a
linear number of no fault and single fault inferences and one independent fault in-
ference which, when the Quickscore Variant algorithm is applicable, is linear in
the number of faults.

Example 4. Table 5 shows the marginalized fault and observation probabilities for
the small example for the same sequence of events as in the example in Section 5.7.
When the combined model is used, the error on faults 3 and 4 in the independent
model is avoided. Also, unlike the single fault model, the underestimation of the
less likely faults is avoided.

7 Parameter Learning
We use a Bayesian learning approach to learn the model parameters θ which are
considered to be random variables. The expert knowledge defines a prior distribu-
tion p(θ), and then we estimate the expected value of the parameters given data y
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collected from the troubleshooting process:

E(θ |y) =
∫

θ Pr(y|θ)p(θ)dθ .

The more data that is available, the less important the prior distribution will be
for the posterior distribution. We want the learning process to be tractable and
modularizable so that data from different vehicles can be used to learn parameters
for shared components. We must also tolerate that the data can be incomplete.
The parameters we will learn are the failure rates λfail,i and manufacturing fault
probabilities pfail,i for all faults i ∈ IF, and the symptom-cause probabilities pi, j

for all symptoms j ∈ IS|i.

7.1 Prior Distributions

We will use Gamma distributions to model priors for the failure rates and Beta
distributions for the other parameters because these have the same support as the
domains of the parameters we want to learn and have a physical interpretation. Let

λfail,i ∼ Gamma(αfail,i,βfail,i)

pfail,i ∼ Beta(αman,i,βman,i)

pi, j ∼ Beta(αi, j,βi, j)

for i ∈ IF, j ∈ IS| j where the hyperparameters can be interpreted as follows: on
average αfail,i faults of type i will occur in βfail,i million kilometers of operation,
on average αman,i out of αman,i + βman,i components have a manufacturing fault
of type i, on average αi, j out of αi, j + βi, j faults of type i have symptom j. The
confidence in the expert knowledge is higher the higher the β -values are.

7.2 Data

Data for learning parameters can be generated from using the decision support sys-
tem or be collected from other sources. In this work we will use warranty data
to parametrize the models. The warranty data is collected from the claims that
workshops write in order to get a refund for repairs made during the warranty pe-
riod. In the claim, the workshop describes the fault and which observations were
made at the time. The claim is submitted to the vehicle manufacturer together with
the faulty component. This component may then be analyzed by the manufacturer
in a laboratory to determine which fault the component has and why it occurred.
However, the laboratory analyzes are not always performed and the reports of ob-
servations are sometimes incomplete.
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Each data sample y[i] ∈ y consists of a vehicle identifier v[i]id , the mileage when
the fault was reported m[i], an identifier c[i]id for the faulty component, an identifier
f [i]id for the fault on the component (if the information is missing, f [i]id = 0), a flag
f [i]man specifying whether the claimed fault is a manufacturing fault (only used if
the fault is known), and a list of observations o[i] made at the time (fault codes
and other symptoms). Also associated with the data is the mileage of each vehicle
contributing to the data at the end of the warranty period and which components
each of these vehicles has.

For each fault i∈ IF| j of component j ∈ IC we extract the number of data sam-
ples nman,i where the fault occurred as a manufacturing fault, the number of data
samples nfail,i where the fault occurred as a non-manufacturing fault, the number of
data samples nmiss, j for which fault information is missing, the number of vehicles
ncomp, j that have the component in the population from which data is collected, and
the total mileage nmil, j of all vehicles that have the component in this population.

7.3 Learning Fault Probabilities and Failure Rates

In reality a fault is not necessarily detected as soon as it occurs and may there-
fore not be reported in the data. However, we will assume that if a vehicle in the
population has a manufacturing fault it will be represented in the data and that if
a non-manufacturing fault occurs on a vehicle during the warranty period it will
also be represented in the data. The data format does not support multiple faults.
In the rare case this happens, we would need to insert one claim for each fault in
the data. If the assumptions are true and the data is complete, i.e. all claims are
analyzed, then the posterior distribution of the fault probabilities and failure rates
can be computed in closed form independently for each fault because the priors
and posteriors are conjugate.

Lemma 1 (Fault Probability Posterior - All Claims Analyzed). Let y∗ be data
where the cause of all claims are analyzed. Then for each fault i ∈ IF| j of compo-
nent j ∈ IC the expected values of λfail,i and pfail,i given y∗ is:

E(pfail,i|y∗) =
αman,i +n∗man,i

αman,i +βman,i +ncomp, j
(42)

E(λfail,i|y∗) =
αfail,i +n∗fail,i
βfail,i +nmil, j

(43)

where n∗man,i and n∗fail,i are the actual number of manufacturing and non-manufact-
uring faults of type i ∈ IF as seen in the laboratory.

Proof. See A.3.
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Typically not all claims are analyzed and therefore we cannot use Lemma 1
directly. However, to obtain the expected value of the posteriors it is sufficient to
know the expected values of n∗man,i and n∗fail,i given the data.

Lemma 2 (Fault Probability Posterior - Incomplete Analysis). For each i ∈ IF| j,
j ∈ IC, the expected values

E(pfail,i|y) =
αfail,i +E(n∗man,i|y)

αman,i +βman,i +ncomp, j

E(λfail,i|y) =
αfail,i +E(n∗fail,i|y)

βfail,i +nmil, j
.

Proof. The result follows directly from Lemma 1 because Eqs. (42) and (43) are
linear with regard to n∗man,i and n∗fail,i.

Unfortunately, there is no simple and modular closed-form expression for the
expectations E(n∗man,i|y) and E(n∗fail,i|y) because the probability that an unanalyzed
sample is of a certain fault is not independent of the observations made at the same
time which causes a dependency to the symptom-cause probabilities and observa-
tion parameters.

We could estimate the parameters based solely on the analyzed cases. Then
we must reduce the total mileage and number of components proportionally to the
fraction of analyzed components to compensate for faults that did not occur, but
if they would have, they would not have been analyzed anyway. We estimate the
probability of analyzing a claim on component j as:

pan, j =

∑
i∈IF| j

nman,i +nfail,i

nmiss, j + ∑
i∈IF| j

nman,i +nfail,i
.

Then the compensated number of vehicles in the population with component j is
ñcomp, j = ncomp, j pan, j and the compensated total mileage of the vehicles in the
population with component j is ñmil, j = nmil, j pan, j. Let ỹ = {y[i] ∈ y : f [i]id 6= 0} be
the subset of y where all samples are analyzed. Then we can use Lemma 1 to get
estimates based only on the analyzed cases:

p̃fail,i = E(pfail,i|ỹ) =
αman,i +nman,i

αman,i +βman,i +ncomp, j pan, j
(44)

λ̃fail,i = E(pfail,i|ỹ) =
αfail,i +nfail,i

βfail,i +nmil, j pan, j
. (45)

However, we can get better estimates if we use knowledge of the unanalyzed
claims on a component to learn the fault probabilities of that component in relation
to other components. This can for example be done by using the learned parameters
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p̃fail,i and λ̃fail,i to estimate the expected values of nman,i and nfail,i for all i ∈ IF| j
and then compute the posterior expected values using Lemma 2. Let the estimates
of the expected values E(n∗man,i|y) and E(n∗fail,i|y) be

n̂man,i = nman,i +nmiss, j
ncomp, j p̃fail,i

∑
k∈IF| j

ncomp, j p̃fail,k +nmil, jλ̃fail,k

n̂fail,i = nfail,i +nmiss, j
nmil, jλ̃fail,i

∑
k∈IF| j

ncomp, j p̃fail,k +nmil, jλ̃fail,k

then using Lemma 2, we can estimate the posteriors as

p̂fail,i =
αfail,i + n̂man,i

αman,i +βman,i +ncomp, j
(46)

λ̂fail,i =
αfail,i + n̂fail,i
βfail,i +nmil, j

. (47)

When there are few analyzed faults we assume that the unanalyzed faults are dis-
tributed like the prior and when there are many analyzed faults we rely more on
the data. In difference to Eqs. (44) and (45), the estimates Eqs. (46) and (47) are
capable of learning from unanalyzed samples. A data sample that has not been
analyzed contributes to learning the relative failure probabilities between faults on
different components, but it does not affect the relative failure probabilities of the
faults on the same component. Also, as the size of the data grows, these approxi-
mate parameter posteriors will converge toward the true parameter values.

Theorem 3 (Convergence of Approximate Fault Probability Posteriors). For all
j ∈ IC, i ∈ IF| j, if p∗fail,i and λ ∗fail,i are the true manufacturing fault probabilities
and failure rates, then as the number of vehicles having the component j that are
contributing to the data grows, the estimates p̂fail,i and λ̂fail,i as given by Eqs. (46)
and (47) converge to p∗fail,i and λ ∗fail,i:

lim
ncomp, j→∞

p̂fail,i = p∗fail,i,

lim
ncomp, j→∞

λ̂fail,i = λ
∗
fail,i.

Proof. See A.4

Example 5 (Learning Fault Probabilities). Consider the example from Section 5.7.
Let the priors be

αman,i = 0.1 βman,i = 9999.9 αfail,i = 20 βfail,i = 2000

for i = 3,4,5,6. Suppose we have data y according to the following tables for
components and faults respectively:
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i ncomp,i nmil,i nmiss,i

1 100000 20000 0
2 100000 20000 2727

i nman,i nfail,i

3 20 1000
4 10 2000
5 2 100
6 1 200

The only difference between the priors and data for component 1, with faults 3 and
4, and those for component 2, with faults 5 and 6, is that for component 2 only 10
% of all samples are analyzed (303 out of 303+ 2727). Proportionally, the data
for both components is identical. Regardless which method is used, the posterior
parameter values for the faults on component 1 are identical:

p̃fail,3 = 1.8×10−4 p̂fail,3 = 1.8×10−4

p̃fail,4 = 9.2×10−4 p̂fail,4 = 9.2×10−5

λ̃fail,3 = 0.046×10−4 λ̂fail,3 = 0.046×10−4

λ̃fail,4 = 0.092×10−4 λ̂fail,4 = 0.092×10−5

However when only 10 % of the samples are analyzed, the posterior using the
second method is closer to the posterior when all samples are analyzed:

p̃fail,5 = 1.1×10−4 p̂fail,5 = 1.7×10−4

p̃fail,6 = 5.5×10−5 p̂fail,6 = 8.9×10−5

λ̃fail,5 = 0.030×10−4 λ̂fail,5 = 0.049×10−4

λ̃fail,6 = 0.055×10−5 λ̂fail,6 = 0.089×10−5

7.4 Symptom-Cause Probabilities

There is no simple closed-form expression for the expected value of the symptom-
cause probabilities because the symptom variables are hidden. If we fix the obser-
vation parameters p+,k, p−,k for all k ∈ IO we can express the posterior distribution
of the analyzed data given the symptom-cause probabilities of a fault i ∈ IF that is
independent of all other faults.

Theorem 4 (Symptom-Cause Posterior). Let ỹ = {y[i] ∈ y : f [i]id 6= 0} be a subset
of y where all samples are analyzed, and let Iy(i) be the indexes of analyzed sam-
ples in y where fault i is reported. Then the posterior distribution of pi, j for all
symptoms j ∈ IS|i given ỹ is

Pr(pi, j∀ j∈IS|i|ỹ) ∝

∏
m∈Iy(i)

Pr(o[m]| f t
i ,¬f t

n∀n∈IF\{i}, pi, j∀ j∈IS|i)∏
k∈IS|i

p(pi,k).
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Proof. See A.5

If we can compute the density of the posterior distribution we can estimate the
expected values of pi, j for all i∈ IF, j ∈ IS|i by drawing samples from the distribu-
tion using Monte Carlo methods or finding its mode using a numerical optimizer
to compute the maximum à posteriori (MAP). Regardless of which method we
choose we must be able to efficiently compute the posterior density. The density
of the prior has a closed form expression

p(pi, j) ∝ p
αi, j−1
i, j (1− pi, j)

βi, j−1

and we can efficiently compute an approximation of the likelihood

Pr(o[m]| f t
i ,¬f t

n∀n∈IF\{i}, pi, j∀ j∈IS|i)

using the single fault method described in Section 6.2. Computing the MAP is
computationally easier than using Monte-Carlo methods, but there is a risk of nu-
merical instability when αi, j < 1 or βi, j < 1 for some i ∈ IF, j ∈ IS|i.

In general, convergence is not guaranteed as the data set grows. The symptom-
cause probabilities of symptoms that that are indistinguishable given the observa-
tions cannot be learned, for example when a fault can cause two symptoms that are
related to the same set of observations. Such a situation can be avoided by mod-
eling such symptoms as the same since they are indistinguishable to an external
observer.

8 Diagnostic Model for Application Example
We have developed the diagnostic model for the application example from Sec-
tion 2 together with domain experts. It has 19 components, 47 faults, 86 symp-
toms, and 89 observations. There are 527 symptom cause variables and 15 logical
variables. Figure 7 shows the topology of the model for the rail pressure sensor
containing 32 of the 783 variables.

We have little prior knowledge of manufacturing fault probabilities and failure
rates of the individual faults in the model. These are therefore all given identical
parameter values typical for any type of fault. The manufacturing fault probabilities
are set to 1 manufacturing fault of each type per million parts and the failure rates
are set to 1 failure of each type per 100 million km.

The rates of change for symptom causes are also difficult for an expert to esti-
mate and therefore these are the same for all symptom-causes. With a rate of ch-
ange of 1 change per 100 km, the probability that a symptom cause with probability
parameter p follows a previously observed distribution rather than Bernoulli(p) is
reduced by 50 % for each 70 km. This means that an observation of a symptom is
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Figure 7: The model topology for the rail pressure sensor in the application exam-
ple.
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highly dependent of other observations of that symptom that have been made dur-
ing the same troubleshooting session, but almost completely independent of such
observations that have been made during for example the previous vehicle service
50000 km ago.

Of the observations, 36 variables correspond to DTCs that can be generated by
the on-board diagnostic system. A DTC is generated by the on-board diagnostic
system when one or more internal tests are triggered. Each such internal test is
modeled with a symptom variable and joined together with a logical variable. A
symptom-cause variable is added for each fault the test is sensitive for. DTCs
for electrical faults are very reliable and are given a symptom-cause probability
of 0.99999. For other DTCs, the symptom-cause probabilities are given a value
between 0.1 and 0.9 by an expert. By design, the false positive probabilities for
DTCs are rare and therefore the false positive probability parameters have very
small values (10−9–10−5). The false negative probability is accounted for by the
symptom cause probabilities so these values are also set low (10−9–10−5). Most
DTCs are sensitive for very few faults. However some, like the DTC for low fuel
rail pressure, are sensitive for almost every fault on the fuel injection system.

There are 9 observations for symptoms that a driver can experience. Some of
these are vague and can be caused by many faults, e.g. "high fuel consumption" and
"loss of function" which makes it difficult for an expert to correctly set parameters.
However, these symptoms are often reported in the warranty claims and can be
learned from that source instead. Other symptoms corresponding to warning lights
being lit and torque limitations being active are consequences of the actions of the
on-board diagnostic system. For these symptoms, the parameters can be set with a
much higher confidence.

The remaining 44 observations are for tests that can be run in the workshop.
The parameters for these cannot be learned from the warranty data, but since the
workshop tests are developed by the experts themselves they can set parameter
values with great confidence.

The model was validated by simulating the instructions from the troubleshoot-
ing guide in the workshop manual used by the mechanics and comparing whether
the output of the diagnoser agrees with the information found in the manual. For
each possible sequence of tests proposed in the manual, the diagnoser assigns the
highest probabilities to the components listed as possible explanations in the man-
ual.

9 Experimental Evaluation
To evaluate the performance of the diagnostic framework three series of experi-
ments have been conducted. The first series of experiments has the purpose of
evaluating the different inference algorithms in terms of computation time and pre-
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cision. The second series of experiments evaluates how well we can learn the
model parameters from warranty data. The third series of experiments evaluates
how sensitive the framework is to errors in the model parameters.

All implementations were made in Java and run on an Intel Core i7-4800MQ
processor with 16 GB of RAM.

9.1 Diagnostic Inference

To evaluate which of the described inference algorithms is the best for our applica-
tion we have conducted a series of four experiments using random models.

The random models are generated using parameters n, m, and p as follow-
ing. First n fault variables and m symptom variables are created. For each fault-
symptom pair, a symptom-cause variable is created with probability p. For each
symptom variable, an observation variable is created. For each fault i, symptom j,
and observation k, parameter values are drawn as pfail,i ∼ Beta(2,10000), λfail,i ∼
Gamma(2,1000), pi, j∼Beta(10,2), λi, j∼Gamma(10000,2), p+,k∼Beta(2,1000),
and p−,k ∼ Beta(2,1000).

Four different inference methods are evaluated: exact inference, Boyen-Koller
(BK) using the Quickscore Variant algorithm, the single fault model using the
method described in Section 6.2, and the combined model using the method de-
scribed in Section 6.3.

Small Models – Single Fault

In the first experiment we measure the average absolute error ε in the logit of the
marginal fault probability distributions after a sequence of events e:

ε =
1
n

n

∑
i=1

∣∣∣∣ln
pi

1− pi
− ln

p∗i
1− p∗i

∣∣∣∣

where p1, . . . , pn are the marginal fault probabilities of an approximate inference
method and p∗1, . . . , p∗n are the marginal fault probabilities of the exact inference.
By transforming the marginal probabilities into logits, a given absolute error on a
value close to 0 or 1 has a larger impact on ε than the same absolute error on a
value close to 0.5: Erroneously estimating a fault probability to be 1 % when it
should be 11 % is considered more severe than estimating it to be 60 % when it
should be 70 %. We also measure the average absolute error of the untransformed
marginal fault probabilities:

δ =
1
n

n

∑
i=1
|pi− p∗i |
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n texact tsingle tBK tcomb εsingle εBK εcomb δsingle δBK δcomb

2 <10−3 <10−3 <10−3 <10−3 1.8 3.6 0.030 0.11 0.28 0.0040
3 0.043 <10−3 <10−3 <10−3 4.9 1.9 0.68 0.052 0.11 0.022
4 4.3 <10−3 <10−3 <10−3 6.6 1.3 0.94 0.026 0.056 0.013
5 520 <10−3 <10−3 <10−3 7.5 0.75 0.85 0.016 0.034 0.0090

Table 6: Comparing algorithms with computation time and error in posterior fault
probabilities for the first experiment with a single fault.

The sequence of events is set to mimic a typical troubleshooting session which
begins with observation actions with the purpose of isolating the fault, continues
with repair actions, and concludes with further observations to verify that the prob-
lem is solved. To generate the sequence of events, we first draw a random state s
with at least one fault after 10000 km of operation. Then two observation variables
are randomly selected with uniform probability and outcomes for these observa-
tions are drawn by simulating the system response in state s. Then an observation
of a fault present on s is drawn followed by a repair event on that fault and one
more random observation. Between each pair of events a 100-km operation event
is inserted. We set m = n and p = 2/n and for each n = 2,3,4,5 we repeated the
experiment 100 times.

Averages of the computation time ti and errors εi, δi are reported for each
method i ∈ {exact,single,BK,combined} in Table 6. We note that the computa-
tion time for exact inference grows exponentially while the computation times for
approximate inference is small. The logit error is large for the single fault method.
This is because it grossly underestimates the probability of other faults after the
first repair. Both the BK method and the combined method have smaller logit er-
ror, but the BK method is weaker in this aspect for smaller model sizes. For the
absolute errors, it is the single fault and combined methods that are the strongest.
This is because the problem with the independence assumptions as demonstrated
in Example 2 can be avoided.

Small Models – Multiple Faults

The second experiment is set up in the same way as the first except the random state
s is drawn so that two faults are present. The averages of the computation time ti
and errors εi, δi are reported for each method i ∈ {exact,single,BK,combined} in
Table 7. Contrary to intuition, the logit error decreases for the single-fault method
compared to the case where there was only one fault. This is because it explains
anomalous observations from the secondary fault with a new fault occurring after
the first repair. However, except for when n = 2, the logit error is still significantly
larger than for the other methods. Compared to the combined method, the BK-
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n texact tsingle tBK tcomb εsingle εBK εcomb δsingle δBK δcomb

2 <10−3 <10−3 <10−3 <10−3 0.86 4.3 0.030 0.17 0.32 0.0040
3 0.043 <10−3 <10−3 <10−3 3.1 2.2 1.2 0.16 0.16 0.081
4 4.3 <10−3 <10−3 <10−3 4.9 1.7 1.3 0.11 0.11 0.050
5 510 <10−3 <10−3 <10−3 5.7 1.2 1.4 0.072 0.065 0.044

Table 7: Comparing algorithms with computation time and error in posterior fault
probabilities for the second experiment with two faults.

method has both large logit and absolute errors for the smaller model sizes, but
the effect seems to diminish with model size. The logit and absolute errors of
the combined method are never far from the best of the single fault method and
BK-method. Like the BK-method it is able to recognize the possibility of multiple
faults, but after the repair, double faults that used to include the repaired fault
become single faults for which it can update the probabilities more precisely than
the BK-method.

Larger Models – Single Fault

In the third experiment we use larger models with up to 1000 fault variables. We
simulate the vehicle with a randomly drawn single fault. We compare each infer-
ence method i by its estimates of the probability γi of having the correct fault after
making several observations and its estimates of the probability ηi of having no
faults after inspecting and repairing the fault and making further observations. Be-
cause we cannot make exact inference on models of this size, we do not know what
the correct values of the estimates are. However, we can expect that after the first
series of observations the correct fault shows symptoms that makes it a probable
candidate with a significant probability (>0.2) and that after the fault is inspected
and repaired the true probability of having no faults should be close to 1. We also
want to see that the methods scale well in computation time.

The experiment is set up as follows. After 10000 km of operation a random
state with a single fault is selected to simulate the responses of subsequent observa-
tions. Then 3n/8 observation variables are drawn uniformly and observed in inter-
vals of 100 km. After making these observations we compute and record γi. Then
the fault is inspected and repaired and n/8 more random observations are made in
intervals of 100 km before the estimate ηi is computed and recorded. We repeated
this procedure 100 times using models generated with n=m= 10,20,50,100,200,
500,1000 and p = 5/n and using the XPI model.

The averages of the computation time ti and the estimated probabilities γi and
ηi are reported for each method i in Table 8. All methods point out the correct fault
before repair with approximately equal probability. The single fault method gives
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n tsingle tBK tcomb γsingle γBK γcomb ηsingle ηBK ηcomb

10 <10−3 <10−3 <10−3 0.27 0.27 0.27 1.0 0.88 1.0
20 <10−3 <10−3 <10−3 0.40 0.37 0.41 1.0 0.88 1.0
50 0.0018 0.0022 0.0049 0.46 0.45 0.46 1.0 0.87 1.0
100 0.0074 0.0096 0.019 0.44 0.44 0.45 1.0 0.90 0.97
200 0.031 0.039 0.080 0.49 0.46 0.49 1.0 0.88 0.96
500 0.22 0.28 0.57 0.46 0.46 0.47 0.99 0.80 0.89
1000 0.90 1.1 2.3 0.41 0.43 0.45 0.92 0.69 0.74
XPI 0.0055 0.0065 0.013 0.36 0.36 0.36 1.0 0.78 0.99

Table 8: Comparing algorithms for larger models.

a high estimate of the no-fault probability for all cases. The other methods estimate
this probability to be lower which is assumed to be incorrect. The combined model
behaves more like the BK method the more faults there are in the model because
the probability of multiple faults increases. The behavior of the random models is
consistent with that of the XPI model. The computation time grows quadratically
with n because the computation time of each event is linear in n and the number of
events grows linearly with n. Most importantly, for large n, the computation time
is still small. The combined method has a computation time that is about twice that
of the other methods.

Larger Models – Multiple Faults

The fourth experiment is set up in the same way as the third except that we select a
state with two faults just as we did in the second experiment. After the first series
of observations we record the probability γi of having either of the two faults. Then
we inspect and repair any one of the two faults and make further observations and
record the probability ηi of having the other unrepaired fault. Again we do not
know the exact values but we expect that the two faults show symptoms that make
them probable candidates and that the unrepaired fault should remain probable
after the first fault is repaired.

The averages of the computation time ti and probabilities γi and ηi are reported
for each method i in Table 9. In this experiment, the single fault method estimates
the probability of the second fault to be much lower than the other methods which
is assumed to be incorrect. The observations are inconsistent with a single fault
and therefore the combined method gives estimates ηcomb that lie close to ηBK.
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n tsingle tBK tcomb γsingle γBK γcomb ηsingle ηBK ηcomb

10 <10−3 <10−3 <10−3 0.36 0.43 0.34 0.044 0.39 0.32
20 <10−3 <10−3 <10−3 0.50 0.53 0.52 0.038 0.40 0.33
50 0.0016 0.0022 0.0042 0.61 0.64 0.63 0.051 0.51 0.44
100 0.0067 0.0084 0.017 0.68 0.72 0.71 0.060 0.60 0.55
200 0.028 0.035 0.072 0.65 0.67 0.67 0.047 0.53 0.51
500 0.2 0.26 0.54 0.63 0.63 0.64 0.062 0.51 0.50
1000 0.93 1.2 2.4 0.75 0.76 0.77 0.063 0.48 0.48
XPI 0.0057 0.0069 0.014 0.51 0.63 0.59 0.14 0.51 0.50

Table 9: Comparing algorithms for larger models with double fault.

9.2 Parameter Learning

To evaluate the framework’s ability to learn parameters from warranty data we
have conducted a series of experiments where data generated from a reference
model is used to learn a model with offset prior parameters. The data is generated
for vehicle populations of different sizes and the average differences between the
posterior parameter values and the parameters in the reference model are recorded.

In this experiment, the reference model represents the true behavior of faults
on the vehicles. It has 100 fault variables and 34 component variables and it is
generated randomly using the same parameters as for the experiment described
in Section 9.1. The reference model is used to generate sets of warranty data
for simulated vehicle populations of 100,200,500,1000, . . . ,106 vehicles. When
a component has been in use a couple of years, the number of vehicles contributing
to the data for this component is typically in the order of 100000 vehicles. For
new or rare components this can be smaller, but a vehicle population greater than
1000000 vehicles is unlikely. The mileage in millions of km during the warranty
year of each vehicle is simulated by drawing it from the exponential distribution
with mean 0.2. A mileage of 0.2 million km per year is a typical value for trucks
operating in long-haulage.

The prior model represents the model created by the experts before any param-
eter learning using data has been performed. To simulate possible errors introduced
by the experts, the prior model is created from a copy of the reference model where
the parameter values are randomly offset. For parameter values θ that are proba-
bilities, a small difference close to 0 or 1 has a greater impact on the characteristics
of the model than the same difference near 0.5. Because of this, such a parame-
ter value in the reference model is first transformed using the logit transformation
logit(θ) = ln(θ/(1−θ)) before it is offset with a random value drawn from a nor-
mal distribution. Then it transformed back into a probability using the inverse of
the transformation. For parameter values θ that are rates, a small difference close
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to zero has a greater impact than at larger values. These are first transformed us-
ing the logarithm ln(θ) before offsetting them with a random values drawn from
a normal distribution. For all parameters except manufacturing fault probabilities
and failure rates a normal distribution with variance 4 and mean 0 is used. For
the manufacturing fault probabilities and failure rates noise is added twice. First a
normal distribution with variance 3 and mean 0 is used to draw an offset value for
each component that is added to the transformed value of the parameters associated
to that same component. Then another normally distributed offset with variance 1
and mean 0 is added independently to the transformed values of each parameter.
This is done so that the probability of any fault on a particular component in the
prior model will deviate from that in the reference model. The error in the prior
model is fairly large: The average difference between the transformed parameter
values in the prior model and the reference model will be

√
8/π ≈ 1.6. For 20 %

of the parameters the difference will be larger than 2.5. E.g. an error of +2.5 in the
transformed values implies an overestimation of a failure rate or a small probability
with a factor 12 and a probability near 0.5 as 0.92.

The priors in the prior model are set as following:

αman,i = 104 pfail,i
βman,i = 104(1− pfail,i)

αfail,i = 2000λfail,i

βfail,i = 2000

αi, j = 100pi, j

βi, j = 100(1− pi, j)

where pfail,i, λfail,i, and pi, j are the parameter values in the prior model. We can
interpret the meaning of these priors as corresponding to the following "hypothet-
ical data": We have seen 10000 vehicles and αman,i of those had fault i initially.
The vehicles have rolled 2000 million km (10000 vehicles driving 0.2 million km
per year) and there were αfail,i occurrences of fault i. In 100 occurrences of fault i,
symptom j was present αi, j times.

For each vehicle population size, we learn a posterior model from the prior
model and the corresponding data set by applying the learning method described
in Section 7. The symptom-cause probabilities are learned by finding the maximum
posterior using the optimizer BOBYQA as implemented in the Apache Commons
Math library version 3.1.1 [1]. In Figure 8 we compare the posterior models with
the reference model by showing the mean errors on the transformed parameter
values when vehicle population size n is varied from 100 to 1000000. At n = 100
the parameter values have not yet started to converge and the mean errors of the
transformed values are approximately 1.6. This is a fairly large error. E.g. an error
of +1.6 means for the untransformed values that a small probability or a failure
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rate differ between the models by a factor 5 and a probability of 0.5 in the posterior
model is 0.8 in the reference model. When n = 1000000, the mean error is below
0.5 which is much smaller. E.g. an error of +0.5 means that a small probability or
a failure rate differ between the models by only a factor 1.6 and a probability of 0.5
in the posterior model is 0.6 in the reference model. In Section 9.3 we will study
how errors of different sizes affect the performance of diagnosis.

We see in the plot that the posterior error does not begin to converge until the
population size is greater than 10000. This is because the priors are selected to
correspond to 10000 vehicles of "hypothetical data". This appears to be a good
trade-off. Stronger priors would have made convergence even slower. A weaker
prior can cause the posterior parameter values to be even more erroneous than the
prior parameter values when the population size is small. E.g. when the expected
number of a fault occurrences of a particular type in the data is smaller than 1 it
is likely that the fault does not appear at all in the data with the consequence that
the failure rate of this fault becomes underestimated. If an unlikely fault instead do
appear in the data, its failure rate becomes overestimated. Also, symptom-cause
probabilities that are close to 1 tend to be overestimated because the data only
consists of observations supporting the positive case. Likewise holds for symptom-
cause probabilities close to 0 which tend to be underestimated. We see this effect
in Figure 8 for the symptom-cause probabilities when the vehicle population size
is small.

In this experiment the failure rates and manufacturing fault probabilities are
the fastest to converge, while the symptom cause probabilities converge slower.
Therefore it is important that the experts put more effort in setting the priors for
these parameters.

The same experiment with generated data has also been conducted for the XPI
model. The results shown in Figure 9 are consistent with those in Figure 8. The
generated data had proportionally very few cases of manufacturing faults hence the
slow learning for those parameters.

To see the effect of not determining the exact fault on a component, we varied
the experiment by simulating that only one tenth of all faults are analyzed. The
results shown in Figure 10 indicate that we can still be able to learn the parameters
but the learning is slower. For symptom-cause probabilities, we require data from a
ten times larger population to achieve the same error because unanalyzed data en-
tries do not contribute to learning. For manufacturing fault probabilities and failure
rates, the convergence is initially unaffected by the missing data (error greater than
one), but full convergence is slower. This is because we can learn the mean fault
probabilities and failure rates of all faults on the component using the unanalyzed
data, but we require an equal amount of analyzed data to learn the individual fault
probabilities and failure rates of each fault.
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Figure 8: Learning of parameters using simulated warranty data on a random model
with 100 faults.
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Figure 9: Learning of parameters using simulated warranty data on the XPI model.
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Figure 10: Learning of parameters using simulated warranty data on a random
model with 100 faults when only one tenth of all faults are analyzed.

9.3 Modeling Errors

To evaluate the effect of modeling errors on the parameters, an experiment is con-
ducted where random noise is added to the parameter values of random models and
the difference in the posterior marginal distribution is measured. In this experiment
we have varied the variance v of the random noise. For each compared variance
level v, 100 reference models with 100 fault variables are generated in the same
way as in the previous experiment. Then 7 noisy models are generated for each of
these reference models in the same way as we generated the prior model from the
reference model in the previous experiment. One noisy model has noise added to
all parameters ε̄all, and six have noise added to only one parameter type at a time:
the manufacturing fault probabilities ε̄p0 , failure rates ε̄λ f , symptom-cause prob-
abilities ε̄ps , symptom-cause rates ε̄λs , false positive probabilities ε̄p+ , and false
negative probabilities ε̄p− .

Table 10 shows a comparison of the average errors in the logit transformations
of the posterior marginalized fault probabilities. We see that the average error is
approximately proportional to the standard deviation of the noise

√
v. The largest

sensitivity to errors is on the fault probability parameters and symptom-cause prob-
abilities. Fortunately these parameters are also those parameters for which our ini-
tial estimates can best be improved using statistical data. Hence we become less
sensitive to errors made by the experts in the prior estimates.

Table 11 shows the results for the same experiment when we instead look at the
averages of the largest absolute errors in the posterior marginal fault probabilities
for each model. Only the errors in the more likely faults in the posterior have
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v
√

v ε̄all ε̄p0 ε̄λ f ε̄ps ε̄λs ε̄p+ ε̄p−

0.1 0.31 0.28 0.11 0.16 0.11 0.005 0.017 0.001
0.2 0.45 0.39 0.16 0.23 0.16 0.007 0.024 0.002
0.50 0.71 0.63 0.26 0.37 0.24 0.011 0.037 0.003
1 1 0.90 0.38 0.52 0.34 0.017 0.051 0.005
2 1.4 1.3 0.56 0.74 0.46 0.026 0.070 0.009
5 2.2 2.0 0.93 1.2 0.67 0.043 0.11 0.030
10 3.2 2.8 1.3 1.8 0.85 0.056 0.16 0.084
20 4.5 3.9 1.9 2.6 1.0 0.069 0.22 0.21

Table 10: Average logit error in the posterior marginal fault probabilities when
normal noise with variance v and mean 0 is added to 100 random models with 100
faults.

v
√

v ε̄all ε̄p0 ε̄λ f ε̄ps ε̄λs ε̄p+ ε̄p−

0.1 0.31 0.011 0.007 0.001 0.003 0.0 0.002 3.2×10−5

0.2 0.45 0.016 0.01 0.002 0.005 0.001 0.003 4.8×10−5

0.50 0.71 0.027 0.017 0.003 0.007 0.001 0.005 8.8×10−5

1 1 0.041 0.027 0.004 0.01 0.001 0.006 0.0
2 1.4 0.068 0.045 0.009 0.015 0.002 0.008 0.0
5 2.2 0.15 0.11 0.031 0.028 0.003 0.012 0.001
10 3.2 0.4 0.3 0.15 0.045 0.003 0.015 0.004
20 4.5 0.87 0.77 0.87 0.077 0.003 0.02 0.011

Table 11: Average largest absolute error in the posterior marginal fault probabilities
when normal noise with variance v and mean 0 is added to 100 random models with
100 faults.

impact on this measure. When the noise on the transformed parameter values has
a variance that is smaller than 5 the average largest absolute error is small. As a
comparison, the variance of the difference between the the transformed values of
the parameters in the reference model and the prior model used in Section 9.2 was
4. For the largest noise levels, the differences are however much larger because the
faults with the highest posterior probabilities are unlikely to be the same.

10 Related Work
The troubleshooting system which this diagnostic modeling framework is a part
of is unique in the way it integrates remote and workshop troubleshooting. Other
existing approaches for constructing decision support systems that emphasize min-
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imizing the expected cost of troubleshooting typically consider only the direct costs
of the actions performed in the workshop. Many of these approaches use diagnos-
tic models that are static Bayesian networks, e.g. [13, 18, 23, 25, 26, 46]. Others
use consistency-based diagnostic models augmented with probabilities, see e.g.
[4, 9, 38].

There is work in the area of condition-based and predictive maintenance that
considers both the expected repair and downtime costs over an extended period of
time. However, these methods do not consider the problem of selecting diagnostic
tests that provide indirect information of the health of the components. For example
Dieulle et al. [8] and Grall et al. [10] use statistical models to schedule the best
times for inspecting and repairing deteriorating components. Weber and Jouffe
[43] use dynamic Bayesian networks to model a deteriorating system. These are
Object Oriented Bayesian networks [17] which allows efficient modeling of large
modular systems. Neil and Marquez [24] use hybrid Bayesian networks supporting
both continuous and discrete variables where an approximate inference algorithm
is used where continuous variables are discretized dynamically.

In the area of model-based diagnosis there are methods where DBN:s are used.
Weber et al. [44] combines models of component deterioration with a model de-
scribing the relations between faults and symptoms using probabilities of having
false positive and false negative test outcomes. In difference to the method pre-
sented in this paper, this method assumes that the symptom probabilities are non-
persistent and independent between time steps. The computational issues of mak-
ing inference in larger systems are also not considered. Roychoudhury et al. [32]
use DBN:s generated from a bond-graph model describing the physical behavior
to create diagnostic models for online diagnosis. To make the inference tractable,
a factoring method is used to create independent clusters of variables by replacing
certain state variables with functions of the observed variables. It differs from our
offline event-based approach in that it is an online diagnostic method where the
time between time steps is constant and all observable variables are observed at
each time step. Pernestål et al. [29] and Pernestål et al. [30] use nsDBNs to model
an event-driven troubleshooting process similar to the process in this paper. Repair,
observation, and operation events are supported and symptom behavior can be both
persistent and non-persistent. Tractability of inference is achieved by transforming
the nsDBN into a static BN that changes structure with each event. However the
method is intended for troubleshooting in the workshop only and the presence of
faults is assumed to be constant unless repaired. To achieve the model transforma-
tion it is also required that there is at least one operation event between consecutive
repair events.
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11 Conclusion
In this paper we have presented a novel modeling framework for an off-board di-
agnostic troubleshooting system for heavy vehicles such as trucks and buses. It is
intended to be used with a planner that decides which actions to perform to trou-
bleshoot a vehicle that has problems. It selects actions with regard to both repair
and vehicle downtime costs. To function, the planner needs to be able to know
the probability of possible diagnoses given the current state of information and the
probabilities of outcomes of tentative tests. This is done by the diagnoser.

The diagnoser uses a statistical model represent dependencies between faults
and events including operation, repair of components, and observations. The ob-
servations are discrete and can be symptoms experienced by a driver or mechanic,
diagnostic test results, and output from the On-Board Diagnostic system. In the
domain, labeled data correlating faults with observations is scarce. Therefore the
diagnostic model is created manually by domain experts and then parametrized us-
ing statistical data in the form of warranty data. The modeling framework allows
the modeler to define variables for components, faults, symptoms, and observations
and the causal dependencies between these in order to get a dynamic Bayesian net-
work model of the troubleshooting process. We showed a model of a fuel injection
system that has been created in the modeling framework.

The diagnoser functions by making Bayesian inference in this network. It is not
possible to make exact inference in a model of reasonable size in reasonable time.
We demonstrated how the Boyen-Koller approximation can be used for the mod-
eling framework. This makes the time complexity of inference sufficiently small,
but in certain cases this approximation introduces intolerable errors. Because the
probability of having a single fault is many times greater than the probability of
having multiple faults, we proposed a novel inference method that can be applied
to this framework that is more precise without adding additional time complexity.
The novel inference method combines a single fault model with a multiple fault
model based on the Boyen-Koller approximation to be able to handle both single
and multiple fault cases. We showed this both theoretically and experimentally on
random diagnostic models and a model of a diesel fuel injection system.

Even though data is scarce, we want to be able to use the data we do have to
tune the model parameters provided by the expert using data. We demonstrated a
Bayesian learning method to learn key model parameters in the framework using
warranty data. We showed both theoretically and experimentally how the param-
eters can be learned. We saw that data from realistic vehicle population sizes can
correct some errors in the model parameters. We also showed how errors in the
model parameters affect the output of the diagnoser and that the error in this output
is small for small parameter errors that can remain after learning.
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Appendix A Proofs

A.1 Proof of Theorem 1

We need to prove Eqs. (9)–(12). We can identify Eq. (9) directly using Eq. (5).
For Eq. (10), by summing over F t

i and St
i, j and using Eqs. (2) and (5), we get:

Pr(st+1
i, j | f t+1

i ,¬ f t−1
i ) = Pr(st+1

i, j , f t+1
i |¬ f t−1

i )/Pr( f t+1
i |¬ f t−1

i )

=
1

Pr( f t+1
i |¬ f t−1

i )

(
Pr( f t+1

i |¬ f t
i )Pr(st+1

i, j |¬ f t
i , f t+1

i )Pr(¬ f t
i |¬ f t−1

i )

+Pr(st+1
i, j | f t

i ,s
t
i, j)Pr(st

i, j| f t
i ,¬ f t−1

i )Pr( f t
i |¬ f t−1

i )

+Pr(st+1
i, j | f t

i ,¬st
i, j)Pr(¬st

i, j| f t
i ,¬ f t−1

i )Pr( f t
i |¬ f t−1

i )
)

and inserting Eqs. (2), (4), (6)–(7):
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��

pi, je−λi, j∆t+1

+((((
((((pi, je−λi, j∆t+1−λi, j∆t +1−����e−λi, j∆t+1 −��pi, j +���

���pi, je−λi, j∆t+1

−����e−λfail,i∆t +((((
(((

e−λi, j∆t+1−λi, j∆t +���
���pi, je−λfail,i∆t −(((((

(((pi, je−λi, j∆t+1−λi, j∆t
)

= pi, j.
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For Eq. (12), using Eqs. (8) and (7), we get:

Pr(st+1
i, j | f t−1

i ,st−1
i ) = Pr(st+1

i, j | f t
i ,s

t
i)Pr(st

i, j| f t−1
i ,st−1

i )

+Pr(st+1
i, j | f t

i ,¬st
i)Pr(¬st

i, j| f t−1
i ,st−1

i )

=
(
e−λi, j∆t+1 + pi, j(1− e−λi, j∆t+1)

)(
e−λi, j∆t + pi, j(1− e−λi, j∆t )

)

+ pi, j(1− e−λi, j∆t+1)
(

1−
(
e−λi, j∆t + pi, j(1− e−λi, j∆t )

))

= e−λi, j(∆t+∆t+1)+ pi, j
(
1− e−λi, j(∆t+∆t+1)

)
.

For Eq. (11), using Eqs. (8) and (7), we get:

Pr(st+1
i, j | f t−1

i ,¬st−1
i ) = Pr(st+1

i, j | f t
i ,s

t
i)Pr(st

i, j| f t−1
i ,¬st−1

i )

+Pr(st+1
i, j | f t

i ,¬st
i)Pr(¬st

i, j| f t−1
i ,¬st−1

i )

=
(
e−λi, j∆t+1 + pi, j(1− e−λi, j∆t+1)

)(
pi, j(1− e−λi, j∆t )

)

+ pi, j(1− e−λi, j∆t+1)
(
1− pi, j(1− e−λi, j∆t )

)

= pi, j
(
1− e−λi, j(∆t+∆t+1)

)
.

A.2 Proof of Theorem 2

By inserting Eqs. (38)–(40) into Eqs. (36) and (37) we get

pϕ(s′, i) = αi +βi (48)

pMF(s′) = αMF+βMF (49)

where

αi = e−Λfail∆ Pr(Nt =0)
1− e−λfail,i∆(1− pf(s, i))

e−λfail,i∆(1− pf(s, i))

βi = e−Λfail∆

(
εi

e−λfail,i∆
+

1− e−λfail,i∆

e−λfail,i∆
εNF

)

αMF = 1−e−Λfail∆ Pr(Nt =0)
(

1+ ∑
j∈IF

1−e−λfail, j∆(1−pf(s, j))

e−λfail, j∆(1−pf(s, j))

)

βMF =−e−Λfail∆

(
εNF+ ∑

j∈IF

(
1− e−λfail, j∆

e−λfail, j∆
εNF+

ε j

e−λfail, j∆

))

From Eq. (35) we get

Pr( f̃ t+1
i |Nt+1>1) = pf(s′, i)

1− Pr(Nt+1=0)
1−pf(s′,i)

Pr(Nt+1>1)

=
1− e−λfail,i∆

(
1−pf(s, i)

)
−αi

αMF
(50)
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By inserting Eqs. (48)–(50) into Eq. (33) we get

p̄f(s′, i) = pϕ(s′, i)+ pMF(s′, i)Pr( f̃ t+1
i |Nt+1>1)

= αi +βi +αMFPr( f̃ t+1
i |Nt+1>1)+βMFPr( f̃ t+1

i |Nt+1>1)

= 1− e−λfail,i∆
(
1−pf(s, i)

)
+βi +βMFPr( f̃ t+1

i |Nt+1>1) (51)

Using Eqs. (2), (3), and (38)–(40), identify that

Pr( f t+1
i |Nt >1) = 1− e−λfail,i∆

(
1−Pr( f t

i |Nt >1)
)

= 1− e−λfail,i∆
(
1−pf(s, i)

)

+ e−λfail,i∆
(
εi + εMFPr( f̃ t

i |Nt >1)
)

(52)

In the case that Pr( f t+1
i |Nt >1) ≥ p̄f(s′, i) we get by inserting Eqs. (51) and (52)

into Eq. (41):
∣∣p̄f(s′, i)−Pr( f t+1

i |Nt>1)
∣∣=−βi−βMFPr( f̃ t+1

i |Nt+1>1)

+ e−λfail,i∆
(
εi + εMFPr( f̃ t

i |Nt >1)
)

(53)

= γNF+ γMF+∑
j∈IF

γ j (54)

where γNF, γMF, and γ j are obtained by expanding βi and βMF in Eq. (53) and
collecting the terms for εNF, εMF, and ε j:

γNF = εNFe−Λfail∆

((
1+∑

j∈IF

1−e−λfail, j∆

e−λfail, j∆

)
Pr( f̃ t+1

i |Nt+1>1)−1−e−λfail,i∆

e−λfail,i∆

)
,

γMF = εMFe−λfail,i∆ Pr( f̃ t
i |Nt >1),

γ j =





εi

(
e−λfail,i∆− e−Λfail∆

e−λfail,i∆

(
1−Pr( f̃ t+1

i |Nt+1>1)
))

if j = i,

ε j
e−Λfail∆

e−λfail, j∆
Pr( f̃ t+1

i |Nt+1>1) if j 6= i.

By identifying the following inequalities:

0 ≤ e−Λfail∆ ≤ e−λfail, j∆ ≤ 1

e−Λfail∆ ≤ e−Λfail∆

(
1+ ∑

j∈IF
1−e−λfail, j∆

e−λfail, j∆

)
≤ 1

0 ≤ Pr( f̃ t+1
i |Nt+1>1) ≤ 1

0 ≤ Pr( f̃ t
i |Nt >1) ≤ 1

we get

γNF ≤
{

εNFPr( f̃ t+1
i |Nt+1>1) if εNF ≥ 0

εNF

(
Pr( f̃ t+1

i |Nt+1>1)−2(1−e−Λfail∆)
)

if εNF ≤ 0

= εNFPr( f̃ t+1
i |Nt+1>1)+2(1−e−Λfail∆)|εNF| (55)
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γMF ≤





εMFPr( f̃ t+1
i |Nt+1>1)

if εNF ≥ 0,Pr( f̃ t+1
i |Nt+1>1)≥ Pr( f̃ t

i |Nt >1)

εMF

(
Pr( f̃ t+1

i |Nt+1>1)+Pr( f̃ t
i |Nt >1)−Pr( f̃ t+1

i |Nt+1>1)
)

if εNF ≥ 0,Pr( f̃ t+1
i |Nt+1>1)≤ Pr( f̃ t

i |Nt >1)

εMF

(
Pr( f̃ t+1

i |Nt+1>1)− (1−e−Λfail∆)

+Pr( f̃ t
i |Nt >1)−Pr( f̃ t+1

i |Nt+1>1)
)

if εNF ≤ 0,Pr( f̃ t+1
i |Nt+1>1)≥ Pr( f̃ t

i |Nt >1)

εMF

(
Pr( f̃ t+1

i |Nt+1>1)− (1−e−Λfail∆)
)

if εNF ≤ 0,Pr( f̃ t+1
i |Nt+1>1)≤ Pr( f̃ t

i |Nt >1)

= εMFPr( f̃ t+1
i |Nt+1>1)+ |εMF|(1−e−Λfail∆)

+ |εMF||Pr( f̃ t
i |Nt >1)−Pr( f̃ t+1

i |Nt+1>1)| (56)

γ j ≤





ε j
(

Pr( f̃ t+1
i |Nt+1>1)+(1−e−Λfail∆)

)
if ε j ≥ 0, j = i

ε j
(

Pr( f̃ t+1
i |Nt+1>1)−2(1−e−Λfail∆)

)
if ε j ≤ 0, j = i

ε j Pr( f̃ t+1
i |Nt+1>1) if ε j ≥ 0, j 6= i

ε j
(

Pr( f̃ t+1
i |Nt+1>1)− (1−e−Λfail∆)

)
if ε j ≤ 0, j 6= i

=

{
ε j Pr( f̃ t+1

i |Nt+1>1)+2(1−e−Λfail∆)|ε j| if j = i

ε j Pr( f̃ t+1
i |Nt+1>1)+(1−e−Λfail∆)|ε j| if j 6= i

(57)

Because pNF(s)+ pMF(s) ∑
j∈IF

pϕ(s, j) = 1,

εMF+ εNF+ ∑
j∈IF

ε j = 0. (58)

We get the final result Eq. (41) by using Eqs. (55)–(58) on Eq. (54). The bound
is the same when Pr( f t+1

i |Nt >1)≤ p̄f(s′, i) because |p̄f(s′, i)−Pr( f t+1
i |Nt >1)| is

an even function with regard to εNF, εMF, and ε j and that εNF,εMF,ε j ∈ [−1,1].

A.3 Proof of Lemma 1

Given pfail,i and ncomp, j, the number of manufacturing faults

n∗man,i|pfail,i,ncomp, j ∼ Bernoulli(pfail,i).

The prior pfail,i ∼ Beta(αman,i,βman,i) which is a conjugate prior to the Bernoulli
distribution, therefore the posterior

pfail,i|n∗man,i,ncomp, j∼Beta(αman,i+n∗man,i,βman,i+ncomp, j−n∗man,i)
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where the expected value

E(pfail,i|n∗man,i,ncomp, j) =
αman,i +n∗man,i

αman,i +βman,i +ncomp, j
.

When faults are assumed to be reported and repaired immediately when they occur,
the number of failures

n∗fail,i|λfail,i,nmil, j ∼ Poisson(λfail,inmil, j).

The prior λfail,i ∼ Gamma(αfail,i,βfail,i) which is conjugate prior to the Poisson
distribution, therefore the posterior

λfail,|n
∗
fail,i,nmil, j ∼ Gamma(αfail,i +n∗fail,i,βfail,i +nmil, j)

where the expected value

E(λfail,i|n∗fail,i,nmil, j) =
αfail,i +n∗fail,i
βfail,i +nmil, j

.

A.4 Proof of Theorem 3

Let p∗an, j be the true probability that a fault on component j is analyzed and let
m̄ j = nmil, j/ncomp, j be the mean mileage at the end of the warranty period for
vehicles with component j. Then for all i ∈ IF| j, the values of nmil, j, nman,i, nfail,i,
and nmiss, j divided by ncomp, j, and pan, j converges in probability as follows:

lim
ncomp, j→∞

nmil, j

ncomp, j
= m̄ j (59)

lim
ncomp, j→∞

nman,i

ncomp, j
= pan, j p∗fail,i (60)

lim
ncomp, j→∞

nfail,i
ncomp, j

= pan, jλ ∗fail,im̄ j (61)

lim
ncomp, j→∞

nmiss,i

ncomp, j
= (1− p∗an, j)

(
∑

i∈IF| j
p∗fail,i +λ

∗
fail,im̄ j

)
(62)

lim
ncomp, j→∞

pan,i = p∗an, j. (63)

By applying Eqs. (59)–(61) and (63) on Eqs. (44) and (45) we get:

lim
ncomp, j→∞

p̃fail,i = p∗fail,i (64)

lim
ncomp, j→∞

λ̃fail,i = λ
∗
fail,i (65)

By applying Eqs. (59)–(65) on Eqs. (46) and (47) we get the final result.
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A.5 Proof of Theorem 4

Because each data sample is independent, the posterior can be formulated as the
following product using Bayes’ rule:

Pr(pi, j∀ j ∈ IS|i|ỹ) ∝ ∏
m∈Iy(n),n∈IF

Pr(y[m]|pi, j∀ j ∈ IS|i)∏
k∈IS|i

p(pi,k). (66)

For each sample y[m] we know that f [m]
id was present as the assumed only fault and

o[m] was observed. Unless f [m]
id = i the observation probability is independent of

the symptom-cause probabilities pi, j for all symptoms j ∈ IS|i. We know noth-
ing of what has happened or been observed during the time before the fault was
discovered, so if f [m]

id = i, then

Pr(y[m]|pi, j∀ j∈IS|i) = Pr(o[m]|v[m]
id ,m

[m],c[m]
id , f [m]

id , f [m]
man, pi, j∀ j∈IS|i)

Pr(v[m]
id ,m

[m],c[m]
id , f [m]

id , f [m]
man|pi, j∀ j∈IS|i)

∝ Pr(o[m]| f [m]
id , pi, j∀ j∈IS|i)

∝ Pr(o[m]| f t
i ,¬f t

n∀n∈IF\{i}, pi, j∀ j∈IS|i). (67)

We get the final result by inserting Eq. (67) into Eq. (66).
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