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Abstract

Optimal simultaneous coalition structure generation and as-
signment is computationally hard. The state-of-the-art can
only compute solutions to problems with severely limited
input sizes, and no effective approximation algorithms that
are guaranteed to yield high-quality solutions are expected
to exist. Real-world optimization problems, however, are of-
ten characterized by large-scale inputs and the need for gen-
erating feasible solutions of high quality in limited time. In
light of this, and to make it possible to generate better fea-
sible solutions for difficult large-scale problems efficiently,
we present and benchmark several different anytime algo-
rithms that use general-purpose heuristics and Monte Carlo
techniques to guide search. We evaluate our methods using
synthetic problem sets of varying distribution and complex-
ity. Our results show that the presented algorithms are supe-
rior to previous methods at quickly generating near-optimal
solutions for small-scale problems, and greatly superior for
efficiently finding high-quality solutions for large-scale prob-
lems. For example, for problems with a thousand agents
and values generated with a uniform distribution, our best
approach generates solutions 99.5% of the expected opti-
mal within seconds. For these problems, the state-of-the-art
solvers fail to find any feasible solutions at all.

1 Introduction
The coalition structure generation (CSG) problem is a major
algorithmic challenge in cooperative game theory and multi-
agent systems. It is central to coalition formation (Osborne
and Rubinstein 1994), and it has been studied extensively in
many contexts (Rahwan et al. 2015).

In other research fields (e.g., operations research), assign-
ment algorithms have been used to allocate tasks and co-
ordinate entities. These algorithms seek to find an optimal
matching between the elements of sets, with the objective
to maximize the aggregated value of assignments. There are
numerous variations on this problem. See (Pentico 2007) for
an extensive summary.

From an algorithmic perspective, CSG and assignment
are two major processes for coordination that are typically
treated separately: CSG as a partitioning problem, and as-
signment as a matching problem. (Präntare and Heintz 2020)
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showed that this separation may potentially lead to arbitrar-
ily bad coalition structures (or an unmotivated exponential
increase in computational complexity) when distinct coali-
tional goals are involved—for example when each coalition
that is generated has a specific task that it needs to perform.

To remedy this, they presented the simultaneous coalition
structure generation and assignment (SCSGA) problem—
a difficult combinatorial optimization problem that general-
izes both the linear assignment problem (Kuhn 1955), and
the CSG problem for characteristic function games (Sand-
holm et al. 1999; Rahwan et al. 2015). This is a central
problem in both artificial intelligence, operations research,
and algorithmic game theory; with applications in optimal
task/resource allocation (Präntare 2017), winner determina-
tion for combinatorial auctions (Sandholm et al. 2002), and
team/coalition formation (Präntare and Heintz 2020). More
formally, the SCSGA problem is defined as follows:

Input: a tuple 〈A, T,v〉, where A = {a1, ..., an} is a set of
agents, T = 〈t1, ..., tm〉 is a tuple of alternatives (e.g., tasks),
and v : 2A×T 7→ R is a function that maps a value to every
possible pairing of a coalitionC ⊆ A to an alternative t ∈ T .
Output: an ordered coalition structure (Definition 1)
〈C1, ..., Cm〉 over A that maximizes

∑m
i=1 v(Ci, ti).

Definition 1. The tuple 〈C1, ..., Cm〉 is an ordered coali-
tion structure over A if Ci ∩ Cj = ∅ for all i 6= j, and⋃m

i=1 Ci = A. For example, 〈{a1, a3}, ∅, {a2, a4}〉 is an or-
dered coalition structure over the agents {a1, a2, a3, a4}. We
omit the notion “over A” when it improves readability.

The only algorithm that has been developed for this prob-
lem is an optimal anytime branch-and-bound algorithm (de-
noted MP) by (Präntare and Heintz 2020) that uses a search
space representation based on multiset permutations of inte-
ger partitions to prune large portions of the search space.
Even though this algorithm performs well in practice for
limited input sizes, and greatly outperforms the industry-
grade solver CPLEX, there is no proven guarantee that it can
find an optimum without evaluating all mn possible ordered
coalition structures. Moreover, this algorithm is impractical
for solving problems with more than just a few agents. Just
for preprocessing, it requires at least e.g.,m2n = 10×230 ≈
1010 operations for n = 30 agents and m = 10 alternatives.



Furthermore, in general, we do not expect to find an effi-
cient SCSGA approximation algorithm, and we need to enu-
merate all the m2n possible values of the value function to
make any worst-case guarantee on the quality of a feasible
solution—i.e., a possibly suboptimal ordered coalition struc-
ture. In other words, to find a feasible solution guaranteed to
be within any bound from optimum, we first need to scan the
whole input and evaluate every possible pairing of a coali-
tion C ⊆ A to an alternative t ∈ T . It would thus be inter-
esting to investigate if, when and how low-complexity algo-
rithms can generate feasible solutions of high-enough qual-
ity for problems with large-scale inputs and limited compu-
tation budgets.

In light of this, and to make it possible to generate better
coalition structures for difficult large-scale problems, we de-
velop, benchmark, and present several different centralized,
anytime algorithms that use general-purpose heuristics and
Monte Carlo techniques to guide search. To summarize, our
main contributions are:
• We give a poly-time reduction from CSG to SCSGA. As

a corollary, SCSGA is, as expected, NP-complete.
• We develop, present and benchmark five different heuris-

tic and Monte Carlo methods for centralized SCSGA: 1)
a Monte Carlo tree search variant; 2) a steepest-ascent
hill climb method that we use to improve solution-quality;
3) a random-restart greedy algorithm; 4) a simulated an-
nealing method; and 5) a hybrid approach based on lo-
cal search. Most of our algorithms are based on utiliz-
ing permutations of agent sets to efficiently generate and
evaluate different feasible solutions. As a by-product, we
develop a framework for designing and implementing ef-
ficient random-restart CSG and SCSGA algorithms.

• We empirically show that our algorithms outperform cur-
rent state-of-the-art for both small and large input-sizes
when generating anytime, feasible solutions.

• We establish a baseline for future large-scale SCSGA re-
search by providing initial theory and empirical data. In
addition to this, we develop a new approach to estimat-
ing a solution’s quality in two standard benchmarks, and
present two new difficult synthetic problem sets.

This paper is structured as follows. We begin by presenting
related heuristic algorithms and similar work in Section 2.
Then, in Section 3, we define important concepts and prove
the problem’s intractability. In Section 4, we describe our al-
gorithms. In Section 5, we present our experiments. Finally,
in Section 6, we conclude with a summary.

2 Related Work
One of the first centralized, metaheuristic CSG algorithms
was devised by (Sen and Dutta 2000). Their algorithm is
a genetic algorithm that starts by creating a randomly gen-
erated initial set of coalition structures called the popula-
tion pool. The algorithm then continues to update the pop-
ulation pool by repeatedly recombining its coalition struc-
tures to generate new ones. Later, (Keinänen 2009) used the
well-known simulated annealing method to generate feasi-
ble solutions. (Di Mauro et al. 2010) proposed an algorithm

that works by first using a greedy search strategy to gener-
ate an initial coalition structure, and then using local search
to gradually find better ones. More recently, (Yeh and Sug-
awara 2016) devised an ant colony optimization heuristic,
(Farinelli et al. 2017) presented an algorithm inspired by
data clustering methods, and (Wu and Ramchurn 2020) de-
veloped a Monte Carlo tree search CSG algorithm.

Common for these methods is that they are specifically
designed for solving CSG problems without alternatives.
This has the implication that they: 1) allow coalition struc-
tures of any size (i.e., not only size-m, where m is the
number of alternatives); 2) do not take the coalitions’ or-
der within the coalition structures into consideration; and
3) do not allow empty coalitions in solutions. Having these
three properties arguably render them unsuitable for SCSGA
unless e.g., they are redesigned from the ground up.

3 Basic Concepts and Complexity
For the remainder of this paper, we use the terms solu-
tion and ordered coalition structure interchangeably. We
use V (S) =

∑m
i=1 v(Ci, ti) to denote the value of a so-

lution S = 〈C1, ..., Cm〉, and the conventions n = |A| and
m = |T | when it improves readability. We define a SCSGA
problem instance by its input-tuple 〈A, T,v〉. Finally, recall
that CSG for characteristic function games is formalized as:

Input: a tuple 〈A,u〉, where A = {a1, ..., an} is a set of
agents, and u : 2A 7→ R is a function that maps a value to
every coalition C ⊆ A. u(∅) = 0 is assumed.
Output: a coalition structure (see Definition 2)
{C1, ..., Cm} over A that maximizes

∑m
i=1 u(Ci).

Definition 2. CS = {C1, ..., Cm} is a coalition structure
over the setA ifCi∩Cj = ∅ for all i 6= j, and

⋃m
i=1 Ci = A.

For example, {{a1, a3}, {a2}} and {{a1}, {a2}, {a3}} are
coalition structures over {a1, a2, a3}. Moreover, we often
omit “over A” for brevity.

Similarly as for SCSGA, we define a CSG problem instance
by its input-tuple 〈A,u〉, and U(CS) =

∑
C∈CS u(C) is

used to denote the value of a coalition structure CS.

3.1 Complexity
We prove that CSG is reducible to SCSGA in Theorem 1.
SCSGA’s NP-completeness follows from this in Theorem 2.

Definition 3. A SCSGA-corresponding problem instance to
a CSG problem instance 〈A,u〉 is a SCSGA problem in-
stance 〈A, T,v〉 with |T | = |A| (i.e., m = n) and v(C, t) =
u(C) for all t ∈ T and C ⊆ A.

Lemma 1. If P is a CSG problem instance, and Q is a
SCSGA-corresponding problem instance (Definition 3) to
P; then, if the solution 〈C1, ..., Cm〉 is optimal toQ, it holds
that the coalition structure {C1, ..., Cm} is optimal to P .

Proof. By contradiction. Without loss of generality, assume
S∗ = 〈C1, ..., Cm〉 is optimal to Q = 〈A, T,v〉, and that
the coalition structure CS′ = {C1, ..., Cm} is suboptimal to



P = 〈A,u〉. Then, by definition of optimality, there exists a
coalition structure CS∗ = {K1, ...,K|CS∗|} over A with:

U(CS∗) =

|CS∗|∑
i=1

u(Ki) >

m∑
i=1

u(Ci) = U(CS′). (1)

Furthermore, from Definition 3, we have:

U(CS′) =

m∑
i=1

u(Ci) =

m∑
i=1

v(Ci, ti) = V (S∗).

This together with (1) gives:
|CS∗|∑
i=1

u(Ki) > V (S∗). (2)

Now, if |CS∗| < |A|, let Kj = ∅ for |CS∗| < j ≤ |A|.
Then, the ordered coalition structure S′ = 〈K1, ...,K|A|〉 is
a valid solution to Q. Note that this is also a valid solution
if |CS∗| = |A|, and that |CS∗| ≤ |A| always holds, since
CS∗ is a set of disjoint subsets ofA. Consequently, we have:

V (S′) =

|CS∗|∑
i=1

v(Ki, ti) +

|A|∑
j=|CS∗|+1

v(∅, ti).

This with Definition 3 (and u(∅) = 0 by definition) gives:

V (S′) =

|CS∗|∑
i=1

u(Ki) +

|A|∑
j=|CS∗|+1

u(∅) =
|CS∗|∑
i=1

u(Ki).

From this and (2), it follows that:
V (S′) > V (S∗).

This is a contradiction, since the solution S′ cannot have a
higher value than the optimal solution S∗.

Theorem 1. An algorithm that can solve the SCSGA prob-
lem can also solve the CSG problem (with only a poly-
nomial increase in computation time after its SCSGA-
corresponding problem instance has been solved).

Proof. This follows directly from the proof of Lemma 1,
since it provides a linear-time procedure to convert a CSG
problem instance P to an equivalent SCSGA problem in-
stance Q, and another linear-time procedure to convert Q’s
optimal solution to a coalition structure optimal to P .

(Note that a similar reduction can be made in the opposite
direction. Here’s the main idea: Let the alternatives be repre-
sented as agents in the CSG problem, and invalid coalitions
assigned value −∞. It is then easy to show that an optimal
solution to the CSG problem can be converted in polynomial
time to a corresponding optimal SCSGA solution.)

Theorem 2. The SCSGA problem is NP-complete.

Proof. NP-hardness follows directly from the fact that CSG
is NP-hard (Sandholm et al. 1999) together with Theorem 1.

The corresponding decision problem for SCSGA is as
follows: Given a SCSGA problem instance 〈A, T,v〉 and a
number k ∈ R, does there exist a size-m ordered coalition
structure with value at least k? This problem is in NP, since
we can verify a solution’s value in linear time by summing
the values of its m coalition-to-alternative assignments.

Note that SCSGA is analogous to a version of the win-
ner determination problem (WDP) when all possible bids
are given as input and there is no auctioneer; leading to the
fact that CSG, SCSGA and WDP are in essence closely
related problems. Albeit not surprising, this makes inex-
act approaches more interesting to investigate, since we al-
ready know that WDP is computationally hard to approxi-
mate (Sandholm et al. 2002). Moreover, it is in general not
tractable to use WDP algorithms to solve SCSGA problems.
One reason for this is because they are often designed to
handle only a small number of bids, while SCSGA problems
have m2n possible coalition-to-alternative assignments.

4 Algorithms
In this section, we present our SCSGA algorithms. The al-
gorithms we present and investigate here use randomness
to search different parts of the search space. Our greedy,
heuristic algorithms find local optima quickly by using the
agents’ marginal contributions (see Definition 4). We also
use randomized permutations of the input’s agent set A to
quickly generate new “starting points” for the algorithms (as
we show in Subsection 4.5). These permutations typically
correspond to the order for which the agents join the differ-
ent coalitions. Also, note that we use the notation X[i] for
the ith element of a vector or tuple X .

Definition 4. An agent a’s marginal contribution ∆a(C, t)
to the coalitionC ⊆ A\{a} assigned to the alternative t ∈ T
is given by the identity: ∆a(C, t) = v(C∪{a}, t)−v(C, t).

4.1 Permutative Greedy Algorithm

Algorithm 1 (abbreviated GA) generates a solution by se-
quentially assigning agents to alternatives in a greedy fash-
ion. It requires O(nm) operations per run.

Note that this algorithm may generate arbitrarily bad so-
lutions for certain types of problem instances—for example,
when the value function is defined as follows:

v(C, t) =

{
−|C|2 if |C| < |A|
∞ otherwise (i.e., |C| = |A|)

for all C ⊆ A and t ∈ T . This is because, for this type of
problem, GA would try to keep all coalitions small (since
it is the locally best strategy), while having only one large
coalition would yield a better (infinitely valued) solution.

4.2 Permutative Steepest-Ascent Hill Climb

Algorithm 2 (abbreviated HC) works by taking an ordered
coalition structure as input, and then continuously attempt-
ing to improve it by changing its alternative-assignments on
an agent-to-agent basis. The algorithm terminates when this
strategy cannot improve the solution’s value any further (i.e.,
when a local optimum has been reached), or if a user-defined
computation budget is exhausted. It requires O(nm) opera-
tions per “improvement”, and it is combined with a random
sampling method in Algorithm 3.



Algorithm 1 : PermutativeGreed(P , K)
P = 〈A, T,v〉 is a SCSGA problem instance, and the vector
K = 〈ak1 , ..., akn〉 is a permutation of A.

1: S ← ∅m //S is initialized to a vector of m empty coalitions.
2: for a = ak1 , ..., akn do
3: i∗ ← argmaxj∈{1,...,m}

{
∆a(Cj , tj)

}
4: S[i∗]← S[i∗] ∪ {a}
5: return S

Algorithm 2 : PermutativeHillClimb(P , K, S)
P = 〈A, T,v〉 is a SCSGA problem instance, the vec-
tor K = 〈ak1

, ..., akn
〉 is a permutation of A, and S =

〈C1, ..., Cm〉 is an ordered coalition structure over A.
1: success← true
2: while success = true, and budget not exhausted do
3: success← false
4: for a = ak1 , ..., akn do
5: i← j such that a ∈ Cj

6: i∗ ← argmaxj∈{1,...,m}
{
∆a(Cj \ {a}, tj)

}
7: if ∆a(Ci∗ \ {a}, ti∗) >∆a(Ci \ {a}, ti) then
8: S[i]← S[i] \ {a}; S[i∗]← S[i∗] ∪ {a}
9: success← true //succeeded at improving S.

10: return S

Algorithm 3 : RandomPermutativeHillClimb(P,K)
P = 〈A, T,v〉 is a SCSGA problem instance, and the vector
K = 〈ak1

, ..., akn
〉 is a permutation of A.

1: S ← GenerateSolution() //e.g., uniformly.
2: return PermutativeHillClimb(P,K, S)

Algorithm 4 : PermutativeMCTS(P , K)
P = 〈A, T,v〉 is a SCSGA problem instance, and the vector
K = 〈ak1

, ..., akn
〉 is a permutation of A.

1: S ← ∅m
2: for i = 1, ..., n do
3: G← 〈aki , ..., akn〉
4: root← node representing S and G
5: for 1, ..., RolloutsPerLevel do
6: node← TreePolicy(root)
7: δ ← RolloutPolicy(node,G)
8: Backpropagate(node, δ)

9: j ← BestAction(root); S[j]← S[j] ∪ {aki}
10: return best solution found during rollouts

4.3 Permutative Monte Carlo Tree Search
Algorithm 4 (abbreviated MCTS) models a SCSGA problem
instance as a decision tree, and uses Monte Carlo techniques
to build and search it. MCTS locates a promising node, sam-
ples a feasible solution reachable from it, and uses the solu-
tion’s value to guide future search. This process is repeated
a number of times on each level of the decision tree. For
every level, the tree’s root node is updated to represent a so-
lution S over A \ U , and a permutation G = 〈ag1 , ..., ag|G|〉
of U ⊆ A, where U contains the agents that have not been
assigned to an alternative yet. The root node always has m

Algorithm 5 : SimulatedAnnealing(P)
P = 〈A, T,v〉 is a SCSGA problem instance.

1: S ← GenerateSolution(); S∗ ← S; t←∞
2: while computation budget is not exhausted do
3: k ∼ U(1,m); l ∼ U(1, n); p ∼ U(0, 1)
4: i← j such that al ∈ Cj

5: S′ ← S; S′[i]← S′[i]\{al}; S′[k]← S′[k]∪{al}
6: if V (S′) > V (S) or p < P (S′, S, S∗, t) then
7: S ← S′

8: if V (S) > V (S∗) then S∗ ← S

9: t← (1/computation budget portion used)− 1

10: return S∗

children, representing themways to assign ag1 to an alterna-
tive. In detail, the following steps are applied each iteration:

1. TreePolicy: Recursively selects a node reachable
from the root that maximizes:

vx + c

√
lnnp
nx

+

√
σx2 +

d

nx
, (3)

where vx is the average value of previous rollouts through
node x; nx and np are the number of rollouts through
node x and its parent p, respectively; and σx2 is the vari-
ance of rollout results through node x. c and d are con-
stants, where higher values encourages exploration. This
formula was proposed by (Schadd et al. 2012) for solving
puzzles with Monte Carlo tree search. Leaf nodes reached
through this process are expanded by appending their pos-
sible child nodes to them.

2. RolloutPolicy: Takes a solution S over A \ U , and
a permutation G of U , where U is the set of unassigned
agents, and then produces an outcome δ. For producing
δ, we use a random rollout, with which each unassigned
agent is assigned to an alternative by drawing from a uni-
form distribution. We also store the best solution gener-
ated through any rollout.

3. Backpropagate: Saves the rollout’s outcome δ to
node, and then backpropagates it to all its ancestors.
When RolloutsPerLevel rollouts have been performed,
BestAction selects the alternative to which aki should
be assigned. As is common practice, a child with the most
rollouts is chosen (Browne et al. 2012).

4.4 Simulated Annealing
Algorithm 5 (abbreviated SA) uses a modification of the
well-known metaheuristic optimization method simulated
annealing (Kirkpatrick, Gelatt, and Vecchi 1983). Start-
ing from a random solution, it generates new solutions by
randomly “moving” an agent between two alternatives. A
new solution S′ generated from a solution S is accepted if
V (S′) > V (S), or otherwise with probability:

P (S′, S, S∗, t) = exp

(
V (S′)− V (S)

tV (S∗)

)
where S∗ is the best solution found so far, S and S′ are so-
lutions, and t ∈ R decreases as the computation budget is
exhausted. SA requires O(1) time per iteration.



Algorithm 6 : RandomRestartAlgorithm(P)
P = 〈A, T,v〉 is a SCSGA problem instance.

1: K ← 〈a1, ..., an〉; S∗ ← ∅m; S∗[1]← A
2: while computation budget is not exhausted do
3: K ← Shuffle(K) //e.g., using Fisher–Yates.
4: S ← PermutativeSolver(P,K)
5: if V (S) > V (S∗) then S∗ ← S

6: return S∗

4.5 Extensions
We extend the algorithms from the previous subsections
with random-restart functionality in Algorithm 6, making it
possible to use them to continuously find better solutions
in an anytime fashion. PermutativeSolver thus im-
plements Algorithm 1, 3 or 4. With Algorithm 3 or 4, and
enough time, this method converges to a global optimum.

In our benchmarks, we also combined Algorithm 1 with
Algorithm 2 in attempt to find better solutions even faster.
This hybrid (abbreviated HY) works by using the permuta-
tive greedy algorithm to continuously generate initial high-
quality solutions that are then passed on to the steepest-
ascent hill climb algorithm (using line 1 in Algorithm 3) for
further improvement using local search.

5 Benchmarks and Experiments
Our main goals with the empirical evaluation are to inves-
tigate: 1) how different input-sizes, value distributions and
time constraints affect the algorithms; 2) the algorithms’ per-
formances relative to each other; 3) how the myopic nature
of the greedy algorithms make them compare to the state-of-
the-art; and 4) if the algorithms can generate high-quality so-
lutions in short execution time for difficult large-scale prob-
lems. To accomplish these goals, and in accordance with
(Präntare and Heintz 2020), we use UPD (uniform probabil-
ity distribution) and NPD (normal probability distribution)
for generating difficult problem instances:
• UPD: v(C, t) ∼ U(0, 1); and
• NPD: v(C, t) ∼N (µ, σ2), with µ = 1 and σ = 0.1;
for all C ⊆ A and t ∈ T . U and N are the uniform and nor-
mal distributions, respectively. We also define/use two new
distributions: SUPD (sparse UPD) and SNPD (sparse NPD):

• SUPD: v(C, t) ∼ U(0, 1) with probability 0.01, else
v(C, t) ∼ U(0, 0.1); and

• SNPD: v(C, t) ∼ N (µ1, σ
2) with probability 0.01, else

v(C, t) ∼N (µ2, σ
2), with µ1 = 1, µ2 = 0.1, σ = 0.1;

for all C ⊆ A and t ∈ T . We expect these to be more diffi-
cult for greedy/myopic algorithms. Moreover, note that it is
not possible to use the real-world SCSGA data presented in
(Präntare and Heintz 2020) for our benchmarks. This is be-
cause that data is locked behind a non-disclosure agreement.
Using synthetic experiments is thus the current best option
for benchmarking, and we argue that an important future ef-
fort is to make real-world SCSGA data accessible.

Bear in mind that storing all values of the value function
in a table requires ω(m2n) memory and is thus not feasible

for large-scale problems. For this reason, we only store the
evaluated values, which we generate on-the-fly per query,
and reuse them when they are needed again.

The result of each experiment was produced by comput-
ing the average of the resulting values from 20 generated
problem sets per experiment. Following best practice, we
plot the 95% confidence interval in all graphs.

All code was written in C++11, and all random numbers
were generated with uniform real distribution
and normal distribution from the C++ Standard Li-
brary. We used the hash map unordered map for storing
evaluated values and shuffle for shuffling agent permu-
tations from the same library. All tests were conducted with
an AMD 3950X 3.5GHz CPU and 32GB memory.

For MCTS, the cross-entropy method (CEM) was used to
tune the hyperparameters c and d, as described by (Chaslot
et al. 2008). CEM is an evolutionary algorithm that main-
tains distributions of promising values for each parameter.
In several iterations, samples are drawn from the distribu-
tions, and a metric is used to evaluate their fitness. The elite
samples (samples with the highest fitness values) are used
to update the distributions in preparation for the next iter-
ation. In more detail, we used two distributions N (µc, σc)
and N (µd, σd) for this, initiated with µc, σc, µd, σd = 50.
In each iteration, we selected 100 samples, and evaluated
them using MCTS. The mean solution value returned for 25
such problems determined the fitness value of each sample.
At the end of each CEM iteration, µc and σc were set to the
mean value and standard deviation respectively of the val-
ues for c used in 10 elite samples, and similar for µd and
σd. We then ran several iterations until CEM converged, at
which point we used the values of µc and µd for c and d,
respectively. This was repeated for all four distributions.

Finally, we use the following abbreviations to denote the
different random-restart algorithms when they are used in
Algorithm 6: RGA for the greedy algorithm (Algorithm 1);
RHC for the hill climb algorithm (Algorithm 3); RMCTS for
the MCTS algorithm (Algorithm 4); SA for simulated an-
nealing (Algorithm 5); and RHY for the hybrid algorithm
(Algorithm 1 combined with Algorithm 2).

5.1 Small-Scale Near-Optimality Benchmarks
To see how the myopic nature of our algorithms affect
their generated solutions’ quality, we benchmark against the
state-of-the-art algorithm MP (described in Section 1). Re-
call that, for problems with many agents, MP is not able to
generate a solution in feasible time. For this reason, we only
use a few agents in these benchmarks. We also plot the av-
erage optimal value (computed with MP) in all graphs.

Figure 1 clearly shows that all of our algorithms yield
near-optimal solutions very quickly. For example, after 2
seconds, at worst case for the most difficult problem set,
RHC achieves solutions that are roughly 98% of the optimal.
Surprisingly, RHC greatly outperforms current state-of-the-
art and all other methods. This was unexpected for SUPD
and SNPD; since for them, MP should be able to quickly de-
tect parts of the search space where it can find high-quality
solutions. This shows that MP’s effectiveness is more sensi-
tive to a problem’s value distribution than we anticipated.
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Figure 1: The average solution values obtained for UPD (top-left),
NPD (top-right), SUPD (bottom-left) and SNPD (bottom-right)
problem sets with 15 agents and 5 alternatives.

Our results from varying the number of agents are shown
in Figure 2, and they clearly indicate that—when the num-
ber of agents exceed a certain number—MP fails to quickly
generate feasible solutions of high quality. This is because it
is not able to compute bounds for the different branches of
the search tree quickly enough, which leads to exponentially
worse performance as the number of agents is increased.
Naturally, our algorithms do not exhibit this behaviour.

5.2 Large-Scale Benchmarks
To see how our algorithms behave for large-scale prob-
lems, we plot the results from benchmarks with large in-
puts in Figures 4 and 3. We used a time limit of 100 sec-
onds in these benchmarks, since after this time, the algo-
rithms typically exhausted our memory budget (32GB) due
to the memory-footprint of storing the evaluated values of
the value function. Note that the problems in these large-
scale benchmarks have immense search spaces with sizes
up to 501000 ≈ 101700, and we expect that no algorithms
exist that can generate an optimal (or approximate) solution
for them in feasible time. Thus, to deduce how good a solu-
tion is, we instead propose to compute a probability indica-
tive to its quality. To illustrate this, in Figure 4, we see that
e.g., RHC finds a solution of value ≈ 49.5 for UPD after
1 second. Numerical computation together with Corollary 1
gives:

P (V (S) ≥ 49.5) =

∫ 50

49.5

f50
U (x) dx ≈ 2× 10−80

for a solution S. This value can be interpreted as the ex-
pected portion of feasible solutions with value 49.5 or
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Figure 2: The average solution values obtained after 8 seconds for
UPD (top-left), NPD (top-right), SUPD (bottom-left) and SNPD
(bottom-right) problem sets with 5 alternatives.

greater, and is thus illustrative to RHC’s (high-yield) perfor-
mance. We provide an analogous result for NPD in Corol-
lary 2 that can be used similarly. For UPD and NPD, we
use these corollaries to compute and plot an approximate
expected optimal value (i.e., the threshold value for which
we expect there to exist exactly one solution). We do not
compute a similar value for SUPD and SNPD, since it is out
of this paper’s scope to derive their probability density func-
tions. Hence, in the following large-scale benchmarks, we
only compute the expected optimal value for UPD/NPD.

Corollary 1. For a SCSGA problem instance with m alter-
natives and UPD-distributed values, the probability density
function for the distribution of V is equal to:

fm
U (x) =

1

2(m− 1)!

m∑
k=0

(−1)k
(
m

k

)
(x−k)m−1sgn(x−k).

Proof. This follows directly from the Irwin-Hall distribu-
tion’s probability density function, see e.g., (Hall 1927).

Corollary 2. For a SCSGA problem instance with m alter-
natives and NPD-distributed values, the probability density
function for the distribution of V is equal to:

fm
N (x, µ, σ) =

1

σ
√
2πm

exp
(
− 1

2

(x−mµ
σ
√
m

)2)
.

Proof. This follows directly from the known probability
density function of a normal distribution.

The benchmarks in Figures 3 and 4 show that RHY, RHC
and RGA are able to generate near-optimal solutions for
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Figure 3: The solution values obtained by the algorithms after 100
seconds for UPD (top-left), NPD (top-right), SUPD (bottom-left)
and SNPD (bottom-right) problem sets with 20 alternatives.

problems with uniformly distributed values despite an in-
creasing number of agents. The results also show that RHY,
RHC and RGA are able to generate solutions of relatively
high quality very quickly for problems with immense search
spaces and large input-sizes. Despite being far from the
expected optimum for normally distributed problems, e.g.,
with 1000 agents and 50 alternatives, Corollary 2 can be
used to show that the portion of solutions with a value
≥ 65 (which RHC and RGA generate after roughly 25 sec-
onds, and RHY after a few milliseconds) is expected to be
≈ 3×10−100—an incredibly small portion of the total num-
ber of solutions.

In contrast to these algorithms, the quality of solutions
found by SA progressively worsens as the number of agents
increases. It is notable that SA performs comparatively bet-
ter on the sparse distributions. It seems reasonable that this is
because the lower number of high-quality solutions favours
an exploration-focused approach. SA is also the only al-
gorithm for which increased computation time consistently
gives better solutions.

The performance of RMCTS quickly declines when the
number of agents exceeds 300. This is because with our
random rollout strategy, the time complexity of RMCTS is
quadratic in the number of agents. It is thus unable to build
any tree that can reasonably guide its search before it has to
“cut a level”—effectively pruning/discarding a large part of
the search space at random.

6 Summary and Conclusions
In this paper, we developed and used several general-
purpose heuristic and Monte Carlo methods for simultane-
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Figure 4: The solution values obtained for UPD (top-left), NPD
(top-right), SUPD (bottom-left) and SNPD (bottom-right) problem
sets with 1000 agents and 50 alternatives.

ous coalition structure generation and assignment (SCSGA).
In more detail, we presented five different centralized,
heuristic SCSGA algorithms based on various paradigms
(e.g., Monte Carlo tree search, simulated annealing, local
search). In our benchmarks, the presented myopic algo-
rithms (e.g., local search) are greatly superior to the state-of-
the-art, simulated annealing, and a baseline implementation
of Monte Carlo tree search. In other words, the myopic algo-
rithms are superior at quickly finding high-quality solutions
for problems with large input sizes and normally/uniformly
distributed values. They quickly find close-to-optimal fea-
sible solutions in many of our large-scale experiments. For
example, in our benchmarks with uniformly distributed val-
ues and immense search spaces of size 501000 ≈ 101700, our
hill-climb hybrid finds 99% efficient solutions in less than
one second. Moreover, all presented algorithms find near-
optimal solutions almost instantly for small-scale problems.
Finally, by providing initial theory and empirical data for
this difficult optimization problem, we have established a
first baseline for future work in large-scale SCSGA.

As a final note, we stress that the only real data that has
been used in research is currently protected and inaccessi-
ble for legal reasons (Präntare and Heintz 2020). In light of
this, we believe that the most important strand of future work
to consider is publishing real-world data, and then using it
for benchmarking/developing new specialized algorithms. It
would also be interesting to investigate if machine learn-
ing algorithms can be used for SCSGA—we believe that
both machine learning alongside optimization algorithms
and end-to-end methods are interesting approaches to look
into. Genetic and k-opt algorithms also remain unexplored.
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