
Approximate Stream Reasoning with Metric Temporal Logic under Uncertainty

Daniel de Leng and Fredrik Heintz
Department of Computer and Information Science
Linköping University, 581 83 Linköping, Sweden

{daniel.de.leng, fredrik.heintz}@liu.se

Abstract

Stream reasoning can be defined as incremental reasoning
over incrementally-available information. The formula pro-
gression procedure for Metric Temporal Logic (MTL) makes
use of syntactic formula rewritings to incrementally evaluate
formulas against incrementally-available states. Progression
however assumes complete state information, which can be
problematic when not all state information is available or can
be observed, such as in qualitative spatial reasoning tasks or
in robotics applications. In those cases, there may be uncer-
tainty as to which state out of a set of possible states repre-
sents the ‘true’ state. The main contribution of this paper is
therefore an extension of the progression procedure that ef-
ficiently keeps track of all consistent hypotheses. The result-
ing procedure is flexible, allowing a trade-off between faster
but approximate and slower but precise progression under un-
certainty. The proposed approach is empirically evaluated by
considering the time and space requirements, as well as the
impact of permitting varying degrees of uncertainty.

1 Introduction
Temporal logics allow us to make statements about propo-
sitions across time, making them powerful in areas such
as runtime verification. Metric Temporal Logic (MTL) by
(Koymans 1990) extends the expressiveness of the well-
known Linear Temporal Logic (LTL) (Emerson 1990) by
adding metric intervals for the temporal operators. The ex-
tension makes it possible to describe bounded intervals for
logical formulas, further enhancing their use in practical
applications. MTL thus makes it possible to precisely de-
scribe complex temporal statements that go beyond the ab-
solutes of the LTL temporal operators. This makes MTL a
useful tool in realtime applications such as robotics. While
model checking for MTL has been shown to be undecid-
able (Alur, Feder, and Henzinger 1996), we focus on the
computationally simpler task of path checking, in which we
check whether a given path satisfies a formula. In this pa-
per, we take a stream reasoning approach to path check-
ing, which uses incremental reasoning over incrementally-
available information.

The syntactic rewriting technique used is known as pro-
gression (Bacchus and Kabanza 1996; 1998). Progression

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

works by incrementally taking states from a state sequence
and computing a new formula that incorporates this state
information using syntactic rewriting. If the new formula
holds over the unseen remainder of the state sequence, then
the original formula is guaranteed to hold over the complete
state sequence. Consequently, the evaluation of an MTL for-
mula through progression is linear in the size of the formula,
but the formula may grow exponentially due to the rewrit-
ings. A key advantage is that we may terminate the proce-
dure once a formula is determined to be true or false, without
having to consider the potentially infinite state sequence.

One key assumption for progression is that the states re-
ceived are complete, i.e. all propositions have a truth value
assigned to them. Essentially, progression requires every
state to provide a complete ‘snapshot’ of the world. This as-
sumption is however unreasonable in many applications for
which acquiring such a snapshot is not feasible, e.g. robots
relying on local sensor data. The main contribution of this
paper is therefore an approximate progression procedure for
path checking with partial states, allowing for a trade-off be-
tween precision and space requirements. We also consider
the impact of knowledge concerning the probabilities of in-
dividual states in cases where there is uncertainty. This pa-
per is a companion paper to our earlier work (de Leng and
Heintz 2018), which laid some of the groundwork we ex-
pand upon here.

The key motivation behind supporting progression with
multiple hypotheses is not just limited to the possibility
that we receive partial states—reasoning with background
knowledge can by itself lead to incomplete information.
For example, the Region Connection Calculus with eight
jointly exhaustive pairwise disjoint (JEPD) relations known
as RCC-8 by (Randell, Cui, and Cohn 1992) uses qualita-
tive reasoning based on composition tables that allow us to
reduce the uncertainty between the qualitative spatial rela-
tions that may exist between regions, without narrowing this
relation down to precisely one spatial relation. This effec-
tively means we acquire multiple consistent models, any of
which could be the ‘true’ model, and all of which are valid
hypotheses.

The remainder of this paper is organized as follows. In
Section 2 we consider some of the related work on progres-
sion and partiality. We then give an overview of the prelimi-
naries concerning MTL and progression, including the nota-

tion used in this paper, in Section 3. Section 4 discusses the
theory behind stochastic partial-state progression, followed
by an overview of the related procedure in Section 5. An em-
pirical evaluation of the procedure is presented in Section 6.
Finally, the paper concludes with Section 7 with a summary
and a discussion of future work.

2 Related Work

Partial-state progression is a useful technique when consid-
ering applications such as safe robotics. Progression vari-
ants have for example been used for execution monitor-
ing (Kvarnström, Heintz, and Doherty 2008) in autonomous
UAV applications, in which path-checking of MTL formu-
las was used to check whether the execution of a plan is in
accordance with expectations.

More recently, Desi et al. (Desai, Dreossi, and Seshia
2017) focused on a combination of model checking and
runtime verification for making formal safety guarantees in
robot software, where they make use of Signal Temporal
Logic (STL) as a language for formalizing logical state-
ments. STL is similar to MTL in extending the temporal op-
erators from LTL to range over time intervals, but instead of
propositions it considers inequality checks over quantitative
signals. While we focus on binary MTL statements, partial-
state progression could be extended to work with STL given
that the extra information in STL statements can be utilized.

The recent work by Adolf et al. (Adolf et al. 2017)
on stream runtime monitoring in unmanned aircraft sys-
tems further shows the need for and interest in the abil-
ity to monitor robot systems during runtime for debugging
and the monitoring of safety restrictions. Progression of
MTL formulas has also been used for monitoring purposes.
For example, Basin et al. (Basin, Bhatt, and Traytel 2017;
Basin, Krstić, and Traytel 2017) proposed an MTL (and re-
lated Metric Dynamic Logic; MDL) monitor for complex
event processing which is almost event-rate independent,
meaning it can handle a dense stream with high quantities
of events occuring within fixed time intervals.

Our approach makes it possible to keep track of the prob-
ability of partial-state progression having ended up in some
MTL formula given a partially-observed incomplete state se-
quence. This is somewhat related to the recent work by Med-
hat et al. (Medhat et al. 2016), who proposed absolute and
relative ‘counting quantifiers’, allowing them to express and
monitor constraints that concern a lower or upper bound on
a certain number or percentage of instances. Their approach
differs from ours in that they extend LTL with counting
quantifiers whereas our probability mass exists at the meta-
logic level. The ability to consider the probability of having
ended up in some MTL formula is also potentially useful
in dealing with multiple consistent interpretations when per-
forming qualitative spatial reasoning tasks. The combination
of a temporal logic and qualitative spatial reasoning for run-
time verification tasks is also related to the recent work by
Nenzi et al. (Nenzi et al. 2015), who extended STL to con-
sider spatial information.

Algorithm 1: Classical Progression
1 function PROGRESS(φ, si):
2 if φ = φ1 ∨ φ2 then
3 return PROGRESS(φ1, si) ∨ PROGRESS(φ2, si)
4 else if φ = ¬φ1 then
5 return ¬PROGRESS(φ1, si)
6 else if φ = φ1 UI φ2 then
7 if I < 0 then
8 return ⊥
9 else if 0 ∈ I then

10 return PROGRESS(φ2, si) ∨ (PROGRESS(φ1, si) ∧
φ1 UI−∆ φ2)

11 else
12 return PROGRESS(φ1, si) ∧ φ1 UI−∆ φ2

13 end
14 else
15 if φ ∈ si then
16 return >
17 else
18 return ⊥
19 end
20 end

3 Classical Progression for MTL
MTL is an extension of LTL with temporal operators rang-
ing over intervals. We denote the set of all MTL proposi-
tional symbols by P . We define a state s ⊆ P to be a set of
true propositions, and its complement P \s to denote the set
of false propositions. A state thus models complete informa-
tion. Since we are interested in temporal reasoning, we con-
sider sequences of states called streams. A stream is denoted
by a total ordering ρ = {(s0, t0), (s1, t1), . . . } for states si,
time-stamps ti ∈ N, and time-points i ∈ N. A stream prefix
is denoted by ρ≤τ = {(s, t) | t ≤ τ}.

An MTL-formula is well-formed iff it adheres to the MTL
syntax:
Definition 1 (MTL Syntax). The syntax for MTL is as fol-
lows for atomic propositions p ∈ P , temporal intervals
I ⊆ [0,∞], and well-formed formulas (wffs) φ and ψ:

p | ¬φ | φ ∨ ψ | φ UI ψ
In this paper we also make use of connectives {∧,→,↔}

with their classical semantics, as well as the temporal oper-
ators ‘eventually’ ♦Iφ =def >UIφ and ‘always’ �Iφ =def

¬♦I¬φ, and verdicts ‘true’ > =def p ∨ ¬p and ‘false’
⊥ =def ¬>. Lastly, the temporal operator intervals may be
omitted for cases where I = [0,∞].
Definition 2 (MTL semantics). The semantics of MTL are
defined recursively for a wff φ and a stream ρ at time ti:

ρ, ti |= p iff p ∈ si for p ∈ P
ρ, ti |= ¬φ iff ρ, ti 6|= φ

ρ, ti |= φ ∨ ψ iff ρ, ti |= φ or ρ, ti |= ψ

ρ, ti |= φ U[δ1,δ2] ψ iff ∃tα ∈ [ti + δ1, ti + δ2] :

ρ, tα |= ψ and ∀tβ ∈ [ti, tα) : ρ, tβ |= φ

The goal of path checking is to determine whether a
well-formed MTL formula φ is satisfied by the suffix of

ρ starting at time-stamp t, written as ρ, t |= φ. It differs
from model checking in that the formula is only checked
against one path starting from time-stamp t, rather than
for every stream suffix satisfied by the model. In this pa-
per, we focus on progression (Bacchus and Kabanza 1996;
1998) with streams of incomplete states as our method for
path checking. We refer to their works for a detailed de-
scription of the PROGRESS procedure, an updated version
of which is listed in Algorithm 1, taking into account the no-
tation used in this paper. In the remainder of this paper, we
shorten PROGRESS to PROG for equations and assume ∆,
which denotes the time between states, to be constant. One
important result we rely on in this work is the correctness
result for PROGRESS:
Theorem 1 (Correctness of PROGRESS (Bacchus and Ka-
banza 1996; 1998)). The PROGRESS procedure is correct;

ρ, ti |= φ iff ρ, ti+1 |= PROG(φ, si)

for streams ρ, time-points i, and wffs φ.

4 Stochastic Partial-State Progression
Recall that we want to perform progression over streams that
may contain incomplete states. To perform ρ-progression,
we need a stream ρ and a wff φ. We will assume that a stream
generator can be described stochastically, using a time se-
quence of stochastic variables. If we wish to assume that ρ
is based on a stationary distribution, these stochastic vari-
ables would be equivalent across time-points.

4.1 State Universe
Streams are composed of states, which we now assume can
be incomplete. We denote incomplete states and their asso-
ciated incomplete streams using the hat-notation, i.e. ŝ ⊆ 2P

denotes an incomplete state and ρ̂ = {ρ1, . . . , ρN} denotes
an incomplete stream. An incomplete state ŝ may be in-
terpreted as being in DNF, i.e. as a disjunction over the
contained-within complete states. Likewise, all ρ ∈ ρ̂ are ex-
clusively composed of complete states, denoting all permu-
tations of the incomplete states. With the notation in place,
we can now define the aforementioned time-independent
stochastic variable as the state universe.
Definition 3 (State Universe). The set of states 2P is asso-
ciated with a time-independent stochastic variable Sn rep-
resenting the state universe at time-point n ∈ N:

Sn ∼ Discrete(θn),

where θn = {θn,j}|2
P |−1

j=0 represents a probability mass
function (pmf) using vector-notation.

We write P [Sn = sj] = θn,j to denote the probability of
drawing a state at time-point n ∈ N. The probability of com-
plete states s given observed incomplete states ŝn is denoted
by

P [Sn = s | ŝn] =
P [Sn = s] I(s ∈ ŝn)∑

s′∈ŝn P [Sn = s′]
,

where I is a boolean indicator function (similar to Iverson’s
bracket notation) such that

I(x) =

{
1 if x is true,
0 if x is false.

A complete prefix is defined as a sequence of complete
states up to and including time-point n ∈ N, where we can
describe the probability of randomly drawing such a prefix
by

P [S≤n = ρ≤n] =

n∏
i=0

P [Si = si]

due to the time-independence of the state universe.
A sequence of incomplete states—represented as a set of

disjunctive complete prefixes—is called an incomplete pre-
fix, denoted by ρ̂≤n. We denote the probability of drawing
incomplete prefixes from ρ̂≤n for n ∈ N by

P [S≤n = ρ≤n | ρ̂≤n] =
P [S≤n = ρ≤n] I(ρ≤n ∈ ρ̂≤n)∑

ρ′≤n
∈ρ̂≤n

P
[
S≤n = ρ′≤n

] .
4.2 Prefixes and Extensions
We refer to the repeated application of PROGRESS to a com-
plete prefix ρ≤n as prefix progression:
Definition 4 (Prefix Progression). We denote the repeated
application of PROGRESS to an initial formula φ, called
prefix progression, by

PROGn(φ, ρ) = PROG(PROGn−1(. . .), sn),

where n ∈ N ∪ {∞}. For base-case n = 0 we use
PROG 0(φ, ρ) = φ.

Because the MTL semantics is defined over infinite-
length streams, we sometimes need to consider the probabil-
ity of an incomplete prefix ρ̂≤n being a model for an MTL
statement φ at time t0. Since ρ̂≤n is an incomplete prefix for
values of n ∈ N, we extend it to an incomplete stream by
appending fully-unknown states, which we denote by super-
script∞:

ρ̂∞≤n = ρ̂≤n ∪
{

(2P , ti) | i > n
}
.

We use the same notation for fully-known prefixes ρ≤n,
where the result is denoted by ρ∞≤n representing an incom-
plete stream.
Lemma 1 (Correctness of Prefix Progression). The appli-
cation of progression over prefixes is correct relative to the
semantics of MTL:

∀ρ ∈ ρ∞≤n [ρ, t0 |= φ] iff PROGn(φ, ρ≤n) = >
for wff φ, prefix ρ≤n, and any time-point n ∈ N.

Proof. Considering both directions separately:
(⇒) Assume that for all ρ ∈ ρ∞≤n, it holds that ρ, t0 |=

φ. By applying Theorem 1 n times, we obtain ρ, tn |=
PROGn(φ, ρ≤n). Let us denote PROGn(φ, ρ≤n) = ψ. Then
it must be the case that ρ′, tn |= ψ for all possible complete
streams ρ′ that could be constructed from infinite sequences
of incomplete states. So it must be the case that ψ is a tau-
tology, hence PROGn(φ, ρ≤n) = >.

(⇐) Assume that PROGn(φ, ρ≤n) = >. Since this is a tau-
tology, it is therefore the case that ρ, tn |= PROGn(φ, ρ≤n)
for all streams ρ ∈ ρ∞≤n. From Theorem 1 it then follows
that ∀ρ ∈ ρ∞≤n [ρ, t0 |= φ].

φ0start φ1 φ2 φ3 φ4 φ5 ⊥
{{p}}

{{p, q} , {q} ,∅}

{{p} ,∅} {{p} ,∅} {{p} ,∅} {{p} ,∅} {{p} ,∅}

{{p, q} , {q}}

{{p} , {q} , {p, q} ,∅}

Figure 1: Progression graph for �(p→ (♦[0,5] q)), where vertices represent formulas and edges represent sets of states.

4.3 Progression Graphs
Given a potentially-incomplete stream, the repeated applica-
tion of the PROGRESS procedure to an MTL formula using
all possible states yields a potentially large set of formulas in
the limit, which can be bounded through the use of formula
simplification. We used elimination of conjunctions and dis-
junctions with verdicts as children, as well as temporal sub-
sumptions, as these patterns commonly arise from the ap-
plication of the progression procedure. These simplification
rules are shown below:

φ ∧ > ⇒ φ

φ ∧ ⊥ ⇒ ⊥
φ ∨ > ⇒ >
φ ∨ ⊥ ⇒ φ

�[i,j]φ ∧�[i,k]φ⇒ �[i,max(j,k)]φ

�[i,j]φ ∨�[i,k]φ⇒ �[i,min(j,k)]φ

φ U[i,j] ψ ∧ φ U[i,k] ψ ⇒ φ U[i,min(j,k)] ψ

φ U[i,j] ψ ∨ φ U[i,k] ψ ⇒ φ U[i,max(j,k)] ψ

Note that the simplification rules for ♦[i,j]φ follow directly
from > U[i,j] φ.

As a concrete example, consider the formula φ0 =
�
(
p→

(
♦[0,5] q

))
. This formula contains two propositions

p and q, which gives four possible states. Repeatedly apply-
ing progression for all of these four states yields the follow-
ing resulting formulas:

φi = (♦[0,5−i] q) ∧ φ0 for i ∈ [1, 5],

together with verdict ⊥. By representing these formulas as
vertices and connecting them with sets of states, we obtain
the graph shown in Figure 1. The graph connections are de-
signed such that for each edge (φ, ψ, s) it is the case that
PROG(φ, s) = ψ, thereby allowing the graph structure to
graphically encode the formula progression procedure. For a
fully-known stream, progression would correspond to tran-
sitions between formulas such that we can only be in one
given formula at any given time. It also allows us to go be-
yond standard progression by considering a stochastic in-
terpretation, where we associate a probability mass mn with
every formula in the graph. The meaning of probability mass
in vertices at some time-point n is the probability of pro-
gression having ended up in those associated formulas by
time-point n, given an incomplete stream. When a graph is
first initialized, all probability mass therefore resides in the
vertex associated with the original formula.

Definition 5 (Progression Graph). A progression graph is
a directed graph Gn(φ) = (φ, V,E,mn) at time-point n
consisting of a wff φ, a set of formulas V for which φ ∈ V ,
a set of directed labelled transitions

E =
{

(v, v′, s) ∈ V × V × 2P | PROG(v, s) = v′
}
,

and a probability mass function mn : V → [0, 1] describing
a probability distribution over formulas in v ∈ V defined as

mn(v) =
∑

ρ≤n∈ρ̂≤n

(
P [S≤n = ρ≤n | ρ̂≤n]

I(PROGn(φ, ρ≤n) = v)
)
,

and m0(φ) = 1 corresponds to the base-case.
The values of the probability mass at any given time-

point thus depend on the observed incomplete stream pre-
fix and the state universe. Finally note that, albeit struc-
turally similar to deterministic timed automata (Alur and
Dill 1994), progression graphs instead are used to push prob-
ability mass between formulas and consequently lack the no-
tion of clocks or accepting states.

4.4 Partial-State Progression
The interpretation of a progression graph has thus far been
grounded in incomplete prefixes. Combined with the fact
that the structure of the progression graphs are grounded
in the classical progression procedure, we can ground the
interpretation of progression graphs in the MTL semantics
as well. Specifically, the probability mass component of
progression graphs allows us to quantify the probability of
meta-logical statements concerning the semantic entailment
relation between incomplete streams and MTL formulas.
Definition 6 (Model Probability for Incomplete Prefixes).
The probability of an extended incomplete prefix ρ̂∞≤n for
time-point n ∈ N being a model for an MTL statement φ
at time t0 is denoted by: P [ρ̂∞≤n, t0 |= φ].
Lemma 2 (Correctness of Model Probability for Incomplete
Prefixes). The model probability for an incomplete prefix is
determined by:

P [ρ̂∞≤n, t0 |= φ] =
∑

ρ≤n∈ρ̂≤n

(
P [S≤n = ρ≤n | ρ̂≤n]

I
(
∀ρ ∈ ρ∞≤n [ρ, t0 |= φ]

))
.

Proof. We have to consider three cases: (1) all streams
within ρ̂∞≤n are models of φ at time t0; (2) none are models

of φ, or; (3) some are models and some are not models. In or-
der for a prefix to be a model, all of its extensions to infinite-
length streams must be models. Additionally, there are po-
tentially many complete prefixes within the incomplete pre-
fix ρ̂≤n. The probability P [S≤n = ρ≤n | ρ̂≤n] corresponds
to the probability of drawing a prefix ρ≤n from a distribution
over ρ̂≤n. The sum of all of these probabilities sums up to 1.
However, we only want to consider those prefixes which are
models of φ at time t0. Therefore, we use the indicator func-
tion to eliminate the probabilities of prefixes which are not
models of φ at time t0, thereby excluding prefixes following
cases (2) and (3) while keeping those following (1).

From Lemma 2, we are able to show that the probability
mass for verdict vertices is sound by considering the specific
cases of formulas > and ⊥.

Theorem 2 (Soundness of Partial-State Progression). Given
a probabilistic progression graphGn(φ) for the progression
of a wff φ starting at time t0 using a partially-observed in-
complete stream described by a prefix ρ̂≤n with n ∈ N:

mn(>) = P
[
ρ̂∞≤n, t0 |= φ

]
,

mn(⊥) = P
[
ρ̂∞≤n, t0 6|= φ

]
.

Proof. From the definition of probability mass, we obtain:

mn(>) =
∑

ρ≤n∈ρ̂≤n

(
P [S≤n = ρ≤n | ρ̂≤n]

I(PROGn(φ, ρ≤n) = >)
)
.

Per Lemma 1, the indicator is subject to the equivalence

I(PROGn(φ, ρ≤n) = >) = I(∀ρ ∈ ρ∞≤n [ρ, t0 |= φ]).

By substituting the indicator we can thus rewrite mn(>) to

mn(>) =
∑

ρ≤n∈ρ̂≤n

(
P [S≤n = ρ≤n | ρ̂≤n]

I
(
∀ρ ∈ ρ∞≤n [ρ, t0 |= φ]

))
,

which is equivalent to P
[
ρ̂∞≤n, t0 |= φ

]
per Lemma 2. The

proof for mn(⊥) follows analogously.

5 An Approximation Procedure
One problem with progression graphs of formulas with large
temporal intervals is that they have a tendency of ‘blowing
up’, thereby requiring a lot of space. To combat this, we
build upon our pre-existing approaches to partial-state pro-
gression (de Leng and Heintz 2018) that sought to tackle the
problem of high space requirements by trading accuracy for
space consumption, called leaky partial-state progression—
but which does not handle probability distributions over a
state universe, as we have in this work.

Our proposed procedure combining our stochastic state
universe with a leaky progression graph is shown in Algo-
rithm 2, using approximations of the probability mass mn,
denoted by m̂n, implemented as a map. Similarly, ttl (time-
to-live) and expanded are assumed to be implemented as

maps, hence the bracket notation. The initial graph is com-
posed of a single vertex representing the original formula
φ to be progressed, with the initial probability mass fully
contained within this vertex, i.e. m̂0[φ] = m0(φ) = 1; sub-
sequent approximations may deviate from the true pmf. The
ttl for the singular vertex is initially assumed to be MAX TTL.
The usage of probability mass over time makes it possible
to track the probability of different progressed formulas, in-
cluding the two different verdicts, over the course of pro-
gression of an incomplete stream ρ̂. In subsequent calls to
PPROGRESS, the probability mass from the previous iter-
ation becomes a new starting point. The procedure iterates
over the set of formulas V and checks the outgoing edges.
If the formula has not yet been expanded, it performs the
classical PROGRESS procedure to generate and created di-
rected edges to product formulas for all possible states. It
then redistributes the probability mass from the parent for-
mula to the reachable child formulas in accordance with the
probability distribution over states: a child is reachable iff
there exists an edge label that is a member of the input state
ŝ. Finally, PPROGRESS can delete vertices and leak their
associated probability mass when the MAX NODES value is
exceeded. The sorting operation in line 24 of Algorithm 2 is
intended to illustrate a sorting which orders the set of ver-
tices by ttl first and probability mass second, thus prioritiz-
ing those vertices with a low ttl and probability mass for
deletion. At the end of each call to PPROGRESS, the result-
ing progression graph is returned.

As illustrated, keeping track of mn is possible by apply-
ing incremental updates to the pmf based on incrementally-
observed incomplete states. The form of these incremental
updates is obtained by utilizing the temporal independence
of the state universe:

Lemma 3 (Incremental Updates). An (unapproximated) up-
date from mn−1 to mn given an incomplete state ŝn, where
n ∈ N, follows the relationship

mn(v) =
∑

(v′,v,s)∈E

(
mn−1(v′) P [Sn = s | ŝn]

)
for a (fully-expanded) progression graph Gn(φ) =
(φ, V,E,mn).

Proof. We need to show that the full update from Defini-
tion 5 for time-point n is equivalent to the full update for
time-point m = n − 1 followed by an incremental update
at time-point n as shown in the above relationship. By plug-
ging Definition 5 into the incremental update rule, we get

∑
(v′,v,s)∈En

(∑
ρ≤m∈ρ̂≤m

(
P [S≤m = ρ≤m | ρ̂≤m]

I(PROGm(φ, ρ≤m) = v′)
)
P [Sn = s | ŝn]

)
.

The inner sum ranging over ρ≤m ∈ ρ̂≤m can be rewritten
to instead range over paths in the graph, which incorporates

Algorithm 2: Approximate Partial-State Progression
1 function PPROGRESS(Gn, ttl, expanded, ŝ):
2 Gn+1 ← (Vn, En, [])
3 foreach v ∈ Vn do
4 ttl[v]← ttl[v]− 1
5 if m̂n[v] > 0 then

. Expand progression graph if necessary
6 if ¬expanded[v] then
7 foreach s ∈ 2P do
8 v′ ← PROGRESS(v, s,∆)
9 if v′ 6∈ V then

10 Vn+1 ← Vn+1 ∪ {v′}
11 ttl[v′]← MAX TTL

12 expanded[v′]← false
13 end
14 En+1 ← En+1 ∪ {(v, v′, s)}
15 expanded[v]← true
16 end
17 end

. Apply incremental update
18 foreach (v, v′, s) ∈ En+1 do
19 m̂n+1[v′]← m̂n+1[v′]+m̂n[v]×P [Sn = s | ŝ]
20 ttl[v′]← MAX TTL

21 end
22 end
23 end
. Leak prioritizing ttl first, probability mass second

24 while |sort(Vn+1)| > MAX NODES do
25 v ← head(Vn+1)
26 mn+1[v]← nil
27 ttl[v]← nil
28 expanded[v]← nil

29 foreach (v′, v, s) ∈ En+1 do
30 expanded[v′]← false
31 end
32 Vn+1 ← Vn+1 \ {v}
33 En+1 ← En+1\{(w,w′, s) ∈ En+1 | w = v ∨ w′ = v}
34 end
35 return Gn+1, ttl, expanded

the indicator function:∑
(v′,v,s)∈E

(∑
(φ,v′)∈Em

(
P [S≤m = ρ≤m | ρ̂≤m]

)

P [Sn = s | ŝn]

)
.

We can now collapse the two sums into one sum ranging
over paths from φ to v, appending the incomplete state ŝ to
the incomplete stream ρ̂≤m to obtain ρ̂≤n:∑

(φ,v)∈En

(P [S≤n = ρ≤n | ρ̂≤n]) .

Plugging the indicator function back in we then obtain∑
ρ≤n∈ρ̂≤n

(
P [S≤n = ρ≤n | ρ̂≤n] I(PROGn(φ, ρ≤n) = v)

)
,

which matches Definition 5 for mn(v).

The MAX NODES and MAX TTL values act as parameters
that allow us to adjust the precision of the PPROGRESS
procedure. If MAX NODES and MAX TTL are both set to infin-
ity, the approximated probability mass will match the actual
probability mass for each vertex. We can now show the cor-
rectness of the PPROGRESS procedure:

Theorem 3 (Correctness of PPROGRESS). For every pro-
gression graph Gn−1, PPROGRESS produces an approxi-
mated pmf m̂n[v] such that

mn(v) ∈ [m̂n[v], m̂n[v] + `n],

where `n = 1−
∑
v∈V m̂n[v] denotes the leaked probability

mass.

Proof. Algorithm 2 starts with an expansion phase on lines
3–23, followed by a shrinking phase on lines 24–34. During
expansion, lines 6–17 perform the actual expansion task on
the graph, whereas lines 18–21 perform the incremental up-
date from Lemma 3. Note that the incremental updates for
non-zero probability mass utilize only children of these as-
sociated vertices, which are provided through the expansion
of non-zero probability mass nodes prior to performing the
incremental updates. This means that m̂n[φ] = mn(φ) when
`n = 0, which is the case whenever MAX NODES ≥ |V | after
the expansion phase but before the shrinking phase. For the
case when MAX NODES < |V | after the expansion phase but
before the shrinking phase, the shrinking phase will delete
vertices—and leak their associated probability mass—until
MAX NODES = |V |. That means that the probability mass for
any formula φ at time-point n will be at least m̂n[φ] and at
most m̂n[φ] plus all of the leaked mass `n.

6 Empirical Evaluation
The PPROGRESS procedure detailed in Algorithm 2 was
implemented in Java1 and used for empirical evaluation.
We performed our experiments using a fourth-generation In-
tel Xeon E5-1650 CPU (6 cores, 12 threads) with 50GiB
of RAM allocated to the JVM. All experiments presume a
uniformly-distributed stream universe.

6.1 Time and Space Requirements
We first compare the runtime and space requirements given
a formula and a stream for varying values for the parame-
ters MAX TTL and MAX NODES. Table 1 shows an empirical
comparison of the approaches for a formula

φ = �
(
¬p→

(
♦[0,100]

(
�[0,10]p

)))
and a stream in which 80% of the samples are p and the
remaining samples are unknown, i.e. {{p} ,∅}. Formula φ
is chosen because it is a member of the class of response
formulas—denoted by the pattern �I (φ→ ♦Jψ)—which
is a formula class most commonly observed in runtime veri-
fication (Dwyer, Avrunin, and Corbett 1999). We marked the
best significant results in bold-face. To ensure a fair compar-
ison, the choices for MAX NODES limit the leaked mass to at

1The jprogress implementation is available at https://
github.com/dnleng/jprogress.

MAX TTL MAX NODES Avg Duration (sec) ±2σ Iterations Max Size Median Size Avg Density
∞ ∞ 143.996 ±3.040 226,867 15,706 15,706 0.024
5 ∞ 125.709 ±1.275 226,867 11,851 1,162 0.243
1 ∞ 91.166 ±3.778 226,867 4,074 335 0.665
∞ 250 126.553 ±5.529 226,863 3,858 3,726 0.099
5 250 117.505 ±2.002 226,863 3,855 1,163 0.254
1 250 90.815 ±5.372 226,863 3,722 335 0.665
∞ 225 124.171 ±3.669 226,295 3,480 3,352 0.110
5 225 114.861 ±2.248 226,295 3,480 1,164 0.259
1 225 91.011 ±3.353 226,295 3,361 335 0.665
∞ 200 116.160 ±5.039 225,644 3,105 2,978 0.124
5 200 112,212 ±1.590 225,644 3,105 1,165 0.266
1 200 90.385 ±2.361 225,644 2,999 335 0.665
∞ 175 112.549 ±3.431 222,599 2,730 2,604 0.142
5 175 107.680 ±2.083 222,599 2,730 1,164 0.277
1 175 89.174 ±3.119 222,599 2,653 335 0.665

Table 1: Experimental results for φ using a stream with P [ŝ = {{p}}] = 0.8 and P [ŝ = {{p} ,∅}] = 0.2, terminating when
99% of mass resides in verdict nodes. The table shows the total duration of progression (averaged over ten runs, showing the
95% probability interval), number of progression calls until termination, maximum combined formula size, median combined
formula size, and average mass density in terms of non-zero-mass nodes relative to the total number of nodes.

most 1% of the total probability mass. For the formula φ this
corresponds to MAX NODES ≥ 175 at a step-size of 25.

As expected, the time results show a correlation between
the size of the progression graphs and the number of iter-
ations required until termination. As the size of the graph
decreases, so does the time it takes to perform a progres-
sion, with MAX TTL being more influential than MAX NODES
under the 1% maximum loss constraint. The procedure con-
sequently performs best with parameters MAX TTL = 1
and MAX NODES = 175, followed closely by the param-
eter sets for which MAX TTL = 1. For the space usage,
we observe that the maximum combined size of the for-
mulas in the graph decreases together with MAX TTL and
MAX NODES. This behavior is expected as the vertices in the
progression graph directly correspond to progressable for-
mulas, and these constraints limit the number of such ver-
tices. We likewise also observe the median size and average
density decrease and increase, respectively, as the MAX TTL
and MAX NODES decrease. The minimum median size ob-
served is 335, which appears to be the most commonly ob-
served graph size measured in the length of the contained
formulas. The average density results also show how con-
straints on the time-to-live and the maximum number of
vertices positively impacts the utilization of vertices in the
progression graph. However, there is a balance between a
high density requiring potentially many time-costly updates
to the structure of the graph; and a low density requiring
more space on average.

6.2 Sensitivity to Partiality
Next, we look into the sensitivity to partiality of the pro-
posed graph-based partial-state progression techniques. In
particular, we are interested in the effect of the quality of
a stream on the evaluation of a formula. Thus far, we have
used stream generators for which P [ŝ = {{p}}] = 0.8 and
P [ŝ = {{p} ,∅}] = 0.2. In these experiments, we instead
let these probabilities vary from r ∈ [0.4; 1.0] with a step-

20 40 60 80 100 120 140 160 180

MAX_NODES

0

0.2

0.4

0.6

0.8

1

L
ea

k
ed

 P
ro

b
ab

il
it

y
 a

t
T

er
m

in
at

io
n

0.4

0.6

0.8

1.0

Figure 2: Verdict probability at termination for φ using a
stream with P [ŝ = {{p} ,∅}] ∈ {0.4, 0.6, 0.8, 1.0}.

size of 0.2. The resulting stream generator consequently pro-
duces P [ŝ = {{p}}] = 1 − r and P [ŝ = {{p} ,∅}] = r.
We again use the formula φ for a fair comparison.

Figure 2 shows the leaked probability for varying degrees
of incompleteness in the produced streams. The graph for
the ‘false’ verdict ⊥ would be the inverse of Figure 2. We
can again observe the dual nature of leaked mass versus
⊥ verdicts. Additionally, we can observe a varying sensi-
tivity to increasing the probability of incomplete states. As
the number of incomplete states in a stream increases (due
to their probability of occurring increasing), the inclination
of the associated plots increases as well. We can observe
an increase of incompleteness lead to a faster decrease of
leaked probability as the value of MAX NODES increases. This
is expected behavior because there are now more progres-

sion traces of φ that result in the early falsification of the
formula. The results show that the degree of incompleteness
of a stream has a non-trivial impact on the result of progres-
sion and affects the choice of MAX NODES.

7 Conclusions and Future Work
We have presented an approximate graph-based extension
of the original MTL progression procedure (Bacchus and
Kabanza 1996; 1998) to handle stochastic state information.
The PPROGRESS procedure is shown to correctly reflect the
probabilities of the verdicts > and⊥ given an MTL formula
using an incremental update mechanism. The procedure ad-
ditionally allows for a trade-off between accuracy and space
requirements, by leaking probability mass from certain for-
mulas based on their time-to-live and amount of contained
probability mass. Our empirical evaluation illustrates this
trade-off and the impact on both accuracy and space require-
ments.

For future work, we are interested in a number of exten-
sions and applications. The stream universe is subject to a
number of strict assumptions we would like to relax in future
work. In this paper we assume the state universe to be given;
in future work we wish to consider learning the probability
distribution over the state universe through observation. Ad-
ditionally, the PPROGRESS procedure utilizes a MAX NODES
parameter which to a large degree determines the amount of
probability that will be leaked. It would be interesting to see
if we could predict suitable values for MAX NODES before-
hand given a formula, in order to minimize the leaked prob-
ability at termination. In a similar light, we want to perform
more detailed empirical evaluations for classes of MTL for-
mulas. Finally, we are interested in looking further into the
application of background theories, specifically ASP-based
reasoning. This is motivated by the versatility of ASP-based
reasoning, which has been shown (Brenton, Faber, and Bat-
sakis 2016) to be able to perform spatial reasoning in RCC-
8. We believe that the presented results together with the
potential extensions demonstrates the usefulness of this line
of partial-state progression, which is particulary beneficial
to the area of stream reasoning.

Acknowledgments
This work is partially supported by grants from the National
Graduate School in Computer Science, Sweden (CUGS).
We would like to thank Mattias Tiger for the valuable dis-
cussions which helped improve the notation used in this pa-
per, and the reviewers for their insightful comments.

References
Adolf, F.-M.; Faymonville, P.; Finkbeiner, B.; Schirmer, S.;
and Torens, C. 2017. Stream runtime monitoring on UAS.
In Proceedings of the 17th International Conference on Run-
time Verification, 33–49.
Alur, R., and Dill, D. L. 1994. A theory of timed automata.
Theoretical Computer Science 126(2):183–235.
Alur, R.; Feder, T.; and Henzinger, T. A. 1996. The ben-
efits of relaxing punctuality. Journal of the ACM (JACM)
43(1):116–146.

Bacchus, F., and Kabanza, F. 1996. Planning for temporally
extended goals. In Proceedings of the 13th AAAI conference
of Artificial Intelligence, 1215–1222.
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.
Basin, D.; Bhatt, B. N.; and Traytel, D. 2017. Almost event-
rate independent monitoring of Metric Temporal Logic. In
Proceedings of the 23rd International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, 94–112.
Basin, D.; Krstić, S.; and Traytel, D. 2017. Almost event-
rate independent monitoring of Metric Dynamic Logic. In
Lahiri, S., and Reger, G., eds., Proceedings of the 17th In-
ternational Conference on Runtime Verification, 85–102.
Brenton, C.; Faber, W.; and Batsakis, S. 2016. Answer
set programming for qualitative spatio-temporal reasoning:
Methods and experiments. In Technical Communications of
the 32nd International Conference on Logic Programming,
volume 52, 4:1–4:15.
de Leng, D., and Heintz, F. 2018. Partial-state progression
for stream reasoning with metric temporal logic. In Pro-
ceedings of the 16th International Conference on Principles
of Knowledge Representation and Reasoning, 633–634.
Desai, A.; Dreossi, T.; and Seshia, S. A. 2017. Combining
model checking and runtime verification for safe robotics. In
Proceedings of the 17th International Conference on Run-
time Verification, 172–189.
Dwyer, M. B.; Avrunin, G. S.; and Corbett, J. C. 1999. Pat-
terns in property specifications for finite-state verification.
In Proceedings of the 21st international conference on Soft-
ware engineering, 411–420. ACM.
Emerson, E. A. 1990. Temporal and modal logic. In Formal
Models and Semantics. Elsevier. 995–1072.
Koymans, R. 1990. Specifying real-time properties with
Metric Temporal Logic. Real-Time Systems 2(4):255–299.
Kvarnström, J.; Heintz, F.; and Doherty, P. 2008. A temporal
logic-based planning and execution monitoring system. In
Proceedings of the 18th International Conference on Auto-
mated Planning and Scheduling, 198–205.
Medhat, R.; Bonakdarpour, B.; Fischmeister, S.; and Joshi,
Y. 2016. Accelerated runtime verification of LTL specifi-
cations with counting semantics. In Proceedings of the 16th
International Conference on Runtime Verification, 251–267.
Nenzi, L.; Bortolussi, L.; Ciancia, V.; Loreti, M.; and
Massink, M. 2015. Qualitative and quantitative monitoring
of spatio-temporal properties. In Proceedings of the 15th
International Conference on Runtime Verification, 21–37.
Randell, D.; Cui, Z.; and Cohn, A. 1992. A spatial logic
based on regions and connection. In Proceedings of the 3rd
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 165–176.

