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Abstract

Qualitative spatio-temporal reasoning is an active research
area in Artificial Intelligence. In many situations there is a
need to reason about intertemporal qualitative spatial rela-
tions, i.e. qualitative relations between spatial regions at dif-
ferent time-points. However, these relations can never be ex-
plicitly observed since they are between regions at different
time-points. In applications where the qualitative spatial rela-
tions are partly acquired by for example a robotic system it
is therefore necessary to infer these relations. This problem
has, to the best of our knowledge, not been explicitly studied
before. The contribution presented in this paper is two-fold.
First, we present a spatio-temporal logic MSTL, which allows
for spatio-temporal stream reasoning. Second, we define the
concept of a landmark as a region that does not change be-
tween time-points and use these landmarks to infer qualita-
tive spatio-temporal relations between non-landmark regions
at different time-points. The qualitative spatial reasoning is
done in RCC-8, but the approach is general and can be ap-
plied to any similar qualitative spatial formalism.

Introduction
In many situations there is a need to reason about the spatial
relations between entities at different time-points. For ex-
ample, ‘to take someone’s place’ implies a specific change
in spatial relations for two objects across two time-points.
Qualitative representations are especially useful in situations
where no quantitative representation of spatial regions exist,
for instance because they were provided by a person, or be-
cause the regions represent abstract entities for which no ex-
act spatial information is available. A qualitative representa-
tion provides a more abstract representation which reduces
the complexity of the reasoning by focusing on the salient
aspects. It also handles some forms of uncertainty by consid-
ering equivalence classes rather than values, and it provides
a natural human-computer interface as people often think
and communicate in terms of qualitative representations.

With the amount of data that is continuously produced, AI
applications such as robotic systems are often tasked with
handling incrementally available information. These data
flows are commonly modeled as streams, and the reasoning
over such streams of information is called stream reasoning.
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Formalisms such as Metric Temporal Logic (MTL) (Koy-
mans 1990) in combination with techniques such as pro-
gression can be used to apply logic-based temporal stream
reasoning, and formalisms such as ST 0 (Wolter and Za-
kharyaschev 2000) extend temporal formalisms with quali-
tative spatial expressions. One problem with reasoning about
qualitative spatial relations between different time-points is
that these relations in many cases (such as in robotic sys-
tems) cannot be observed, and must therefore be inferred.

The motivation for our work is to propose and evalu-
ate empirically a novel stream reasoning applicable solution
to the problem of reasoning over unobserved intertempo-
ral spatial relations. Our suggested solution makes use of
landmarks. We are particulary interested in the effective-
ness of using landmarks for these reasoning purposes, and
how well our solution scales. In this paper we define the
concept of a landmark as a region that does not change be-
tween time-points and use these landmarks to infer qualita-
tive spatio-temporal relations between spatial entities at dif-
ferent time-points. Landmarks provide a kind of ‘anchor’ or
frame of reference in relation to which other spatial objects
are observed to change over time. We make use of the well-
known Region Connection Calculus RCC-8 (Randell, Cui,
and Cohn 1992) to represent qualitative spatial relations be-
tween regions, but our approach is general in the sense that it
can be applied to other qualitative spatial formalisms that are
based on transitive spatial relations. Our work complements
other temporalisations of RCC-8, including ST 1 (Wolter
and Zakharyaschev 2000).

Related Work
The temporal logic MTL captures reasoning over time using
temporal operators such as ‘until’ and ‘since’, from which
temporal operators G and F for ‘it is always going to be the
case’ and ‘at least once in the future’ can be constructed. It
does not attempt to handle spatial reasoning. MTL has been
used in previous working solutions to temporal stream rea-
soning (Doherty, Kvarnström, and Heintz 2009).

Qualitative spatio-temporal reasoning is concerned with
reasoning over time and space, in particular reasoning about
spatial change (Cohn and Renz 2008). Several qualitative
spatio-temporal reasoning formalisms have been created by
combining a spatial formalism with a temporal one. Ex-
amples are STCC (Gerevini and Nebel 2002) and ARCC-



8 (Bennett et al. 2002) which both combine the Region
Connection Calculus RCC-8 with Allen’s Interval Alge-
bra (Allen 1983). RCC-8 provides and formalisation for
topological reasoning over abstract regions based on their
spatial relations. The reasoning is qualitative and uses a sub-
set of RCC, which builds up a range of spatial relations start-
ing from the ‘connected’ relation. Using composition-table
based reasoning in RCC-8 (Cui, Cohn, and Randell 1993),
new spatial relations can be inferred from incomplete spatial
knowledge.
ST 0 represents a language for reasoning over spatio-

temporal representations and offers a temporalisation of
RCC-8 using temporal operators similar to MTL. It makes
use of the temporal operators ‘it will always be the case’ �,
‘at some point in the future’ ♦, and ‘at the next time-point’
©. Its extension ST 1 introduces spatio-temporal represen-
tations for spatial relations between two time-points through
the ‘next’ operator, but does not attempt to provide reason-
ing techniques that handle instantaneous observations as is
the aim of this paper.

Previous work (Heintz and de Leng 2014) focused on in-
tegrating qualitative spatial reasoning using MTL in combi-
nation with RCC-8. The temporal operators were extended
to allow for optionally time-bounded versions �[t0,t1] and
♦[t0,t1] respectively. The approach was to subdivide regions
into static and dynamic regions, where the relations between
static regions could be precomputed for performance gains.
However, these relations were limited to single time-points.

Landmarks have previously been used for qualitative spa-
tial reasoning (Liu et al. 2011; Li, Liu, and Wang 2013) to
refer to known entities or reference objects within single
time-points. They are used as reference objects for formu-
lating constraints, and are considered to be known entities
or constants from which constraints are formed to unknown
entities or variables respectively. In this paper the term ‘land-
mark’ is used to similar effect, i.e. referring to a known en-
tity, with the difference being that what is known is the en-
tity’s intertemporal relations to itself.

For our empirical evaluations in this paper we make use
of and extend the scenario generation techniques presented
by (Renz and Nebel 2001). We have extended the Generic
Qualitative Reasoner (Gantner, Westphal, and Wölfl 2008)
to support the ‘next’ operator between any two time-points.
GQR can be used to compute the algebraic closure given a
constraint satisfaction problem (CSP) composed of a set of
qualitative (spatial) relations.

MSTL for Spatio-Temporal Objects
To make statements about the spatial and temporal nature of
objects, we introduce a hybrid logic called Metric Spatio-
Temporal Logic (MSTL), which combines elements from
MTL and RCC-8. MTL provides the ability to reason over
objects in time, but does not include a spatial formalism. We
extend these languages by considering temporal objects that
are spatial in nature. MSTL is thus similar to ST 1, which
seeks to temporalise RCC-8, but thereby restricts its lan-
guage to spatial relations. Because MSTL is in part based
on MTL, statements in MSTL can contain both spatial rela-
tions and predicates.

Syntax of MSTL
Spatial relations are of the form R(r1, r2) where R is any
of
{
EC,EQ,DC,PO,NTTP,TPP,NTTP−1,TPP−1

}
and

r1, r2 are spatial objects, also referred to as regions. We
call this set R8 for brevity to indicate that its elements
correspond to the RCC-8 relations ‘externally connected’,
‘equals’, ‘disconnected’, ‘non-tangential proper part’, ‘tan-
gantial proper part’, ‘inverse non-tangential proper part’ and
‘inverse tangantial proper part’ respectively. Given n-ary
predicate P , binary spatial relationR8, and variable or con-
stant terms τ1, . . . , τn, the following statements are well-
formed formulas (wffs) in MSTL:

R8(τ1, τ2) | P (τ1, . . . , τn) | τ1 = τ2 | τ1 6= τ2

By recursion, for wffs φ and ψ and variable x the following
statements are also wffs in MSTL:

¬φ | φ ∨ ψ | φ ∧ ψ | φ→ ψ | ∀x[φ] | ∃x[φ]
Finally, temporal notations are also defined by recursion for
wff φ and integers n1, n2 ∈ N:

©φ | �[n1,n2]φ | �φ | ♦[n1,n2]φ | ♦φ
The syntax allows us to make complex spatio-temporal

statements. Take for example the following statement, where
informally � means ‘it will always be the case’, ♦ means ‘at
some point in the future’, and © means ‘at the next time-
point’. The spatial relation PO is contained inR8 and stands
for ‘partially overlapping’.

∀c1[∀c2[c1 6= c2 ∧ Car(c1) ∧ Car(c2)→
(�(PO(©c1, c2) ∧ Speeding(c1)→ ♦PO(c1, c2)))]]

This wff has the intended meaning ‘it is always the case that
if a car is speeding and tails another car, they will eventually
collide’.

Semantics of MSTL
Because we are interested in statements over space and time,
we make use of spatio-temporal models for MSTL.
Definition 1 (Spatio-Temporal Model). A spatio-temporal
model is a tuple of the formM = 〈T,<,U,D, I, α〉, where
T represents a set of time-points, < represents an ordering
over T , U represents the non-empty universe of the space as
a set of points, and D = 〈P,R〉 represents the domain con-
sisting of predicates P and spatial objectsR. An interpreta-
tion It ∈ I maps predicates and constant terms to P andR
respectively for every time-point T . For constant terms this
mapping will be the same for all t, but for predicates this
is not necessarily the case. A spatial assignment function α
associates at every time-point in T every spatial object label
inR to a subset of U .

From this definition it is clear that we are only consider-
ing objects that have some spatial properties associated with
them, expressed in the form of spatial relations. Spatial ob-
jects therefore are also commonly called regions when we
only focus on temporal and spatial properties. Alternatively,
one could consider a class hierarchy over objects such that
regions are a subclass of objects, but this is left for future
work and does not impact the focus of this paper.



Definition 2 (Truth). The MSTL statement that a spatio-
temporal formula φ holds in M = 〈T,<,U,D, I, α〉 at
time-point t ∈ T is defined recursively.

M, t |= P (τ1, . . . , τn) iff
〈
It(τ1), . . . , I

t(τn)
〉
∈ It(P )

M, t |= ∀x[φ] iff ∀r ∈ R :M, t |= φ[x/r]

M, t |= ∃x[φ] iff ∃r ∈ R :M, t |= φ[x/r]

M, t |= ¬φ iffM, t 6|= φ

M, t |= φ ∨ ψ iffM, t |= φ orM, t |= ψ

M, t |= φ ∧ ψ iffM, t |= φ andM, t |= ψ

M, t |= φ→ ψ iffM, t 6|= φ orM, t |= ψ

M, t |= �[t1,t2]φ iff ∀t1 ≤ t′ ≤ t2 :M, t′ |= φ

M, t |= �φ iffM, t |= �[0,∞]φ

M, t |= ♦[t1,t2]φ iff ∃t1 ≤ t′ ≤ t2 :M, t′ |= φ

M, t |= ♦φ iffM, t |= ♦[0,∞]φ

M, t |=©φ iffM, suc(t) |= φ

M, t |= C(r1, r2) iff α(r1, t) ∩ α(r2, t) 6= ∅

From the RCC ‘connected’ spatial relation C, the usual se-
mantics of all RCC-8 relations can be recursively defined,
but here they are left out for the sake of brevity.

The semantics for the ‘next’ operator © uses a function
suc that maps a time-point to its successor time-point. In the
case of the commonly used T = N, we for example have
suc(t) = t+1 for all time-points t ∈ T . In the general case,
we use for t, t′, t′′ ∈ T :

suc(t) = t′ iff t < t′ ∧ ¬∃t′′ : [t < t′′ < t′].

A powerful extension is to allow for the ‘next’ operator
to be invoked over region variables. In supporting this, we
can refer to a particular region at the next time-point, or by
recursion any future time-point.

Definition 3 (Next over Regions). A region term is a spa-
tial object in R, a variable x, or ‘next’ applied to a re-
gion term. The semantics is defined by extending α with
α(©r, t) = α(r, suc(t)) for any time-point t ∈ T .

Representing Spatial Relations
While the ‘next’ operator allows for powerful representa-
tions, it complicates evaluation of those statements when we
consider observations of the world to occur within rather
than across time-points. Spatial relations for regions can be
partially observed at time-point t and at time-point suc(t)
independently, but no observations can be made with regards
to the spatial relations between regions at time-point t and
regions at time-point suc(t). To better illustrate how these
concepts relate, we introduce the spatial relation matrix.

Definition 4 (Spatial Relation Matrix). A spatial relation
matrix is an n × n matrix M t for time-point t ∈ T where
n denotes the total number of region variables |R|. For ev-
ery matrix element M t

i,j and region variables ri, rj ∈ R we
have M t

i,j = (riRrj) such that R ⊆ R8 and R 6= ∅. The
semantics of M t are then as follows.

M t
i,j = (riRrj) iffM, t |=

∨
Rk∈R

Rk(ri, rj)

The spatial relation matrix allows us to intuitively repre-
sent spatial facts about regions and corresponds to a com-
plete RCC-8 network. Such matrices are also expected as
input to qualitative reasoners such as GQR. The main di-
agonal always consists of the singleton {EQ}. Further, the
matrix is semi-symmetric; symmetry holds for all relations
except for NTTP and TPP, which have inverses NTTP−1

and TPP−1 respectively. Existing general solvers for qual-
itative CSPs such as GQR can be used to determine the al-
gebraic closure of spatial relation matrices, i.e. given spatial
relation matrix M t, the algebraic closure AC(M t) yields a
spatial relation matrix N t such that for every corresponding
set of spatial relations N t

i,j ⊆M t
i,j ⊆ R8. A small example

of a spatial relation matrix for regions r1, r2, r3 at time-point
t with partial knowledge is shown below.

M t =

 {EQ}
{
NTTP−1

}
{PO,EC}

{NTTP} {EQ} {DC}
{PO,EC} {DC} {EQ}


Region r2 is inside of region r1 but disconnected from re-
gion r3, and region r1 is partially overlapping or externally
connected with region r3.

A spatial relation matrix can be extended to describe rela-
tions between multiple time-points. This is a useful property
because it allows us to describe relations between regions at
different time-points that are not necessarily consecutive.

Definition 5 (Intertemporal Spatial Relation Matrix). An in-
tertemporal spatial relation matrix M t1,t2 is a spatial rela-
tion matrix describing the spatial relations between regions
ri, rj ∈ R such that we relate ri at time-point t1 to rj at
time-point t2, i.e. relating α(ri, t1) to α(rj , t2).

A spatial relation matrix M t from Definition 4 is then
equivalent to an intertemporal spatial relation matrix M t,t.
Intertemporal spatial relations can thus be represented by an
intertemporal spatial relation matrix. For the ‘next’ operator,
this would for example be M t,suc(t). However, we assume
that these relations are unobservable and must somehow be
inferred from our observations at time-points t and suc(t),
represented by M t and Msuc(t).

By combining the four different combinations for in-
tertemporal spatial relation matrices over two time-points
t1 and t2, we can consisely describe in one matrix the re-
lations between regions at single time-points as well as the
relations between those regions at different time-points. This
corresponds to an RCC-8 network in which every region is
contained twice, i.e. once for every time-point.

Definition 6 (Extended Spatial Relation Matrix). An ex-
tended spatial relation matrix M t1∪t2 for t1 < t2 combines
four intertemporal spatial relation matrices as follows:

M t1∪t2 =

[
M t1,t1 M t1,t2

M t2,t1 M t2,t2

]



In general, spatial relation matrices can be used to rep-
resent uncertainty for spatial relations between regions by
using non-singleton sets. This is important because often we
can not deduce that a single relation must hold. We can use
extended spatial relation matrices to talk about the spatial re-
lations both within individual time-points and between time-
points. This makes them a suitable representation tool for in-
tertemporal RCC-8 networks when considering the problem
of deducing unobservable intertemporal relations.

Intertemporal Landmarks

Reasoning alone does not allow us to say anything about
intertemporal relations, represented by M t1,t2 and M t2,t1

in extended spatial relation matrices. These relations cannot
be observed, nor can they be inferred from individual time-
points. Concretely, observations are limited to M t1,t1 and
M t2,t2 . This may seem counter-intuitive, but this is because
humans often assume a frame of reference when observing
spatial changes over time. One way around this problem is
therefore to make assumptions about some or all intertempo-
ral relations represented byM t1,t2 andM t2,t1 in order to es-
tablish such a frame of reference. However, bad assumptions
can lead to inconsistencies, so special care must be taken.
We make use of landmark assumptions where some spatial
entities are assumed to be non-changing.

Definition 7 (Landmark). A landmark given a set of region
variables R over any two time-points t, suc(t) is a region
variable r ∈ R that is rigid between t and suc(t), i.e.
EQ(r,©r). The set of landmarks is indicated by LM ⊆ R
such that r ∈ LM implies that landmark r is rigid.

Example landmark candidates are e.g. buildings, lakes,
monuments, trees, roads. These physical entities are unlikely
to change during the run-time of a system, and therefore
provide a reasonable frame of reference. An immediate ef-
fect of landmarks being rigid is that their relations to other
landmark regions remain unchanged. Effectively the set of
landmarks LM provides a possible frame of reference with
respect to which relations may change over time. Since this
affects the truth semantics of statements in MSTL, we intro-
duce a landmark extension to the spatio-temporal model to
capture this.

Definition 8 (Landmark-Based Spatio-Temporal Model). A
landmark-based spatio-temporal model is a spatio-temporal
model MLM = 〈T,<,U,D, I, α〉 and LM ⊆ R repre-
sents the landmark set.MLM then restricts α such that for
all time-points t ∈ T and all landmark regions r ∈ LM it
is the case that α(r, t) = α(r, suc(t)).

Landmarks may introduce inconsistencies if we make ob-
servations that conflict with the landmark-imposed restric-
tion of α. To illustrate how this might happen, consider an
example where at time-point t we make the observation
PO(r1, r2), and at time-point suc(t) we make the obser-
vation DC(r1, r2). If we only consider the individual time-
points, there is no problem. The following extended spatial
relation matrix illustrates our ignorance of the intertemporal

spatial relations M t1,t2 and M t2,t1 .

M t1∪t2 =

{EQ} {PO} R8 R8

{PO} {EQ} R8 R8

R8 R8 {EQ} {DC}
R8 R8 {DC} {EQ}


However, if we use landmarks, the choice of LM results in
an assumption about some intertemporal relations. Choos-
ing LM = {r1, r2} is inconsistent, because it implies that
regions r1 and r2 need to be partially overlapping and dis-
connected at the same time, which is a contradiction. Instead
picking LM = {r1} is consistent, and one could imagine
region r2 ‘moving away from’ region r1. Naturally, the con-
verse holds as well if we pick region r2 as our frame of ref-
erence.

We can show that consistency is guaranteed if only one
landmark is chosen, and the above example shows that this
does not always hold for the case of |LM| ≥ 2. Picking
a single landmark corresponds to the case of adding a sin-
gle connection between two disconnected RCC-8 networks
for different time-points. The issue of choosing more than
one landmark while retaining consistency is a difficult prob-
lem, and is closely related to the Amalgamation Property (Li
et al. 2008), as well as the Patchwork Property (Lutz and
Milic̆ić 2007; Huang 2012). In the remainder of this paper
we will therefore assume that the chosen set of landmarks is
always consistent. This corresponds to the assumption that
our chosen frame of reference is consistent. Under this as-
sumption, if we run into any inconsistencies, our observa-
tions are therefore assumed to have been incorrect.

To further illustrate the impact of the choice of LM,
consider again the scenario above and suppose we wish
to evaluate the formula �EQ(r1,©r1) at time-point t.
Choosing LM = {r1} means this formula will eval-
uate to True, i.e. M{r1}, t |= �EQ(r1,©r1). Choos-
ing LM = {r2} means this formula will evaluate to
False, i.e. M{r2}, t 6|= �EQ(r1,©r1). Choosing any
other consistent LM we can only conclude MLM, t |=
�EQ(r1,©r1)∨¬(�EQ(r1,©r1)); we cannot say for cer-
tain which one is true. This is specifically caused by the
choice of landmark in combination with the observations at
the two time-points. The following two statements then hold
for the same two observations described earlier:

M{r1}, t |= �EQ(r1,©r1) ∧ ¬�EQ(r2,©r2)
M{r2}, t |= �EQ(r2,©r2) ∧ ¬�EQ(r1,©r1)

This clearly shows how landmark choice shapes the frame
of reference within which MSTL statements may hold.

Progression of MSTL Statements
In the context of stream reasoning, information is assumed
to become incrementally available. Progression is a tech-
nique for evaluating temporal logic formulas where we try
to determine the truth value of the formula based on the in-
formation received thus far. This makes it possible to some-
times determine the truth value for an MSTL formula with-
out having to wait for the entire stream to arrive. The result
of progressing a formula through the first state in a sequence



is a new formula that holds in the remainder of the state se-
quence iff the original formula holds in the complete state
sequence. If progression returns true (false), the entire for-
mula must be true (false), regardless of future states. The
complexity of progression is linear in the size of the formula,
but the resulting formula may double in size. This may re-
sult in exponentially long formulas in the worst case, but by
introducing intervals for temporal operators, the worst-case
length can be limited.

Progression of Intratemporal Relations
By combining temporal with spatial reasoning, we effec-
tively need both temporal and spatial evaluation methods.
Progression is used to handle temporal aspects across time-
points, and has previously been used to evaluate MTL formu-
las (Doherty, Kvarnström, and Heintz 2009). For every step
in the progression, spatial reasoning is performed within that
step by using for example GQR. This however does not in-
clude spatial reasoning between different time-points, as is
the focus of this paper. Therefore, progression needs to be
extended to handle intertemporal relations that are the result
of the ‘next’ operator in MSTL. This gives rise to additional
rewriting rules based on occurrences of the ‘next’ operator.

Progressing the ‘next’ operator when it occurs in front of
wffs in MSTL corresponds to rewriting that formula by re-
moving the operator, i.e. during progression©φ is rewritten
to φ for wff φ. The following proofs show equivalences for
occurrence of ‘next’ excluding intertemporal relations, and
make use of the semantics presented in Definitions 2 and 3.

Theorem 1 (Next and Negation).

|= ∀x[∀y[¬©R(x, y)↔©¬R(x, y)]]

Proof. Decomposing bi-implication into cases:

(⇒) Assume M, t |= ¬©R(x, y) holds for some ar-
bitrary M and t. From the semantics of negation this
means M, t 6|=©R(x, y). According to the semantics
of ©, this is equivalent to M, suc(t) 6|= R(x, y), thus
M, suc(t) |= ¬R(x, y). Reintroducing © then yields
M, t |=©¬R(x, y).

(⇐) Analogous to the above in reverse order.

Theorem 2 (Next and Always).

|= ∀x[∀y[�[t1,t2]©R(x, y)↔ �[suc(t1),suc(t2)]R(x, y)]]

Proof. Decomposing bi-implication into cases:

(⇒) Assume M, t |= �[t1,t2]©R(x, y) holds for some
arbitrary M and t. From the semantics of �, this means
∀t1 ≤ t′ ≤ t2 : M, t′ |= ©R(x, y) holds. By defini-
tion of ©, for every t′ we get M, suc(t′) |= R(x, y).
Reintroducing the universal quantifier, we get
∀suc(t1) ≤ t′ ≤ suc(t2) : M, t′ |= R(x, y). Rein-
troducing �, this yieldsM, t′ |= �[suc(t1),suc(t2)]R(x, y).

(⇐) Analogous to the above in reverse order.

Theorem 3 (Next and Eventually).
|= ∀x[∀y[♦[t1,t2]©R(x, y)↔ ♦[suc(t1),suc(t2)]R(x, y)]]

Proof. Analogous to the proof of Theorem 2, replacing sym-
bols ∀ and � by ∃ and ♦ respectively.

Progression of Intertemporal Relations
The ‘next’ operator can also occur inside intertemporal re-
lations R(x,©y). In this case, it is not possible to evalu-
ate R(x,©y) at the current time-point, because the relation
depends on a future state of y. To work around this prob-
lem, we make use of the ‘previous’ operator ©−, which is
the inverse of the ‘next’ operator and which follows trivially
from Definition 3. The following proofs show equivalences
for ‘next’ involving intertemporal relations, and make use of
the ‘previous’ operator.
Theorem 4 (Extract Next).

|= ∀x[∀y[©R(x, y)↔ R(©x,©y)]]
Proof. Decomposing bi-implication into cases:

(⇒) Assume M, t |=©R(x, y) holds for some ar-
bitrary M and t. From the semantics of ©, this
means M, suc(t) |= R(x, y). Further, we have
α(z, suc(t)) = α(©z, t) for any region z, so we get
M, t |= R(©x,©y).

(⇐) Analogous to the above in reverse order.

Theorem 5 (Partially Extract Next).
|= ∀x[∀y[R(x,©y)↔©R(©−x, y)]]

Proof. Decomposing bi-implication into cases:

(⇒) Assume M, t |= R(x,©y) holds for some ar-
bitrary M and t. From the semantics of © over
regions, we have α(z, t) = α(©−z, suc(t)) and
α(©z, t) = α(z, suc(t)) for any region z. Therefore
this is equivalent toM, suc(t) |= R(©−x, y) when applied
to regions x and y respectively. Introducing © then yields
M, t |=©R(©−x, y).

(⇐) Analogous to the above in reverse order.

The ability to rewrite MSTL formulas such that oc-
curences of ‘next’ over regions are either removed or re-
placed by ‘previous’ is vital for stream reasoning, because
it allows for the delayed evaluation of formulas so that, at
the time of evaluation, they only refer to the current and pre-
vious state(s) of the world. This makes the earlier-presented
landmark approach applicable in a stream reasoning context.

Experiments and Results
In order to empirically evaluate MSTL with landmarks we
ran experiments to test the effectiveness and the scalability
of the land-mark based approach compared to the case where
no landmarks were used. In these experiments, we were only
interested in consistent scenarios, to capture the operational
real-world domain. In particular, we are interested in the ef-
fects of landmarks on the resulting intertemporal disjunction
size for non-landmark to non-landmark relations.



Figure 1: Left: Absolute disjunction size for varying number of regions and landmark ratio; smaller is better. Right: Percentage
of such relations fully unknown. Note that a landmark ratio of 0 corresponds to the situation prior to our proposed solution.

Scenario Generation
When considering two time-points t1 and t2, the problem of
generating scenarios is given a consistent scenario with land-
marks for time-point t1 generate a consistent scenario with
those same landmarks for time-point t2. To achieve this, we
make use of a variation of the scenario generation method
presented by (Renz and Nebel 2001), which was previously
extended to handle static regions (Heintz and de Leng 2014).
Scenarios for a single time-point are generated based on the
number of (non-landmark) regions n and the average dis-
junction size l. We extend this by also considering the num-
ber of landmarks m such that n +m = |R|, and fixing pa-
rameter l = 4. The reason for fixing l = 4 is that it provides
a middle ground between fully known and fully unknown.
Our parameter combinations consist of varying numbers of
regions between 20 and 200 with step size 20, and varying
landmark ratios relative to the number of regions (i.e. m/n)
between 0 and 0.9 with step size 0.1.

The initial ‘seed’ for a scenario covers the landmark re-
gions and their relations to each other. In our experiments we
generated 30 such seeds per parameter combination. Here
we are only interested in a consistent scenario with com-
plete knowledge, so GQR is used to generate consistent in-
terpretations of scenarios. These fully known seeds can then
be used as the basis for a larger spatial relation matrix by
adding further regions until we obtain the desired |R| re-
gions. The number of CSPs generated from a seed was kept
constant at 20. Note that these CSPs then all share a seed as
a common component. We can therefore combine two CSPs
that share a common seed. Excluding combinations that in-
volve the same CSP twice, given 30 seeds and 20 CSPs per
seed we get 30 × (20 × (20 − 1))/2 = 5700 instances for
each parameter set.

Results
The results of our experiments are shown in Figure 1, where
every point represents the average over 5700 instances. On

the left side, the number of regions and the landmark ra-
tio are changed to see how they affect the disjunction size
of non-landmark to non-landmark spatial relations. Here we
limit ourselves to the average over the spatial relations that
are not fully unknown. The results show that the more land-
marks are added, the less uncertainty in terms of disjunc-
tion size is measured for these relations, reaching between
disjunction sizes 4 and 5 for a landmark ratio of 0.9. The
landmark approach is also scalable in terms of the number
of regions.

This is also shown in the graph on the right, which illus-
trates the percentage of non-landmark to non-landmark in-
tertemporal relations that remain fully unknown. Previously,
we could not say anything about these relations, as illus-
trated by the percentage of fully unknown relations being
100%. Using landmarks, this is reduced to 30% for land-
mark ratio 0.9, but having a landmark ratio as low as 0.1
results in an improvement of roughly 20%.

Conclusions
We have presented a landmark-based approach to qualitative
spatio-temporal stream reasoning to handle unobservable in-
tertemporal spatial relations. Landmarks represent regions
that do not change over time and can therefore serve as a
qualitative frame of reference. The presented logic MSTL
is a combination of MTL and RCC-8, and makes it pos-
sible to reason over spatio-temporal objects. This includes
applying the ‘next’ operator to spatio-temporal objects and
thereby allowing spatial relations between regions from dif-
ferent time-points to be described. To evaluate statements in
MSTL, we presented an approach to handle intertemporal
relations during progression with the help of rewriting rules.
The landmark-based approach was tested for its scalability
and effectiveness, showing an improvement in the disjunc-
tion sizes of non-landmark to non-landmark relations inde-
pendent of the number of regions involved.

The presented work can serve as a starting point for in-



teresting future efforts to further improve the ability to rea-
son with uncertainty. Another interesting angle of research
focuses on expanding the reasoning capabilities to include
further temporal operators over regions, or to consider in-
tertemporal relations across many time-points.
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