Welcome to the 1st NMI Seminar

Laboratory Teaching

- How to answer students’ questions (Anna)
- How to give feedback on students’ reports (Juha)
- How to use lab lectures (He)
- Open discussion
- Upload the seminar results

Introduction

- Why labs?
 - Stimulate learning processes
 - Teach the students how to learn
- Stimulate creativity and independent thinking
- Give a greater understanding of the theory

Learning by Doing

- Combining theory and practice
- Difference between knowing how to do something and actually being able to do it
- Example: sports, programming etc.

Answering Questions

- Generally: Give answers such that...
 - The students have to think for themselves
 - The work can progress
 - Don’t give away the whole solution
- Let’s look at some example situations...

Answering Questions – Example 1

- Ex1: The students need help to get started with a new lab or new tool
- Point the students to recommended reading
 - Course literature
 - Lab instructions
 - Course homepage
 - How-to manuals etc.
- Give help related to technical difficulties (students not familiar with UNIX etc.)
Answering Questions – Example 2

- Ex2: The students are stuck and want you to solve the exercise for them
- Ask them what they have done so far (explaining might naturally lead them to an idea of what to do next)
- Ask questions related to theory – recommend reading
- If the problem is not directly related to the lab (syntax errors, environment issues) – give hints/help

Remember

- There are no stupid questions
- Treat the students equally
- Don’t give away too much hints…
- …but give enough help for the students to continue.

References:

A. Hofstein, V. Lunetta, "The Laboratory in Science Education: Foundations for the Twenty-first Century"

John Dewey, founder of the term "Learning by doing"

Giving feedback to students on reports, labs and reaction papers (Swe. reflektioner)

- **Who?**
 - supervisor (advisor, tutor)
 - peers (other students, colleagues)
 - reviewer
- **When?**
 - when agreed upon
- **How?**
 - in written form: structured e-mail, comments in pdf, comments in printed report
 - orally
- **Why? (see next)**
- **What? (later)**

Why feedback?

- part of learning process
- assessment of understanding
- develop skills
 - analytical ability
 - writing
 - learning
- integrate new knowledge with previous knowledge
- provide a better picture of what is expected in the course

What type of feedback?

- contains evaluations within the “field’s accepted standards of judgement”
- should be fair, i.e., keep it to the specific tradition within the field
- examples, different types of feedback in different fields:
 - humanities: “interesting” arguments
 - social sciences: the methodology
 - natural sciences and engineering: the results and their implications

What type of feedback? (cont’d)

- labs
 - solved problem correctly?
 - understood the problem/solution?
 - smaller errors: discuss orally!
- reaction papers
 - personal expressions?
 - makes use of own experience?
 - references course literature?
What type of feedback (cont’d)

- report
 - audience?
 - purpose?
 - problem to be solved (with motivation)?
 - conclusions?
 - evidence
 - valid/feasible
 - important assumptions?
 - contribution?
 - all parts there?

Constructive feedback

- construct what?
- balanced
- if negative, give suggestion for improvement
- dialogue

How to use lab lecture

- Lab lecture
 - 2 lab lectures in Database normalization + EER diagram
 - between lecture and lab
 - repeat, and in detail
 - discuss relevant confusion students have in lectures
 - point out the goal of labs
 - connect theory to labs

“You have to be more organized than you realize”

- Are there materials for the lab lectures?
- Does each lab assistant use the same materials?
- What do we expect students to do before the lab lecture?
 - give them exercises during the lecture
 - do students already see the problem and/or feel confused?
 - ask them to do exercises before they come to the lecture
 - bring up the common mistakes

“Prepare to repeat the difficult/important theories

- Introduce the lab lecture
 - state what you will be doing, and how it fits into labs.

Summarize

- finish the lab by reviewing what students should have learned, and previewing the work for the labs.

Discussion

- Treat students as they need
- Remember that lab assistants are the connections between students and course leaders
- Act as a teacher, not a student any more
- By asking students questions to teach students
- Time boxing