

 \mathcal{C}

Introduction

- Why labs?
 g Stimulate learning processes
- g Teach the students how to learn
- ⁿ Stimulate creativity and independent thinkingⁿ Give a greater understanding of the theory

Answering Questions – Example 1

- Ex1: The students need help to get started with a new lab or new tool
- n Point the students to recommended reading
 - g Course literature
 - q Lab instructions
 - g Course homepage
 - g How to-manuals etc.
- Give help related to technical difficulties (students not familiar with UNIX etc.)

Answering Questions – Example 2

- n Ex2: The students are stuck and want you to solve the exercise for them
- Ask them what they have done so far (explaining might naturally lead them to an idea of what to do next)
- Ask questions related to theory recommend reading
 If the problem is not directly related to the lab (syntax errors, environment issues) give hints / help

why feedback? a part of learning process a ssessment of understanding develop skills

- analytical ability
- g writing
- q learning
- n integrate new knowledge with previous knowledge
- n provide a better picture of what is expected in the course

What type of feedback?

- contains evaluations within the "field's accepted standards of judgement"
- $\ensuremath{\,\mathrm{n}}$ should be fair, i.e., keep it to the specific tradition within the field
 - examples, different types of feedback in different fields:
 d humanities: "interesting" arguments
 - g social sciences: the methodology
 - ${}_{\rm q}$ $\,$ natural sciences and engineering: the results and their implications

Summarize

g finish the lab by reviewing what students should have learned and, previewing the work for the labs.

