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Abstract

In this paper, we propose a novel algorithm, called update
propagation through replica chain (UPTReC), to maintain
file consistency in decentralized and unstructured peer-to-peer
(P2P) systems. In UPTReC, each file has a logical replica chain
composed of all replica peers (RPs) which are defined as peers
that have replicas of the file. Each RP acquires partial knowl-
edge of the bi-directional chain by keeping a list of informa-
tion about k nearest RPs, called probe peers, in each direction.
When an RP initiates an update, it pushes the update to all pos-
sible online (active) RPs through the replica chain. A recon-
nected RP pulls an online RP to synchronize the replica status
and the information of the probe peers. An analytical model
is derived to evaluate the performance of the UPTReC algo-
rithm. The analytical results provide a better understanding of
the system in choosing the system parameters for probabilis-
tically guaranteed file consistency with minimum overheads.
Simulation experiments are conducted to compare the perfor-
mance with an existing update propagation algorithm based on
the rumor spreading scheme. The experimental results show
that the UPTReC can significantly reduce (up to 70%) over-
head messages and also achieve smaller stale query ratio for
files prone to frequent updates.

I. INTRODUCTION

The peer-to-peer (P2P) systems are self-organizing dis-
tributed systems, in which all participating peers cooperatively
provide and receive services from each other. P2P systems are
rapidly growing due to such desirable characteristics as scala-
bility, availability, anonymity and authentication.

The P2P systems can be categorized into structured and un-
structured. In a structured P2P system, the topology is tightly
controlled and the files are well deployed [14] [16]. On the
other hand, an unstructured P2P system has no central con-
trol of its topology and file placement [1][3] [5]-[7] [9] [12].
Chord [16] is an example of a structured P2P system whereas
Gnutella [1] is an example of a decentralized and unstructured
P2P system. In this paper, we focus on the decentralized and
unstructured P2P systems, in which each peer maintains infor-
mation about its neighboring peers. Some files may be heavily

replicated in the system to improve the file availability and sys-
tem fault-tolerance. To acquire a file, a peer searches the file
through its neighboring peers. In order to make such P2P sys-
tems scalable and efficient, significant efforts have been made
on the development of search and replication algorithms [5]
[71[9][12]. In these algorithms, the locations of replicas for a
file are well deployed based on partial knowledge of the system
to minimize the search cost and balance the network load. Fur-
thermore, these algorithms assume that the files are rather static
and updates occur very infrequently. Indeed, the impact of the
file update has not received much attention.

However, in many application domains, such as trust man-
agement [3], bulletin-board systems and distributed web cache
[10], the updates occur frequently. Let us look at a simple file
update example by considering peers sharing software. Assume
a peer initiates a software in the system, which can be replicated
by other peers to enhance its availability and minimize search
costs. Any peer which has the replica of the software can update
it, as a result of debugging or adding more advanced features.
After a peer modifies the software, its old version replicas are
no longer valid, hence if the update is not properly propagated
to its replicas, the incoming queries from these replicas are not
valid. Without update propagation, even if the replicas are in-
validated properly, the well placed replicas no longer exist, thus
resulting in a large search cost or even unavailable to find the
file for incoming file queries. Therefore, effective propagation
of update to all replica peers (RPs), which are defined as peers
that have the replicated files, is critical to maintaining balanced
network load, enhanced file availability, and reduced access la-
tency. Datta, et al. [8] proposed a hybrid push/pull update prop-
agation algorithm based on the rumor spreading algorithm for
decentralized and unstructured P2P systems. This algorithm is
the first attempt to focus on the effective propagation of updates
in such P2P systems. However, the overhead messages of up-
date propagation are significant, implying significant resource
(bandwidth) consumption for frequently updating files in large
P2P systems. Moreover, it is difficult to deal with RPs with
dynamic IP addresses.

In this paper, we propose a novel algorithm, called Update
Propagation Through Replica Chain (UPTReC), to maintain
file consistency in decentralized and unstructured P2P systems.



UPTReC provides a probabilistically guaranteed file consis-
tency. In this algorithm, each file has a logical replica chain
composed of all RPs. Each RP has partial knowledge of the
bi-directional chain by keeping information (i.e., identity (ID)
and IP address) of a list of k nearest RPs (called probe peers)
in each direction. The replica chain can be naturally built and
easily maintained during the file replica process. When an RP
updates a file, it pushes the update to its online (i.e., active)
probe peers in each direction. The farthest online probe peer
in turn forwards the update to its online probe peers along the
direction. This process recursively propagates the update to all
possible online RPs. When an offline (i.e., inactive) RP gets re-
connected, it pulls an online probe peer to synchronize the file
status and the probe peers’ information. If the RP’s IP address
is changed, the new IP address is pushed to all possible online
probe peers which in turn update the maintained information of
the reconnected RP.

An analytical model is derived for the proposed UPTReC
algorithm. The analytical results provide a better understand-
ing of the system in choosing the system parameters for prob-
abilistically guaranteed file consistency with minimum over-
heads. The analytical results also show that UPTReC is effi-
cient for RPs with dynamic IP addresses. The simulation results
show that UPTReC significantly reduces (up to 70%) overhead
messages to propagate updates in comparison with the rumor
spreading based algorithm [8].

The rest of the paper is organized as follows. Section II gives
an overview of the related work. A detailed description of UP-
TReC is given in Section III. An analytical model is derived
in Section IV. Section V presents performance comparisons of
UPTReC with an existing propagation algorithm. The conclu-
sions are drawn in Section VL.

II. RELATED WORK

The problem of searching and replicating files in P2P sys-
tems has received much attention. However, most P2P systems
consider files to be static and do not address the issue of file
updates and file consistency maintenance. In this section, we
present an overview of algorithms that focus on file consistency
maintenance in decentralized and unstructured P2P systems.

Datta et al. [8] proposed a hybrid push/pull update prop-
agation algorithm based on the rumor spreading algorithm
for highly unreliable and unstructured P2P systems, such as
Gnutella [1] and P-Grid [2]. The algorithm provides proba-
bilistically guarantees rather than strict consistency. Here, each
RP maintains a subset of all RPs as its responsible peers. When
an RP initiates an update, the update is pushed to its responsi-
ble peers, which in turn propagate the update to their responsi-
ble peers with some probabilities. This process continues until
all possible online peers get the update. When a peer gets re-
connected, it queries multiple responsible peers to synchronize
itself with the peer having the most recent update.

The algorithm in [8] is the first attempt to focus on the effec-
tive propagation of updates to RPs for decentralized and un-
structured P2P systems. However, the overhead messages due
to push updates are significant. Moreover, the maintenance of

the subset of responsible peers is not easy, especially for RPs
with dynamic IP addresses. There is no discussion on the re-
sponsible subset maintenance in [8].

An invalidation report based on push and pull (PAP) algo-
rithm is developed by Lan, et. al [11]. In PAP, each file has a
master peer, only the master peer can update the file. An esti-
mated Time-To-Expire (TTE) and the master peer information
are associated with each replica. When a file is updated, its in-
validation report is broadcast to the network. Any online peers
that have replicas of the file invalidate the replicas. Once the
TTE of a file expires, the file must be pulled from the master
peer if it is accessed. Only the master peer updating the file is
a strong constraint in P2P systems. Moreover, the master peer
may change its IP address and go offline, thus resulting in a
small probability of an RP successfully pulling a master peer.

III. UPDATE PROPAGATION THROUGH REPLICA CHAIN
(UPTREC)

The main motivation behind UPTReC is to minimize the
overhead messages for propagating updates to RPs in decentral-
ized and unstructured P2P systems. The detailed description of
the UPTReC algorithm is given in the following subsections.

A. System Model and Assumptions

We consider a decentralized and unstructured P2P system,
such as Gnutella where all peers are equal and no peer has a
global view of the system. The system model and assumptions
are summarized as follows:

1) No strong file consistency is required, but a probabilisti-

cally guaranteed file consistency is required.

2) The write-write conflict is ignored.

3) All peers frequently join and leave the system.

4) An online peer that gets an update has the ability to finish

its push process.

5) An online peer can communicate with any other online

peer if it knows the IP address of that peer.

6) The physical connectivity and system topology are ig-

nored.

7) Each RP has an ID and an IP address, the ID is fixed but

the IP address may be changed for each reconnection.

8) Each file is associated with a version and generation time

used for synchronization.

In UPTReC, if two RPs update the file and push it through
the chain at the same time, an RP in the chain can detect a
write-write conflict when it receives two updated files of the
same version generated by two different RPs. In this case, the
RP that detected the conflict can send the conflict information
back to the two update generating RPs, which in turn solve the
conflict through communication with each other, then the latest
updated file is pushed through the chain again. Due to very
lower write-write conflict rate [13] in P2P systems, we make
assumption (2).

The probability of online peer to successfully finish its push
process is usually over 0.95 [8]. If the probability is low for a



system, the assumption (3) above can be remedied by using a
reliable push process. In a reliable push process, the push pro-
cess of RP a does not stop after it propagates the update to an
online RP b, which in turn forwards the update to other RPs.
RP a must wait for the confirmation from RP b indicating the
update has been successfully propagated. If the confirmation is
not received within a certain period, RP a probes RP b again;
and if RP b is offline, RP a contacts with another RP to con-
tinue the push process. The reliable push process incurs some
additional overhead messages for confirmation. We make as-
sumption (3) to simplify our algorithm analysis.

B. Push Update Through Replica Chain

Figure 1 (a) shows a logical replica chain for a file with NV
replicas. Each RP is a node on the chain and has a unique ID
associated with it. Each node ! maintains information (ie., ID
and IP address) about k (typically k is tens) nearest nodes in
each (left and right) direction of the chain 2. These 2k nodes
are called as probe nodes (peers). Two nodes are said to have h-
hop distance if there are h-1 nodes between them. For example,
node ¢ and node i+k have k-hop distance.
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Fig. 1. (a) Logical Replica Chain; (b) Update propagation of node 7. Node
i+ m (0 < m <k)is the mth probe node in right (left) direction.

Figure 1 (b) shows the update propagation process of node
1. When node ¢ initiates an update (node : is called the update
initiating node), the update is pushed symmetrically along both
left and right directions of the chain. Now let us look at the
process of node ¢ pushing the update to node N (right side of
the chain). Node ¢ has information of £ probe nodes in right
direction (from node i+1, called the 1% probe node, to node
i+k, called the k" probe node). To push an update, node i
sends a probe message to each of the probe nodes in this di-
rection (i.e., node i+k, ..., i+1). The farthest online probe node
(here node i+k-1) is chosen to be the update relay node, which
will further propagate the update through the chain along the
direction. All other online probe nodes of ¢, such as node i+k-
2, will receive but do not propagate the update. After node ¢
determines its update relay node i+k-1, it first sends the up-
date to that node with the relay flag bit set as 1 and then sends

For simplify, both the node and RP can be used as the RP in the following
of the paper.

2Note that the nodes at or near the head or tail have less than k probe nodes
in one direction

the update to all other online probe nodes with the relay flag
bit set as 0. When an online probe node receives the update,
it first checks the update relay flag bit. If the bit is 0, it only
needs to receive the update. Otherwise, it needs to propagate
the update through the chain along the direction. The process
of the update propagation is similar to node ¢ except not to send
the probe messages to its probe nodes which are also the probe
nodes of 7. Because all these nodes are probed by ¢ and they
should be offline. As shown in Fig. 1(b), when node ¢+k-1 gets
the update, it finds that the update relay flag bit is 1, and hence it
immediately sends the probe messages to its probe nodes in the
right hand side which are not the probe nodes of ¢, i.e., nodes
1+2k-1, ..., i+k+1. The update propagation process is repeat-
edly executed through the replica chain. If all k& probe nodes
of an update relay node are offline, the propagation process is
stopped and the update can not be propagated in this direction.
The same process is executed for node 7 to propagate the update
to node 1.

C. Pull After Online

During the offline period of an RP, it may miss some up-
dates of the file and/or some information on the chain changes.
Hence, when an offline RP gets reconnected, it needs to pull
some online RPs to synchronize the status of the file and its
probe nodes. An RP can probe an online probe node from its
nearest probe node to farthest one in each direction. Whenever
an online RP is probed in one direction, the file and the infor-
mation of its probe nodes are synchronized. If its IP address is
not changed, the pull process in this direction is finished. The
same process is executed in the other direction. If the IP ad-
dress of the reconnected RP is changed, it needs to send its ID
and new IP address to all its probe nodes. Then the pull process
is finished. If no online probe node can be pulled (due to probe
nodes going offline or changing IP addresses), the reconnected
RP needs to connect its probe nodes through flooding search
to synchronize the status of the file and the information of its
probe nodes if its IP address is changed.

D. Chain Construction and Maintenance

We discuss how to construct and maintain the replica chain
in this subsection. After a peer initiates a file in the system,
the file can be searched, fetched and replicated by other peers.
Each replica is copied from one of the other replicas. If each
RP maintains the information of all RPs which fetched a file
from it, then a replica tree is naturally constructed. Figure 2
(a) shows a replica tree composed of 5 RPs as the root node at
RP 1. If all RPs are always online, any update from any RP
can be successfully propagated to any other RPs. For example,
when RP 3 initiates an update, it sends the update to RPs 1,
4 and 5. Each RP in turn updates its replica and then relays
the update to all its children and parent except the one which
sent the update. The update is successfully propagated through
all RPs. A new replica tree with RP 3 as the root is shown
in Figure 2 (b). However, frequently disconnected peers make
such a replica tree ineffective in terms of update delivery. In



order to increase the probability of successfully propagating the
update, each RP must maintain the information of multiple RPs
along each path. Due to the properties of the general tree, some
RPs may maintain the information of a large number of RPs,
while some other RPs maintain information of very few RPs.
To balance the overhead associated with the file maintained by
each RP, a replica chain can be constructed from the replica tree
as explained below.
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Fig. 2. RPs naturally constructs a replica tree. (a) Root at RP 1; (b) New tree
with root at RP 3.

Figure 3 shows the process of constructing a replica chain
during the replica process. Figure 3 (a) presents the first four
RPs which naturally form a chain. In this case, a new node
locates at the head or tail of the chain. When a new peer repli-
cates the file fetched from another RP, the corresponding chain
information is also fetched. The information of a new RP is
forwarded to all possible RPs which should have the informa-
tion of the new RP. Figure 3 (a) illustrates the process for an
RP, such as RP 4 joining the chain. When RP 4 fetches the file
from RP 3, the replica chain including information about RPs 1
and 2 is also fetched. The RP 3 adds RP 4 into the chain, and
pushes information about RP 4 to RP 1 and 2. However, if RP
1 for example is offline at that time, it needs to probe either RP
2 or RP 3 to get the latest chain information.

(®

Fig. 3. The process for construction a replica chain. (a) The new replica locates
on the head or tail of the chain; (b) The new replica locates at the middle of the
chain.

If a new peer joins in the middle of a chain, it needs to push
its information to at most &£ RPs in the chain along the direction
opposite to the RP which provides the file. For example, when
RP 5 joins the chain by obtaining the chain information from
RP 3, RP 5 pushes the information to RP 4.

When RP i removes a replicated file, it sends a message to
each of its probe peers to get removed from the replica chain.
All online probe peers get the message and in turn remove RP
¢ from the chain. All offline probe peers get this message when

they reconnect. If all probe peers are offline, RP ¢ is not re-
moved from the chain and informs the reconnecting peers when
they probe. The process of adding or removing a replica re-
quires up to 2k messages.

IV. PERFORMANCE ANALYSIS

An analytical model is developed in this section. One criti-
cal issue concerning the UPTReC algorithm is to determine the
value of k. If k is too small, an update may fail to be propagated
through the chain. If & is too large, the overhead cost of chain
maintenance is high.

A. Performance Analysis

Our analytical modeling is based on the assumptions made
in Section III-A. Some parameters and measurement metrics
are defined in the Table L.

e N: number of RPs in the chain, i.e., the total number of

replicas for a file.

o k: number of probe RPs in one direction.

o P,,: probability of an RP to be online.

e P,;s: probability of an RP to be offline (P, fr=1-F,).

e P,;p: probability of an RP to change the IP address after
reconnecting.

o h: number of hops an online RP from the update initiating
peer.

« T': average period of a peer online and offline cycle.

o A: access rate of a file for the whole system.

e T),p: average file update period

o P}:probability of successfully propagating an update to an
online RP with h-hop distance.

o P(m): probability of successfully propagating an up-
date to an online RP with h-hop distance while the on-
line RP only counts the contributions of its m farthest
(1 < m < k) probe peers (i.e., the k", ..., (k-m+1)th
probe peers).

o P, (k): probability of a reconnected RP to successfully
pull an online RP.

o Cflo0q: average number of messages to find an online
probe peer through flooding search.

o Chusn(N): maximum number of messages to push an up-
date through an N-node replica chain.

o Cpuu(k): average number of messages in each pull proce-
dure of a reconnected peer.

e OHQ: number of overhead messages per query of file
consistency maintenance (including overhead of push and
pull).

e Pga1c(N): stale query probability for a file with NV repli-
cas.

In UPTReC, the maximum number of messages to push an

update is N, because each RP at most receives one probe mes-
sage. Thus we have

Cpush(N) S N (1)

When an offline RP rejoins the system, it pulls an online RP
from its probe peers in each direction to synchronize the file



status and probe peers’ information, the pull process in one
direction stops whenever an online RP is pulled. If a probe
peer is offline or online but with different IP address from
the reconnected RP maintained, it can not be pulled. We use
Pro=PF, s+ Pon Perp to represent the probability that a probe
peer can not be pulled by a reconnected peer. Then the prob-
ability of a reconnected RP to successfully pull an online RP
is

s (k) = 1= (Prai)® (2)

If the IP address of the reconnected RP is changed, it needs

to contact with all probe peers once, hence 2k probe messages

are needed. If no probe peer is probed, it needs to search a

probe peer through flooding. So the average number of probe
messages for each pull process is:

Cpui(k) = Perp[2k + (1 — Py (k) Criood) +
k—1 .
2(1 = Perp)[(1 = Prait) D i(Prait) ™" + k(Prait) ")
i=1
= Perp2k + (1 — Py, (k) Clriood] +

1—Pf.
fazl) (3)

2(1 —_—
( 1— Praa

— Perp)(

In Equation 3, the first term is the pull cost for a reconnected
RP with changed IP address, and the second term is the pull
cost when its IP address is not changed. In the second term, if
an online probe peer is pulled in a direction, the pull process is
stopped in that direction, and if no online probe peer is pulled,
all £ probe peers are needed to be pulled once. The pull process
is symmetrical in both directions.

hekeooeoe h-k+m-2 h-k+m-1

| — h-1 h

Fig. 4. Calculation diagram of Py (m).

Based on the definitions, we have P = P7(k), and Py (m)
can be recursively calculated. Figure 4 shows the calculation
diagram of PZ(m). Here RP h has h-hop distance from the
update initiating peer. P;(m) represents the probability for RP
h to get the update if only its farthest m probe peers (i.e., its
k-th, (k-1)-th, ..., (k-m)-th probe peers) are considered, these
probe peers are h-k, h-k+1, ..., h-k+m-1 hops distance from
the update initiating peer, we call these RPs as RPs h-k, h-k+1,
..., and h-k+m-1 as shown in Figure 4. For example, P/ (2) is
the probability for RP h to get an update if only probe peers
h-k and h-k+1 are considered to push the update to peer h, and
all probe peers h-k+2, ..., h-1 are not considered. All these
probabilities can be recursively calculated by the following
three equations:

Ifh < kand1l < m < k,
Pi(m)=1 4
Ifh > kandm =1,
By (m) = Pon By, (k) )
Ifh >kand1 <m < k,

Pi(m) = P(m—=1)+Pon P37 Py 1 (k—m+1) (6)
Equation (4) means that an online RP is a probe peer of the
update initiating peer, it can absolutely get the update. Equation
(5) indicates that only considering its farthest probe peer h-k, if
it is online and successfully receives the update, then RP h can
successfully get the update. Equation (6) can be explained by
considering the m!" farthest probe peer h-k+m-1, the probabil-
ity of successfully receiving the update by peer A is the prob-
ability of successfully receiving the update through its farthest
m-1 probe peers plus the contribution of the m " farthest probe
peer. The m*" probe peer has contributions only if all farthest
m-1 probe peers are offline, because if any of these peer is on-
line, the contribution has been counted through that peer. In this
case, the probability of successfully getting the update for the
m?" farthest probe peer is only through its k-m+1 probe peers
(its first m-1 probe peers are offline), i.e., P;_, +m_1(k-m+l).
The number of overhead message per query of file consis-
tency maintenance is:

1 Cpush Cpull(k)
)\( Tup N T )

For a replica chain with N RPs, the maximum number of
hops from an update initiating peer to an online RP is N-1.
Hence any online RP has a probability larger than P, to get the
update. An offline RP has P, (k) probability to synchronize
with an online RP, hence each online RP has at least Pﬁ,PIfu”
probability with a valid file. Then the stale query probability is
upper bounded by:

OHQ = (M

Pytale(N) < 1 — Py (k) Py, (k) ®)

The performance of UPTReC is formulated by equations (1)
- (8). All these measurements are determined by P,,,, P.rp, k
and V.

B. Numerical Results

Some numerical results are shown in this subsection to char-
acterize typical value of k£ under some probabilistically guaran-
teed file consistency. The difference between the numerical and
simulation results (not presented in the paper) is within 2% in
all these cases.

1) Probability of successfully propagating an update
through the chain: We study the impact of the number of probe
peers (k) on the probability (P;’) of successfully propagating an
update to an online RP with A = 10,000 hops. The relation-
ship between P, and k is shown in Figure 5. When P,,, >
20%, Pj; is very close to 1 for k > 60. To achieve P; close



to 1, k = 40 is enough for P,,, = 30% and k is reduced to 20
for P,, = 50%. For very small P,, = 10%, we get k = 110.
The results indicate that £ = 60 ensures a near to 1 proba-
bility to propagate an update through a 10,000-node chain for
P,, > 20%. As stated in the previous section, a larger k leads
to more overhead messages for the replica chain maintenance.
But the overheads per update propagation is independent on k.

P _-10%
on
P _=20%

on = 207
. Pon=30°/o
- Py, =50%

Probability of Sucessfully Propagating Update

10 20 30 40 50 60 70 80 90 100 110
Number of Probe Peers (k)

Fig.5. Py versus k

2) Scalability on the number of replicas: The maximum
number of hops of a replica chain increases as the number of
RPs increases. In P2P systems, the typical number of repli-
cas for a file varies from tens to thousands. We investigate the
scalability of the algorithm on the number of RPs. Figure 6
shows the results of P} as h increases from 1,000 to 1,000,000.
For a system composed of peers with high online probability
(P,, > 50%), a small number of probe peers k¥ = 20 can
ensure a larger than 0.95 probability of successful propagation
an update to an online RP with 1,000,000-hop distance. For a
system with very low online probability RPs, & = 120 makes
PP > 0.98 for h = 1,000,000. The probability of successful
propagation drops slowly as the number of hops increases. The
results indicate that UPTReC algorithm has good scalability in
terms of the number of RPs.
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Fig. 6. Pj (k) versus h

V. PERFORMANCE COMPARISONS

The performance comparisons between UPTReC and the up-
date propagation algorithm based on the rumor spreading algo-
rithm (in short, Rumor) proposed in [8] are presented in this
section. The overhead messages of file consistency mainte-
nance come from push and pull processes, the major messages
of a fast (slow) updating file is from the push (pull) process.
We use simulations to study the impact on the performance of
update frequency that is not analyzed in Rumor algorithm.

The both algorithms , i.e., UPTReC and Rumor, focus on the
efficient update propagation to all online RPs. Note that the
update propagation is only through the RPs. Moreover, both
algorithms are independent on the file search and replication.
Therefore, we simulate only RPs instead of a whole P2P system
to focus on the file consistency maintenance cost. The system
topology and physical connectivity are ignored.

In the simulations, each RP alternatively leaves and joins the
system as a Poisson process. The file update is also assumed to
be a Possion process. When an update comes, the update initi-
ating peer is randomly chosen from an online RP. In a real P2P
system, a file can be searched and replicated by other peers,
and an RP may drop a replica. As stated in the previous sec-
tion, adding a new RP or removing an RP costs 2k messages to
maintain the chain, but the subset maintenance is not discussed
in Rumor algorithm [8]. Hence, we ignore the comparison on
the costs of the chain and subset maintenance in the simulation
by assuming a static chain and subsets. Moreover, all RPs are
considered to have static IP addresses, because no method is
discussed to deal with dynamic IP address in Rumor algorithm.
The chain is randomly built, i.e., each RP has equal probability
to appear at any location on the chain. Each RP keeps informa-
tion of k probe peers in each direction. In the Rumor algorithm,
each peer randomly picks up R RPs as its responsible peers. In
the O push round, the update as well as a replica list are for-
warded to its all responsible peers. The replica list records all
RPs in which the update has been sent. In the ¢ ( > 1) push
round, a peer has a probability Pr(t) = f* to push the update
to its any responsible peer that is not on the replica list, where
f is a constant between 0 and 1. A RP that receives an up-
date is assumed to have ability to finish its push process. The
pull process in both algorithms is similar. In UPTReC, when
an online probe peer is probed in a direction, the pull process in
this direction is finished. In Rumor, two online probe peers are
probed in each pull process.

Let the file have an access rate \ for the whole system, each
access randomly fetches the file from an online RP. When an
online RP answers a query, if the file is generated in its newest
version, a valid query is counted, otherwise a stale query is
counted. Due to focus on the efficiency of file consistency
maintenance, the parameters A, T', and T, are set to unit time.

In our simulation model, when an RP a pushes an update to
RP b, it first probes RP b. If RP b is online, the update is for-
warded. Thus the total number of update sent out is equal to
the number of online RPs which have received the update. This
number is almost equal in both algorithms if the stale query ra-
tio is close to each other. We compare the overhead messages



TABLE 1
PARAMETER SETUP I

N A T T

up
10000 10000 | 10000

—_

for probing all RPs rather than the number of update them-
selves. Of course, the update can be sent out instead of the
probe messages. However, if the update is large, this may cause
large extra traffic for sending the update to offline RPs.

A. Overhead messages for each push process

The number of overhead message in the push process and
the stale query ratio are studied under various probabilities of
online peers. The probability of successfully propagating an
update is determined by the probability of a peer being online
and the number of probe (responsible) peers. Based on the an-
alytical results in the previous section, we set 2k P,,, = 20 (or
RP,, = 20) to ensure a low stale hit probability. Thus, P,, =
10% corresponds to k£ = 100 (R = 200), and P,,, = 50% cor-
responds to £ = 20 (R = 40). The other parameters are set
as in Table I. Based on these setups, there are 1 query per RP
and 1 update in each RP online and offline cycle (1" period) on
the average. Two different f values (0.8 and 0.9) are used in
the Rumor algorithm to show the relationship between the stale
query ratio and the number of overhead messages. The num-
ber of overhead messages in Rumor algorithm is determined by
the stale query ratio, a larger f or R makes a lower stale query
ratio. We set the R value as 2k which is the total number of
probe peers kept by an RP in UPTReC. For such R value, high
f values are needed to ensure a similar stale query ratio between
UPTReC and Rumor algorithm, so f is set to 0.8 and 0.9.

Figures 7 and 8 show the number of overhead messages in
the push process and the stale query ratio of both algorithms.
As shown in these figures, a smaller f reduces the number of
overhead messages in the Rumor algorithm, but the stale query
ratio is increased. When f drops from 0.9 to 0.8, the number of
overhead messages drops about 20%, but the stale query ratio
is almost doubled.
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Fig. 7. The number of overhead messages for push process versus peer online
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Fig. 8. Stale query ratio (%) versus peer online probability

The results show that the number of push overhead messages
divided by the number of RPs (V) in UPTReC is almost 1, and
this value is more than 2.4 in Rumor. The stale query ratio
for the UPTReC is less than 1.2% for all ranges of P,, from
10% to 50%. But the stale query ratio for Rumor increases
from 1.2% to 4.8% when P,,, increases from 10% to 50% with
f = 0.8. The stale query ratio can be reduced to less than
2.5% but incurs more than 20% overhead messages if f is set to
0.9. The results indicate that compared with Rumor, UPTReC
reduces more than 60% overhead messages to put an update
while achieving a smaller stale query ratio.

B. Overhead messages per query

The number of overhead messages per query in various up-
date frequency is investigated in this case. We measure two
performance metrics: the number of overhead messages per
query and stale query ratio. The number of overhead messages
per query is defined as the total number of consistency mainte-
nance messages which include overhead messages of the push
and pull processes divided by the total number of queries in the
system. We set two R values (80 and 100) for Rumor algorithm
in the simulation to study the effects of R. The other system
parameters are set as in Table II.

TABLE 11
PARAMETER SETUP II

N [N Pn] T | k] J
10000 | 1 | 30% | 10000 | 40 | 0.9

Figures 9 and 10 show the results of the number of overhead
messages per query and stale query ratio versus different up-
date frequencies. When the average update period (T, = 10°)
is much larger than the peer online and offline cycle, the over-
head messages of the pull process are the major source. Due to
the similar pull process, the number of overhead messages per
query for two algorithms is close in this case. As the update pe-
riod decreases, the number of overhead messages from the push
process increases and dominates the number of overhead mes-
sages from the pull process. This leads to a better performance



of UPTReC than that of Rumor. When the update period is
much shorter than the peer online and offline cycle, the number
of overhead messages per query in UPTReC is more than 70%
lower than that of the Rumor. The stale query ratio in UPTReC
is less than 0.1% in all range of update periods. In Rumor, when
the update frequency is high, the stale query ratio is about 2%
for R = 80, and it is reduced to less than 1% when R = 100.
The effect of R is similar to f. A larger R or f gives a lower
stale query ratio but costs more overhead messages. The results
show that the UPTReC can save up to 70% overhead messages
while providing better probabilistically consistency guarantee
for highly update files compared to the Rumor algorithm.

IS
o
T

+ UPTReC
—— Rumor (R=80)
Rumor(R=100) 1

— n N w w EN
o =} o =] 5} o
T T T T T T

1
|
+

The number of overhead messages per query

=)
T

&)
T
L

S
o,
o

Average Update Period

Fig. 9.
period

The number of overhead messages per query versus average update

UPTReC
180 —— Rumor (R=80) H
-+ - Rumor (R=100)

Stale query ratio (%)
o o o ==
S (2] © - N »
- - — : :
;
,
/
/
/
*
/
/
/

e
(%)
'
'
/
'

= o
o

10
Average Update Period

Fig. 10. Stale query ratio (%) versus average update period

Through these comparisons, we know that the UPTReC can
significantly reduce overhead messages to propagate an update
with a smaller stale hit ratio comparing with Rumor algorithm.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel algorithm, UPTReC, to
propagate update through replica chain for decentralized and
unstructured P2P systems. UPTReC provides probabilistically
guaranteed file consistency. In UPTReC, each file has a logi-
cal replica chain composed of all RPs. Each RP has a partial
knowledge of the chain. When an RP updates the file, it pushes
the update to all possible online RPs through the replica chain.

When an offline RP gets reconnected, the file status is synchro-
nized by pulling an online RP.

An analytical model of the proposed algorithm is derived.
The performance results of UPTReC compared to that of the
Rumor algorithm shows that the UPTReC reduces up to 70%
overhead messages to propagate updates with a smaller query
ratio for highly updating files.

If each RP keeps a small number of probe peers, the update
propagation may be stopped at some node. If a reconnected
peer pulls an online peer from each direction and if an update is
found, the peer can push the update to another direction of the
chain. This process will reduce the stale query ratio by keeping
small number of probe peers. The mechanism and the replica
chain maintenance costs will be considered in our future work.
As the growing of application in P2P systems, strong cache con-
sistency is a further requirement, and this will also be consid-
ered in our future work.
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