
On the Correctness of Query Results in XML P2P Databases

Carlo Sartiani
Dipartimento di Informatica - Università di Pisa

Via F. Buonarroti 2 - 56127 - Pisa - Italy
sartiani@di.unipi.it

Abstract

In XML peer-to-peer(p2p) database systems, query re-
sults are usually assumed to beincomplete. Incompleteness
issues derive from the unstable and open-ended nature of
the network, where new nodes may connect at any time, and
existing nodes may suddenly disappear.

The incompleteness of input data used for query evalu-
ation may also lead to the incorrectness of query results,
which greatly affects the usefulness of the whole p2p ap-
proach to XML databases.

In this paper we formally deal with the problem of re-
sult correctness in the presence of incomplete input data,
and identify query classes for which the result correctness
can be statically predicted at no extra cost w.r.t. usual syn-
tactical and semantic query analysis.

1. Introduction

The last three years have seen the rapid emerging of the
peer-to-peer(p2p) computational model. In this model, the
system is composed of anopen-endedand dynamic net-
work of peers, which share data, computational resources,
etc. Peers are usually autonomous or semi-autonomous, and
may cooperate together in the execution of computational
tasks, or in the hosting and querying of data.

In the field of database research, p2p systems affirmed as
an interesting evolution of distributed and integration sys-
tems. Several projects focus on the design and the imple-
mentation of p2p database systems, mostly for XML data.
In these systems, query results returned by the p2p query en-
gine are usuallyincomplete, i.e., they are a subset of the re-
sult computed by centralizing the whole database in a single
sites and then executing the query ons. Incompleteness is-
sues derive from the unstable and open-ended nature of the
network, where new nodes may connect at any time, and
existing nodes may suddenly disappear. The non-feasibility
of the instantaneous propagation of topology and schema
change information, together with the clear and present dan-
ger of network partitions due to link failures, leads to the

assumption that queries are executed on a fraction of in-
put data only, which in turn gives rise to result incomplete-
ness.

The incompleteness of input data used for query evalu-
ation may also lead to theincorrectnessof query results,
i.e., the system may return data that are not part of the re-
sult produced by a corresponding centralized system. Con-
sider, for instance, a query retrieving all authors in a bib-
liographic database having published less than five papers:
if input data are incomplete, the result returned by the sys-
tem may contain also authors with more than five papers.

Thus, the evaluation of an XML query on a p2p database
may produce incomplete as well as incorrect results, which
greatly affects the quality of results, and the usefulness of
the whole p2p approach to XML databases.

Our contribution In this paper we formally deal with the
problem of result correctness in the presence of incomplete
input data. First, we map a subset of XQuery into a p2p
query algebra; then, we formalize our intuitive notion of re-
sult correctness, and, by relying on the algebraic mapping,
we identify query classes for which the result correctness
can be statically predicted. As shown in Section 5, the anal-
ysis for result correctness requires no extra cost w.r.t. usual
syntactical and semantic query analysis.

Paper outlineThe paper is organized as follows. Section 2
presents the reference scenario for this work, and Section
3 introduces our notion of completeness and correctness of
query results. Section 4 describes the query algebra, while
Section 5 formalizes the correctness problem, and shows
the main results of the paper. In Sections 6 and 7, we dis-
cuss some related works and draw our conclusions.

2. Motivating scenario

The background for this paper is a p2p database manage-
ment system for XML data [8], composed of anopen-ended
network of fully autonomouspeers, which shareheteroge-
neousdata and pose queries on these data; in particular, un-
like [5] and [4], no restriction is imposed on the semantic
category of data contributed to the system. The systemself-

organizesits overlay network, and requires no human inter-
vention for its administration.

Peers may connect to the system at any time, and they
may disconnect at any time. Hence, the resulting topology
is potentially very dynamic, which distinguishes this sys-
tem from traditional distributed database systems, where
network topology is almost static. Furthermore, peers may
freely update their local data, the only restriction being the
impossibility to relocate subtrees; in particular, peers may
perform schema changingupdates, i.e., updates that trig-
ger schema modifications. As a consequence of the dynam-
icity of the system, in both the topology and the schemas
of the contributed data, and of the zero-administration pol-
icy, the system does not use schema mapping and integra-
tion techniques, even in their distributed versions [4].

In addition to share data, peers may submit queries to
the database system. These queries, expressed in the FLWR
core of XQuery [2] without universally quantified predi-
cates, are sent from peers to thequery plan generation layer,
and query plans are sent back to peers for the execution.

The system returns query results without preserving the
document order of XML data: this feature is motivated by
the absence of a global order notion for data spanning on
multiple sites, which makes the preservation of local docu-
ment order pretty useless for queries returning results com-
ing from a wide number of sites.

3. Completeness and correctness of query re-
sults

In this Section we will provide a basic intuition of the no-
tions of completeness and correctness of query results in a
p2p setting; this intuition will help the reader in understand-
ing the formal system described in the next Sections.

Consider the following query, which extracts allau-
thors-title pairs from a bibliographic database:

for $p in input()//article
$a in $b/author,
$t in $b/title

return <author-title> {$a,$t } </author-title>

The result of this query is a forest of trees rooted by
author-title elements.

Assume that the data relevant to the query are dispersed
over a setL of four peers, let’s sayL = {l2, l15, l18, l33}.
If the query plan generation layer returns a query plan con-
taining all the four peers, then the p2p query engine will
compute (in the absence of network or peer failures) acom-
pleteresultres, i.e., res will contain all author-title pairs
in the database. Instead, if a subsetL′ of L is returned to
the query engine, then the query resultres′ will consist of a
fraction of the complete resultres, so the query engine will
produce anincompletebut correct result.

Consider now the following query, which returns all au-
thors having published less than five papers in the last year.

for $a in input()//author
let $p list := for $p in input()//article

where $p/author = $a AND
$p/year = 2003

return {$p}
where count($p list) < 5
return <subIudice> {$a} </subIudice>

As for the previous query, assume that the set of peers
L = {l2, l15, l18, l33} contains all the data relevant for the
query and, in particular, that peersl15 andl33 contain infor-
mation about three and four papers published by John Doe
in the last year, respectively, whilel2 andl18 make no men-
tion of John Doe. Then, if the subsetL′′ = {l2, l15, l18}
is returned to the query engine, then the query engine will
produce a result containing an entry for John Doe, which is
clearly wrong. As a consequence, the query engine will post
an incorrect result, comprising data that do not satisfy the
requirements of the query.

4. Query algebra

In this Section we introduce the query algebra used for
mapping the FLWR core of XQuery. The mapping of XML
queries into algebraic expressions is straightforward, and it
is shown in [7].

4.1. Data model and term language

Data in the system are represented as unordered forests
of node-labeled trees. According to the term grammar
shown below, each node is augmented with the indica-
tion of the hosting peer (by means of alogical location
loc) as well as with itslabel, e.g., the tag of the corre-
sponding XML element. The label and the location of
a node can be accessed by means of the auxiliary func-
tionslabel andloc.

t ::= t1, . . . , tp | n[t] | n
n ::= (loc)label
loc : dbname → t
wherelabel ∈ Σ∗ andloc is a partial function.

Logical locations model the content of peers, hence they
are represented as a partial function returning, for each
database identifier, the trees contributed to the database by
the given peer, if any.

The set of locations containing data relevant for a given
databasedb is returned by the functionAllLocs(db). We
expect the query plan generation layer to compute, for a
databasedb, a subset ofAllLocs(db), or, even worst, a par-
tially overlapping setls.

4.2. Algebra operators

The query algebra, in the spirit of YAT [3], ex-
ploits relational-like intermediate structures, calledEnv
structures, to accumulate variable bindings collected dur-
ing query evaluation.Env structures can be seen as streams
of tuples carrying variable bindings, and, to ensure the clo-
sure of the algebra, they can be represented as node-labeled
trees conforming to the data model.

Env structures are manipulated by quite traditional op-
erators, such asSelection, Projection, TupJoin, and
DJoin. In addition to these operators, the query algebra
features three supplementary operators:LocUnion, path,
andreturn. LocUnion is used for manipulating locations,
while path and return perform conversions from data
model instances toEnv structures, andvice versa(the full
definition of the operators can be found in [7]). In the fol-
lowing we will survey key algebraic operators such aspath,
return, LocUnion, andSelection.

path The main task of thepath operator is to extract in-
formation from the database, and to build variable bindings.
The way information is extracted is described by aninput
filter; according to the grammar shown below, an input fil-
ter is a tree, describing the paths to follow into the database
(and the way to traverse these paths), the variables to bind
and the binding style, as well as the way to combine results
coming from different paths.

F ::= F1, . . . , Fn

| (op, var, binder)label[F]
| ∅

where op ∈ {/, //, },
var ∈ String ∪ { },
binder ∈ { , in,=}

A simple filter (op, var, binder)label[F] tells thepath
operator a) to traverse the current context by using the navi-
gational operatorop, b) to select those elements or attributes
having labellabel, c) to perform the binding expressed by
var and binder, and d) to continue the evaluation by us-
ing the nested filterF .

Thepath operator takes as input a data model instancet
and an input filter, and it returns anEnv structure contain-
ing the variable bindings described in the filter. The follow-
ing example shows a simple input filter and its application
to a sample document.

Example 4.1 Consider a real-estate p2p market database,
and consider the following query fragment.

for $b in input()//building,
$d in $b/desc,

This clause retrieves descriptions for buildings at any
level in the database. Assuming that the query plan genera-
tion layer found only one relevant locationloc1, the clause
can be translated into the followingpath operation:

path(//,$b,in)building[(/,$d,in)desc[∅]](loc1(db1))

As shown by the filter grammar, multiple input filters can
be combined to form more complex filters: in this case, the
Env structures built by simple filters are joined together,
hence imposing a product semantics.

return While thepath operator extracts information from
existing XML documents, thereturn operator uses the
variable bindings of anEnv to produce new XML docu-
ments.return takes as input anEnv structure and anout-
put filter, i.e., a skeleton of the XML document being pro-
duced, and returns a data model instance (i.e., a well-formed
XML document) conforming to the filter. This instance is
built up by filling the XML skeleton with variable values
taken from theEnv structure: this substitution is performed
once per each tuple contained in theEnv, hence producing
one skeleton instance per tuple.1

Output filters satisfy the following grammar:

(1)OF ::= OF1, . . . , OFn | n[OF] | val
(2)val ::= n | var | f(var)
(3)f ∈ {avg,min, max, sum, count, . . .}

An output filter may be anelement constructor(n[OF]),
which produces an element taggedn and whose content
is given by OF , a value constructor (val), or a combi-
nation of output filters (OF1, . . . , OFn). Copied elements
(var) are published as they are, i.e., their location infor-
mation remains untouched, while newly created elements
(OF ::= n[OF]) and values (val ::= n) receive an empty
location.

The following example shows the use of thereturn op-
erator.

Example 4.2 Consider the following XQuery query:

for $b in input()//building,
$d in $b/desc,
$p in $b/price

return <entry> {$d, $p } </entry>

This query returns the description and the price of each
building in the market, and it can be represented by the fol-
lowing algebraic expression:

returnentry[$d,$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

loc1(db1)))

1 Since XQuery lacks thegroup-by operator, aggregation functions
can be applied tolet variables only.

LocUnion LocUnion is an operator used for combining
data dispersed over multiple peers.LocUnion (•) takes as
input two logical locationsloc1 and loc2, and it returns a
new logical location obtained by uniting the content func-
tions of the arguments. The following example shows the
use ofLocUnion.

Example 4.3 Consider our real-estate market database, and
assume that new locations (loc11, loc13, and loc17) con-
tribute data about buildings. Then, the query of Example
4.2 can be expressed by the following algebraic expression:

returnentry[$d,$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]]((
•i=1,11,13,17loci)(db1)))

Selection As in many other query algebras,Selection σ
takes as input anEnv and a boolean predicateP , and re-
turns a newenv structure where binding tuples not satisfy-
ing P are missing.

5. Correctness properties

In this paper we study the correctness properties of
FLWR queries executed on top of p2p databases. The study
is based on two assumptions. First, we assume that trees are
locally complete, i.e., a tree is fully contained within the
same location.

Definition 5.1 (Tree local completeness)A non-leafdata
model instancet is locally completeif:

• if t = n[t1, . . . , tp], thenloc(n) = l1 ⇒ loc(t1) = l1∧
. . .∧ loc(tp) = l1, andt1, . . . , tp are locally complete;

• if t = t1, . . . , tp, thent1, . . . , tp are locally complete
andloc(t1) = loc(t2) = . . . = loc(tp).

The second assumption is that the query plan generation
layer generates nofalse positives, i.e., it does not fill query
plans with locations that have no data matching thefor/ let
clauses of the query. This implies that, in a way that will be
detailed later, the query plan generation layer returns a sub-
set ofAllLocs(db).

To define our notion of correctness, we introduce a tree
containment relation: this relation, formally defined below,
is crucial since input data, query results, as well asEnv
structures are represented as trees.

Definition 5.2 (Tree containment) The tree contain-
ment relation is inductively defined as follows:

(1) n1 6 n2 ⇐⇒ label(n1) = label(n2)
(2) n1[t1] 6 n2[t2] ⇐⇒ label(n1) = label(n2)∧

∧t1 6 t2
(3) t1, . . . , tn 6 tp, . . . , tp+m ⇐⇒

∃tj j ∈ [p, p + m] : t1 6 tj∧
∧t2, . . . , tn 6 tp, . . . , tj−1, tj+1, . . . , tp+m

(4) () 6 t

The following definitions introduce the concepts oflo-
cation assignmentand query results. They are based on the
representation of a queryQ as alocation-freealgebraic ex-
pression, i.e., an algebraic expression withspots(context
holes) in place of locations; the algebraic representation is
obtained by mappingQ into corresponding algebraic ex-
pressions, and by applying common rewriting rules (push-
down of selections, etc).

Definition 5.3 (Location assignment)Given a queryQ =
(q) on a databasedb and a set of locationsls, a location as-
signment forQ on ls is a functionρ mapping location spots
in q into unions of locations inls: ρ : spot → loc.

Definition 5.4 (Query result) Given a queryQ = (q), a
set of locationsls, and a location assignmentρ for Q on ls,
Resρ(Q) is the result of the evaluation ofQ onρ.

By these definitions, a query is represented as an alge-
braic expression without locations and location operators,
which are then introduced by location assignments, hence
allowing one to parametrize a query w.r.t. input data. By re-
lying on these definitions, we can formalize our notions of
completeness and correctness of query results.

Definition 5.5 (Query result completeness)Let Q be a
queryQ = (q), let ls be the set of locations computed for
Q by the plan generation layer, and letρ1 andρ2 be loca-
tion assignments forQ on ls and onAllLocs(db), respec-
tively. Then, the result of the evaluation ofQ on the system
is completeif Resρ2(Q) 6 Resρ1(Q).

Definition 5.6 (Query result correctness)Let Q be a
queryQ = (q), let ls be the set of locations computed for
Q by the plan generation layer, and letρ1 andρ2 be loca-
tion assignments forQ on ls and onAllLocs(db), respec-
tively. Then, the result of the evaluation ofQ on the system
is correctif Resρ1(Q) 6 Resρ2(Q).

These notions are independent from the assumption of
absence of false positives, hence they can be used also when
this assumption is relaxed. To incorporate this assumption
in our study, we need the following definition.

Definition 5.7 (Assignment compatibility) Given a query
Q = (q) on a databasedb, two location setsls1 and
ls2 (ls1 ⊆ ls2), and a location assignmentρ1 for Q on
ls1, then a location assignmentρ2 for Q on ls2 is com-
patible with ρ1 (ρ1 ∝ ρ2) if ∀spot s in q : ρ2(s) =
ρ1(s)[f(li)/li, . . . , f(lj)/lj], wheref(li) = li or f(li) =
li • lk1 • . . . • lkp

({lk1,...,lkp
} ⊆ ls2).

This definition says thatρ2 extendsρ1 in a conservative
way, hence the following lemma holds.

Lemma 5.8 Given a queryQ = (q) on a databasedb, two
location setsls1 and ls2 (ls1 ⊆ ls2), and two compati-
ble location assignmentsρ1 and ρ2 for Q on ls1 and ls2

(ρ1 ∝ ρ2) respectively, then∀spot s in q : ρ1(s)(db) 6
ρ2(s)(db).

Proof. By the definition ofLocUnion.

The previous lemma states that location assignments are
extended in a way that satisfies the tree containment rela-
tion, hence allowing one to reduce the problem of result
correctness to the problem of checking whether the alge-
bra operators in the query plan are monotone (or, even bet-
ter, linear).

Definition 5.9 An algebraic operatorop is monotoneif
e1 6 e2 ⇒ op(e1) 6 op(e2), wheree1 and e2 are Env
structures andAtt(e1) = Att(e2) (Att(e) is the set of vari-
able names ine).

Lemma 5.10 Given a queryQ = (q) on a databasedb,
two location setsls1 and ls2 (ls1 ⊆ ls2), and two compat-
ible location assignmentsρ1 and ρ2 for Q on ls1 and ls2

(ρ1 ∝ ρ2) respectively, thenResρ1(Q) 6 Resρ2(Q) if each
operator inq is monotone.

Proof. The thesis follows from Lemma 5.8, and from the
definition of monotone operator.

5.1. Monotonicity properties of algebraic opera-
tors

Lemma 5.10 states that the result of the evaluation of a
query, in the absence of false positives, is correct if each
operator in the query plan is monotone. All operators in
the algebra are monotone (the proof is trivial, except for
path), with the only exceptions ofreturn andσ. Thenon-
monotonicityof return comes from the presence of aggre-
gation functions in output filters, hence the following lem-
mas hold.

Lemma 5.11 Let of be an output filter without aggrega-
tion functions. Then,returnof is monotone.

Proof. By the definition ofreturn and by the tree struc-
tural containment relation.

Lemma 5.12 Let of = f($x) be an output filter apply-
ing an aggregation functionf to a set variable$x. Then,
returnf($x) is monotoneif the set bound to$x in any tu-
ple is guaranteed to be complete.

Proof. Let e1 6 e2 and Att(e1) = Att(e2). If the set
bound to$x is guaranteed to be complete in any tuple, then
∀s1 ∈ e1 ∃s2 ∈ e2 such thats1 6 s2 ∧ s1.$x = s2.$x. Let
g the function mappinge1 tuples intoe2 tuples. Then:

returnf($x)(e1) =
⋃

si∈e1

f(si.$x) =

=
⋃

si∈e1

f(g(si.$x)) 6 returnf($x)(e2)

Observation 5.13 Let of = f($x) an output filter apply-
ing an aggregation functionf to a set variable$x. Then,
returnf($x) is not monotone if$x is not guaranteed to be
bound, in any tuple, to a complete set.

These lemmas shows that the presence of aggregation
functions in query plans may lead to incorrect results. Simi-
lar considerations apply toσ, as shown by the following re-
sults.

Lemma 5.14 Let P ($x) a predicate on the variable$x.
Then,σP ($x)() is monotone if$x is bound by the iterative
binder (in).

Proof. Let e1 6 e2 andAtt(e1) = Att(e2). By the def-
inition of tree containment, it follows thate1 ⊆ e2, or
∃tuple1 ∈ e1, ∃tuple2 ∈ e2 such thattuple1 and tuple2

differ for the set bound to alet variable$v.
If e1 ⊆ e2, then σP ($x)(e2) = σP ($x)(e1)

⋃
σP ($x)(e2/e1); otherwise, π→

$x
(e1) ⊆ π→

$x
(e2), so

σP ($x)(e1) 6 σP ($x)(e1).

Observation 5.15 Let P ($x) a predicate on the variable
$x. Then,σP ($x)() is not monotone if$x is bound by the let
binder to an incomplete set.

Proof. The proof is based on a simple counterexample. Let
P be a set predicate of the formP ($x) ≡ $x = {o1}. Let
e1 6 e2 andAtt(e1) = Att(e2), wheree1.$x = {o1} and
e2.$x = {o1, o2}. ThenP (e1.$x) is true, while P (e2.$x)
is false.

Lemma 5.16 Let P ($x) a predicate on the variable$x.
Then,σP ($x)() is monotone if$x is bound by the let binder
and the set bound to$x in any tuple is guaranteed to be
complete.

Proof. Let e1 6 e2 and Att(e1) = Att(e2). If the set
bound to$x is guaranteed to be complete in any tuple, then
∀s1 ∈ e1 ∃s2 ∈ e2 such thats1 6 s2 ∧ s1.$x = s2.$x. Let
f be the function mappinge1 tuples intoe2 tuples. Then:

σP ($x)(e1) =
⋃

si∈e1

σP ($x)({si}) =⋃
si∈e1

σP ($x)({f(si)}) 6 σP ($x)(e2)

5.2. Main properties

In the previous Sections we see howreturn andσ may
lead, in particular circumstances, to incorrect query results.
Lemmas for bothreturn and σ tie the incorrectness of
query results to the presence of incomplete sets. Hence, be-
fore examining the main correctness results of the paper, it
is necessary to investigate the sources of incomplete sets.
Incomplete sets may be introduced as a consequence of the
evaluation of anunguardedpath expression, i.e., a path ex-
pression evaluated starting from the roots of the database

(e.g.,input()//book), and as a consequence of the evalua-
tion of a nested query. Nested queries may also lead to the
binding of incorrect values to variables, whenever their re-
sults are flagged as (potentially) incorrect, so our theorems
must take into account this issue2.

Theorem 5.17 (Complete sets)Given a queryQ, given
ls ⊆ AllLocs(db), and given two compatible location as-
signmentsρ1 andρ2 for Q on ls andAllLocs(db) respec-
tively, thenResρ1(Q) 6 Resρ2(Q) if Q does not con-
tain incorrect nested queries, and set variables inQ are
bound to complete sets.

Proof. By Observation 5.15 and Lemma 5.16.

This theorem is a straightforward application of the re-
sults of the previous Sections. We can go a step further with
the following theorem, which extends the class of queries
with correct results.

Theorem 5.18 Given a queryQ, givenls ⊆ AllLocs(db),
and given two compatible location assignmentsρ1 and
ρ2 for Q on ls and AllLocs(db) respectively, then
Resρ1(Q) 6 Resρ2(Q) if Q does not contain incor-
rect nested queries, and it does not contain set predicates
or aggregation functions applied to variables bound to in-
complete sets.

The previous theorems identify a large class of queries
whose results can be considered correct. Unfortunately,
these theorems do not define query classes for which cor-
rectness can be statically enforced, since they depend on
the property of set completeness, which in turn depends on
the behavior of the query plan generation layer.

Classes of queries whose result correctness can be stati-
cally checked are identified by the following theorems.

Theorem 5.19 (For/no-let queries)Given a query Q,
given ls ⊆ AllLocs(db), and given two compatible loca-
tion assignmentsρ1 and ρ2 for Q on ls and AllLocs(db)
respectively, thenResρ1(Q) 6 Resρ2(Q) if Q does not
contain incorrect nested queries, and it does not con-
tain set variables.

Proof. By Observation 5.15 and Lemma 5.16.

Theorem 5.20 Given a queryQ, givenls ⊆ AllLocs(db),
and given two compatible location assignmentsρ1 and
ρ2 for Q on ls and AllLocs(db) respectively, then
Resρ1(Q) 6 Resρ2(Q) if Q does not contain incor-
rect nested queries, and it does not contain set predicates
and aggregation functions.

Proof. By Observation 5.15 and Lemma 5.16.

2 In the following we will use the expressionincorrect nested queryfor
indicating a nested query returning a result flagged as incorrect.

Corollary 5.21 Given a queryQ, givenls ⊆ AllLocs(db),
and given two compatible location assignmentsρ1 and
ρ2 for Q on ls and AllLocs(db) respectively, then
Resρ1(Q) 6 Resρ2(Q) if Q does not contain incor-
rect nested queries, and it does not bind set variables to
the result of the evaluation of nested queries, or to the re-
sult of the evaluation of anunguardedpath expression.

Corollary 5.22 Given a queryQ, givenls ⊆ AllLocs(db),
and given two compatible location assignmentsρ1 and
ρ2 for Q on ls and AllLocs(db) respectively, then
Resρ1(Q) 6 Resρ2(Q) if Q does not contain incor-
rect nested queries, and it does not contain set predi-
cates or aggregation functions applied to variables bound
to the result of the evaluation of nested queries, or to the re-
sult of the evaluation of anunguardedpath expression.

These theorems identify syntactical conditions guaran-
teeing the correctness of query results. The corresponding
query classes are related to the classes of Theorems 5.17
and 5.18 by the following relations:

• Theorem 5.19⊆ Corollary 5.21;

• Theorem 5.20⊆ Theorem 5.18;

• Theorem 5.20⊆ Corollary 5.22;

• Theorem 5.20∩ Corollary 5.216= ∅, but no contain-
ment relation exists;

• Corollary 5.21⊆ Theorem 5.17;

• Theorem 5.17⊆ Theorem 5.18;

• Theorem 5.17∩ Corollary 5.226= ∅, but no contain-
ment relation exists.

These relations induce the query class hierarchy shown
in Figure 1. From this hierarchy it follows that the class of
queries described by Corollary 5.22 is, at this time, the max-
imal class of queries for which we can statically enforce re-
sult correctness.

5.3. Extensions

The results described in the previous Sections are based
on the key hypothesis of local completeness of input trees.
It is worth to see what happens when this assumption is re-
laxed.

By relaxing the tree local completeness properties, we
assume that a single tree can be fragmented among multi-
ple sites, e.g., ift = n[t1, t2], thenloc(n) = l ; loc(t1) =
l ∨ loc(t2) = l. In this case the evaluation of a guarded
path expression, e.g.,$b/desc, may lead to incomplete sets,
since nodes at any level in the tree can be dispersed in mul-
tiple locations. As a consequence, Corollaries 5.21 and 5.22
do not hold under this relaxed hypothesis, hence the maxi-
mal class of queries for which result correctness can be stat-
ically checked is described by Theorem 5.20.

FLWR queries without universal quantification

For
No Let
(5.19)

Corollary (5.22)

No aggs &
No set preds to incomplete variables (5.18)

No aggs
No set predicates

(5.20)

Complete

sets

(5.17)

Cor (5
.21)

Figure 1. Overall query class hierarchy.

6. Related works

To our knowledge, no previous work addressed the prob-
lem of query result correctness in XML p2p databases. As
a consequence, in this Section we briefly review existing
works on XML p2p databases.

In [5] authors describe acoordinator-freearchitecture for
distributed XML query processing in the context of p2p sys-
tems. The proposed architecture is based on two key ideas:
mutant query plans(MQP), andmulti-hierarchic names-
paces. An MQP is a logical query plan, where leaf nodes
may consist of URN/URL references, or of materialized
XML data. MQPs are themselves serialized as XML el-
ements, and are exchanged among the nodes of the sys-
tem: MQPs traverse the system, carrying partial results and
unevaluated sub-plans, until they are fully evaluated, i.e.,
they become a constant XML fragment. MQPs are routed
in the system according to information derived from multi-
hierarchic namespaces. Indeed, authors assume that data
contributed by peers are semantically connected, i.e., they
are part of the same namespace. A namespace is formed by
several category hierarchies, e.g., a hierarchy for geograph-
ical information and one for item features in a garage-sale
p2p application.

In [6] authors describe DBGlobe, a p2p system for global
computing. The key points of the project are the manage-
ment of mobile peers, which may relocate over time, the
use of services for dealing with heterogeneity and matching
mismatch problems, as well as the use of Active XML [1] as
the paradigm for service invocation/execution and data ex-
change.

In [4] authors give an overview of Piazza, a peer data
management system for XML data. The Piazza project fo-
cuses on the use of schemata, and, in particular, on the def-
inition of schema integration and mapping techniques for
p2p systems. The architecture of Piazza is basically a hierar-
chical p2p architecture, where peers are fully autonomous,
and may contribute data with schemas, while a central node
hosts an index structure structure for query routing and per-
forms query reformulation. Each peer has a schema, the
peer schema, which describes how the given peer views the
data offered by the system; while the Piazza approach is
based on the assumption that all peers share similar views of
the world, these visions are usually different, so the need for
peer schema reconciliation techniques emerges. Moreover,
the peer schema is somehow independent from the schema
of the data the peer may store, so a second class of map-
pings is required.

Peer schemas represent the peer vision of the world. As
a consequence, each query submitted by a given peerP is
posed against the peer schema ofP , and it must be refor-
mulated to work against the storage schema of the relevant
peers in the system. To this purpose, Piazza supports two
kinds of schema mappings:peer descriptions, which relate
two or more peer schemas, andstorage descriptions, which
map the data stored at one peer into the peer’s view of the
world.

Unlike common integration systems, no centralized me-
diated schema exists, query reformulation being executed
by solely using peer descriptions and schema descriptions.

7. Conclusions

This paper studied the problem of query result correct-
ness in XML p2p database. The paper identified classes of
queries, whose correctness can be statically checked, the
check being a simple syntactical analysis. These classes are
large enough to cover most common practical cases.

References

[1] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and
R. Weber. Active XML: Peer-to-Peer Data and Web Ser-
vices Integration. In28th International Conference on Very
Large Data Bases (VLDB 2002), Hong Kong, China, August
20-23, 2002, Proceedings, pages 1087–1090. Morgan Kauf-
mann, 2002.

[2] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Ro-
bie, and J. Siḿeon. XQuery 1.0: An XML Query Language.
Technical report, World Wide Web Consortium, May 2003.
W3C Working Draft.

[3] S. Cluet, C. Delobel, J. Siḿeon, and K. Smaga. Your me-
diators need data conversion! InProceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD-98), volume 27,2 ofACM SIGMOD Record, pages
177–188, New York, June 1998. ACM Press.

[4] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Pi-
azza: data management infrastructure for semantic web ap-
plications. InProceedings of the Twelfth International World
Wide Web Conference, WWW2003, Budapest, Hungary, 20-24
May 2003, pages 556–567. ACM, 2003.

[5] V. Papadimos, D. Maier, and K. Tufte. Distributed Query
Processing and Catalogs for Peer-to-Peer Systems. InCIDR
2003, First Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 5-8, 2003, 2003.

[6] E. Pitoura, S. Abiteboul, D. Pfoser, G. Samaras, and M. Vazir-
giannis. DBGlobe: a service-oriented P2P system for global
computing.Sigmod Record, 32(3):77–82, 2003.

[7] C. Sartiani. A Query Algebra for XML P2P
Databases, 2003. Manuscript draft. Available at
http://www.di.unipi.it/ ∼sartiani/papers/eve.pdf .

[8] C. Sartiani, G. Ghelli, P. Manghi, and G. Conforti. XPeer: A
self-organizing XML P2P database system. InProceedings of
the First EDBT Workshop on P2P and Databases (P2P&DB
2004), 2004, 2004.

