
PeerStore: Better Performance by Relaxing in Peer-to-Peer Backup

Martin Landers
Fakulẗat für Informatik

Technische Universität München
Boltzmannstr. 3, 85748 Garching

landers@in.tum.de

Han Zhang, Kian-Lee Tan
School of Computing,

National University of Singapore
3 Science Drive 2, Singapore 117543
{zhanghan, tankl}@comp.nus.edu.sg

Abstract

Backup is cumbersome. To be effective, backups have to
be made at regular intervals, forcing users to organize and
store a growing collection of backup media. In this paper
we propose a novel Peer-to-Peer backup system, PeerStore,
that allows the user to store his backups on other people’s
computers instead. PeerStore is an adaptive, cost-effective
system suitable for all types of networks ranging from LAN,
WAN to large unstable networks like the Internet. The sys-
tem consists of two layers: metadata layer and symmetric
trading layer. Locating blocks and duplicate checking is ac-
complished by the metadata layer while the actual data dis-
tribution is done between pairs of peers after they have es-
tablished a symmetric data trade. By decoupling the meta-
data management from data storage, the system offers a
significant reduction of the maintenance cost and preserves
fairness among peers. Results show that PeerStore has a
reduced maintenance cost comparing to pStore. PeerStore
also realizes fairness because of the symmetric nature of the
trades.

1 Introduction

A typical PC user today has so much data in his (her)
hard disk that performing a regular backup has become a
cumbersome activity: the amount of backup data may not
fit into a single backup device (e.g.,disk, CD-ROM, ZIP-
DISK), (s)he must ensure these backup storage are carefully
kept in a safe place, (s)he must remember the versions that
have been backed up, and so on.

Interestingly, the capacities of modern hard disks have
outgrown the needs of many users, leaving them with much
idle storage space. While this space cannot be used to back
up one’s own data, a collection of PCs can be “connected” in
a collaborative fashion to utilize their free space to backup
one another’s data. This has prompted several recent stud-
ies (e.g., pStore [1], Pastiche [3]) to design cheap, trans-

parent and efficient backup solutions in peer-to-peer (P2P)
networks.

The steps of a P2P backup process are: the user indi-
cates the data to be backed up, and the system distributes
the backup data to other peers, probably making multiple
copies to ensure availability of the data even when some
peers storing the data become unreachable. Each node has
to contribute a certain amount of space to back up data from
other peers to make the system work. Designing a P2P
backup system is challenging: the P2P network is inherently
dynamic (nodes join and leave anytime), fairness must be
enforced to prevent free-riding, the maintenance traffic has
to be kept at an acceptable level and heterogeneous needs
and capacities of nodes have to be considered.

In this paper, we propose a novel P2P backup system
called PeerStore. PeerStore distinguishes itself from exist-
ing systems by decoupling the metadata management from
the actual backup data storage. This has several advantages:
(a) Different strategies can be employed to meet the differ-
ent needs of the two subsystems: efficient searching for the
metadata layer and flexible data placement for the storage
mechanism. (b) The storage layer can be tailored towards
fairness (c) The metadata can be used to quickly locate all
replicas of a block, even if the replicas are stored at dis-
parate locations, (d) Because metadata is comparably small,
we can maintain the metadataaggressivelyto keep the in-
formation up-to-date.

In PeerStore, metadata management is accomplished by
using a distributed hash table (DHT). By storing the meta-
data records this way, duplicate detection can be done effi-
ciently. At the same time no real data needs to be migrated
when nodes join and leave the network; only the informa-
tion contained in the metadata records needs to be trans-
ferred and updated which largely saves the maintenance
cost. Data storage, on the other hand, relies on asymmet-
ric trading scheme. A peer that wants to backup its data
must also store some data from each of its trading part-
ners. We have implemented a simulation model of Peer-
Store, and evaluated its performance against pStore. Our

results show that PeerStore incurs less data migration over-
head than pStore. Moreover, PeerStore’s maintenance over-
head is significantly lower than that in pStore.

The remainder of this paper is organized as follows to
present more detailed information: Section 2 discusses re-
lated systems. Section 3 gives an overview of the PeerStore
design, while Section 4 introduces important components
of the system in greater detail. Section 5 presents our ex-
perimental results from simulating the system, followed by
a brief analysis of the data. Section 6 discusses weaknesses
of the current system and outlines further research direc-
tions in Peer-to-Peer backup. Section 7 concludes the paper,
summarizing our results.

2 Related Work

A number of Peer-to-Peer backup systems have been
proposed in the last few years.
pStore [1] is an incremental backup system based on Chord
[13]. It splits the files into equal-size data blocks, storing
them in a distributed hash table (DHT). Blocks with identi-
cal contents will be shared among all peers, lowering stor-
age requirements, especially when different versions of a
file only show minor modification.
Cooperative Internet Backup Scheme [8] puts a strong fo-
cus on fairness: it forces all peers doing backup to exchange
disk space in a symmetric manner. To facilitate these trades
a central “Matchmaking” server is used. Peers create a “vir-
tual disk” using Reed-Solomon erasure codes. The scheme
cannot exploit overlap between peers.
Pastiche [3], similar to Cooperative Internet Backup, uses
pairs of peers for backup. Using directed random walks in
a DHT, peers in Pastiche try to find “buddies” with a simi-
lar set of files. All data is kept in a special file system, and
buddies only exchange data not common for both.
Samsara [4] is a general fairness mechanism for Peer-to-
Peer storage systems. It usesstorage claimsto reserve space
for a peer at its partners, thus converting asymmetric trades
into symmetric ones.
Venti-DHash [12], similar to pStore, uses a DHT to store
data. It is a backend for the Venti backup system, storing
disk blocks in DHash, a replication enabled DHT.
PAST [5] and OceanStore [6] are storage systems not pri-
marily aimed at backup. PAST is a persistent Peer-to-Peer
archival mechanism based on a Pastry DHT [11], offering
replicated storage ofimmutablefiles. OceanStore mainly
deals with dynamic, nomadic data that is frequently modi-
fied, but does offer an archival mode. This mode uses era-
sure codes to create replicated backup fragments of data.
None of the existing systems is well suited for a scenario
where a private user backs up her data on the Internet. The
systems either fail to offer good performance in unstable
networks, or they have other issues preventing a simple

...

Anchor−based

Backup File

splitting

Metadata DHT

Peer Network (symmetric trading)

Block Metadata

Actual Blocks

Data Blocks

Figure 1. PeerStore overview

”home use”. PeerStore tries to address this, bringing P2P
backup one step closer to widespread adoption.

3 Design of PeerStore

The key idea of PeerStore is to decouple metadata man-
agement from actual data storage. Decoupling allows us
to use different Peer-to-Peer topologies in the layers. The
metadata layer is based on a DHT, since it provides fast ex-
act searching, needed to support duplicate detection. The
storage layer, on the other hand, is based on symmetric trad-
ing [8] in an unstructured network, because this approach
offers much better flexibility and avoids the high mainte-
nance cost of a DHT. Furthermore, the symmetric nature
of the trades considerably eases the addition of a fairness
mechanism. Both overlay network span the entire network
of peers. Figure 1 gives an overview of the system struc-
ture. The files to back up are split into blocks, encrypted
and stored at partners in the symmetric trading layer. To
efficiently retrieve blocks later, a metadata record is main-
tained for each block. These metadata records are stored
in theMetadata DHT. This also enables efficient duplicate
checking.

3.1 Backup

Before interacting with the network, a peer starts by
splitting the backup files into data blocks. PeerStore then
generates unique block identifiers and encrypts the data
blocks. Both splitting and encrypting the blocks are done in
a fashion that enables peers to share identical data in back-
ups. Each file is represented as a list of unique block iden-
tifiers.
Before partners for storing the blocks are sought, PeerStore
first eliminates all blocks that already have a sufficient num-
ber of replicas in the network. The number of replicas of

each block is determined by consulting the metadata DHT.
This step avoids wasting storage space for duplicate data.
After this elimination step, PeerStore starts looking for trad-
ing partners and creates new replicas of blocks. Once all
blocks have a sufficient number of replicas, the trading pro-
cess finishes. In a last step, the metadata records are updated
to reflect the new replicas created.

3.2 Restore

The restore operation in PeerStore is similar to pStore:
in order to restore a file, a peer first obtains the list of block
identifiers for each version of a file (theFile Block List in
pStore [1]), indicating which data blocks are needed to re-
assemble a certain version of the file. Using the metadata
layer, the peer determines thekeepers of each block , stor-
ing replicas, and downloads the block from one of them.
Once a copy of each block has been obtained, the blocks
can be decrypted and the original file reassembled.

3.3 Fairness

There are two interrelated aspects to fairness in a Peer-
to-Peer data storage network:safekeepingof data andfair
contribution. The main concern of a fairness mechanism
in PeerStore issafekeeping, as the trading system naturally
takes care of fair contribution once safekeeping is ensured.
With PeerStore’s trading system, peers only make trades
which contribute resources equal (or close to) their demand,
keeping the total amount of resources in the system bal-
anced. As a result, no free-riding is possible under this
scheme. But as peers might not keep their promises, reject-
ing blocks that a partner tries to store on the donated space
or even silently discarding blocks, a mechanism to monitor
data stored at other peers is needed. We propose that peers
regularly challenge each other to verify the partner is still
storing the blocks entrusted to it.
To make this monitoring effective, a peer failing to meet the
challenges must be punished. In PeerStore punishment is
achieved by discarding information that a peer has stored
on a partner. However, punishing a peer that fails to answer
a single challenge might lead to peers experiencing techni-
cal failure or downtime losing their backup, while, on the
other hand, a too relaxed strategy will encourage malicious
behavior. Samsara [4] offers a possible solution by com-
bining spot checks with aprobabilistic punishmentmodel.
For each challenge a partner fails to answer within a rea-
sonable amount of time, a peer discards a small random set
of replicas, withexponentiallyincreasing probability. Since
replicas are discarded randomly, the chances of losing all
replicas of a data block are very low when the initial chal-
lenges are missed, but grow very fast for each consecutive
unanswered challenge. When combined with the symmetric

trading scheme this peer monitoring model offers an effec-
tive fairness mechanism.

3.4 Short-term vs long-term availability

Data migration costs are a major contributor to the
overall maintenance costs of a Peer-to-Peer storage system.
Data migration costs are incurred by two things: re-creating
“lost” replicas in order to achieve high short-term availabil-
ity, and repairing data misplacement in a DHT. While the
latter is not a problem for PeerStore (since no actual data
is stored in the DHT), the former strongly influences the
resource requirements of the system. In unstable networks,
the cost of aggressively re-creating replicas can easily be
unbearable. To support such networks, PeerStore focuses
on providing long-term availability (i.e., individual blocks
may be unavailable temporarily if all keepers of a block
are offline, but in the long run all blocks can be obtained).
When peers leave the network, no immediate action is
taken. The metadata record of a block is just a list of all
the peers that are known to store a replica, regardless of
whether they are online or offline. No direct data migration
cost is incurred by leaving peers. The re-creation of replicas
is triggered by the infrequent challenges between partners
instead, leading to a low data migration cost. If a peer finds
that one of its partners is not answering to challenges for
a too long time, it replaces the partner with a new one. If
the challenging mechanism between partners is working
correctly, no data should be lostpermanently. Problems
with this lazy strategy are the possibly long waiting time to
finish a restore operation, and the uncertainty in deciding
whether a partner is temporarily off-line or has left the
network permanently.

4 Basic Components in PeerStore

In this section, we introduce important components of
PeerStore in greater detail.

4.1 File Blocks and File Block Store

The backup data and metadata is organized in the same
fashion as in pStore [1]. Each file in a backup is repre-
sented by a number of encrypted data blocks and a descrip-
tor (file block list) that lists all the blocks needed to recon-
struct a particular version of the file. The descriptor is sim-
ply treated as another data block. To split files anchor-based
indexing [9] using Rabin fingerprints [10] is used, to ensure
peers create the same blocks for identical byte sequences.
The unique identifier of each block,ID, is generated using
the following formula:

ID = h(h(C))

Symmetric Encryption

D D

File Block Encrypted File Block

H1
H2 = ID

Encrypted Block

D

Cryptographic Hash

Figure 2. Block encryption and identifier cre-
ation in PeerStore. Blocks are encrypted
using convergent encryption which ensures
identical blocks yield the same ciphertext and
identifier.

whereC is the content of the block andh is a cryptographic
hash function. Each block is encrypted usingconvergent en-
cryption[2]. Under this scheme, the hash value of the block
content,h(C), is used as key for a symmetric cipher used
to encrypt the block (for this reason we cannot useh(C)
as block identifier directly). With the combination of these
techniques, peers generate the same ciphertext blocks and
identifiers for identical byte sequences in files. Combined
with the nature of a DHT, this allows us to efficiently share
duplicate blocks between different peers, while only allow-
ing the legitimate owners of a block (peers in possession
of the key (h(C), stored in the file descriptor) to read the
block’s contents. The process of creating the block identi-
fier and encrypting the data block is shown in Figure 2.
Every node maintains two block stores for different pur-
poses. The “candidate” blocks are kept in thetemporary
block storebefore they are examined and sent out. Thetem-
porary block storewill always be empty after all the blocks
have been backed up. Thereal block storecontains blocks
stored on this node by other peers and is never modified or
deleted on conforming peers.

4.2 Metadata Layer

The metadata layer’s responsibility is to achieve efficient
data block retrieval and duplicate detection. It is imple-
mented on top of a distributed hash table. For each data
block generated by the peers, a block metadata record is
created to record the existence and location of this block’s
replicas in the system. Using the blocks unique identifier,
ID, as key, the metadata record is inserted into the DHT.

Each block metadata record, as depicted in Figure 3,
maintains a mapping from a block’s unique identifier,ID,
to a list ofkeepers- peers storing a replica of the block the
identifier is associated with. This offers an efficient way of
locating all replicas of a block given its identifier. If there is

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
Block Metadata

Block Identifier

Keeper 1

Keeper 2

Keeper nPeer 1E325...

Peer 7F4B2...

Peer B265C...

...

Figure 3. Internal structure of a metadata
record. The record maps a unique block iden-
tifier to the list of keepers storing replicas of
this block.

no metadata record matching a block’s identifier, the block
is considered not to be present in the system.
During restore, a peer simply queries the metadata DHT to
retrieve the metadata records for all the blocks it wants to
restore and retrieves the real data blocks directly from any
of thekeeperslisted inside the metadata records obtained.
The availability of all the metadata records is crucial to the
proper functioning of the system. For this reason, the meta-
data DHT needs to be maintained aggressively, to provide
high short term availability. We propose using a scheme
similar to DHash [12], that stores replicas of each meta-
data record on a number of consecutive peers in the DHT,
allowing fast recovery if a peer fails. We use a simplified
implementation, that broadcasts updates and synchronizes
replica sets by complete retransmission.
While we cannot avoid the relatively high cost of aggressive
maintenance here, the total maintenance cost is significantly
reduced (compared to pStore) because of the small size of
the metadata records: the metadata records are at least one
order of magnitude smaller than the actual data blocks.

4.3 Identifying Keepers

In order to directly communicate with the keepers stor-
ing the block to facilitate block retrieval, a mechanism of
uniquely identifying peers is needed. We propose imple-
menting alookupservice as an additional functionality of
the metadata DHT, using hash values - suitable as DHT keys
- aspermanentidentifiers for peers, and storing the current
address binding of each peer in the DHT. This address bind-
ing must also be maintained for high short-term availability,
lest the lookup fail frequently.

4.4 Symmetric Data Trading

Symmetric trading allows PeerStore to implement a
straightforward fairness mechanism and to deal with peer

heterogeneity. The symmetric nature of the trades guar-
antees that data is distributed among peers with respect to
their consumption of system resources, and it ensures that
peers can punish misbehaving partners by dropping their
data (which usually is not the case in a DHT-based sce-
nario). Since there is no restriction on the trading size,
peers with different storage requirements can find a match-
ing partner. Lastly, the stored data blocks are not subject to
data migration (as is needed in a DHT to ensure a correct
identifier-peer mapping), which saves a lot of maintenance
and network traffic compared to a typical DHT-based P2P
backup system.

Making a Trade As illustrated in Figure 4, making a
trade is a three step process:

• When looking for a new partner, a peer (A) broadcasts
a trade offerto the network in a limited-scale random
broadcast. The offer includes the amount of data the
node requires at a potential partner. An offer is not
binding for the peer.

• Reacting to the offer, a peer (B) can send atrade re-
quest to the originating peer (A). The trade request
contains the amount of storage B needs at A. Both
peers have specified their demand at this point. The
peer sending the trade request is bound to it (unless the
trade is rejected).

• The originating peer (A) responds by either accepting
or rejecting the trade, sending atrade acceptor atrade
reject message. If the trade is accepted, the peers are
trade partners from then on.

Each node maintains atrade offer cache, in which recently
received offers are kept for a later referral. Additionally, a
list of trade partners is maintained. When a peer starts the
trading phase, it needs at least one trade partner per block
replica, to ensure all replicas fail independently. Storing
multiple replicas of a block on one node does not increase
the robustness of the system.

Ideally, a peer would have exactly the same number of
partners as the number of replicas. This means, when a peer
starts looking for new trades, it should rather try to seek
potential trades from existing partners instead of broadcast-
ing to find new ones. If no existing trade offers enough
space to backup more data, a peer first tries to make a new
trade with one of the existing partners by sending atrade
requestto the set. Only if all partners reject the trade, the
peer starts searching for new partners. To avoid unneces-
sary broadcasting, thetrade offer cacheis checked first for
possible matching offers. If there are no suitable offers, the

B is bound
to the trade

cache
Trade offer

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

to the trade
A is bound

Peer A

Trade offer
broadcast

Trade accept

Trade request

Peer B

Figure 4. Messages in establishing a trade

peer starts sendingtrade offersto the network using limited-
scale random broadcasting based on the concept of a “light-
house sweep” introduced by Pastiche [3]. The limited-scale
random broadcast avoids the use of central server acting as
“Matchmaker”, as in [8], while it ensures the broadcast does
not consume too much network resources.
The nature of thelighthouse sweep, combined with the
properties of DHT routing, guarantee that each trade offer
broadcast reaches a distinct set of peers. However, as each
lighthouse sweeponly reachesO(d log n) out of n peers –
with d being the number of individual messages sent during
the sweep – a peer may miss potential trade partners. This
is a problem for peers with rare trading requirements (either
exceptionally large or small). These peers might need to re-
peat the broadcast several times, or they might even fail to
find a partner. In this case, a peer has the option of splitting
its trade, or to accept largely imbalanced trades for a small
trade, requiring the peer to provide much more space to the
partner than it consumes.

Trade Ratio As exact matches between two partners are
unlikely, each peer maintains atrade ratio, indicating how
much imbalance in a trade a peer is willing to accept. The
trade ratior is expressed as the maximum ratio by which
the amount of storage offered by a trade,So, may deviate
from the amount of storage space sought by a peer,Sw, for
a trade to be accepted. A peer will only accept a trade if

r ≥ max(So, Sw)
min(So, Sw)

Trade ratior is an indication of how much imbalance one
peer is willing to afford. Ifr is set to 1, a peer only accepts
exactly matching trades, severely reducing its chances of

block1 block2 block3 . . .

SHA1

SHA1

h0 h1 h2 hn

Figure 5. Safekeeping verification. By chain-
ing the hash values of blocks in the depicated
fashion a list of blocks can be challenged by
only transmitting the values h0 and hn.

finding a partner. The largerr is, the higher the chances
for a peer to find a matching trade. Asr is symmetric, a
peer increasingr not only increases its chances of finding a
larger trade, but also a smaller trade.

4.5 Ensuring Safekeeping

In order to ensure safekeeping of its backup, a peer has
to challenge all of its trade partners regularly, asking them
to prove they are still storing all block replicas sent to them.
However, retrieving all data blocks from the keepers is not a
feasible solution as it consumes too much bandwidth. Con-
sidering we only need to verify the data blocks are still
available, we propose the scheme shown in Figure 5: the
challenging peer sends a unique value,h0, along with the
list of n data blocks to verify to the partner. To answer,
the partner appendsh0 to the first data block in the list and
computes the SHA1 hash,h1, of this concatenation.h1 is
appended to the second block to computeh2 and so on. The
partner only needs to return thehn to prove that it is storing
all the data blocks in the list.
Using this scheme, a peer challenges its partners occasion-
ally. If a partner fails to answer a challenge within a rea-
sonable amount of time (say a day or even a week), the
peer drops a small, randomly-selected number of blocks it is
storing for that partner. Every block is dropped with a cer-
tain probabilityp, that increases exponentially should the
peer fail to answer subsequent challenges. Because each
block is replicated throughout the network and every peer
independently deletes blocks, the chances of losing all repli-
cas of a block are low for a peer not answering only a few
challenges. But peers that keep failing to answer challenges
will soon lose data blocks.

5 Experimental Results

The goal of PeerStore is to provide Peer-to-Peer backup
with low maintenance cost and good support for hetero-
geneity. The current DHT-based approaches suffer from

1.2GB

1GB

800

600

400

200

0
543210

M
eg

ab
yt

es
 tr

an
sf

er
re

d

Time (hours)

Data Migration
Routing Maintenance

Figure 6. Cumulative curves for data migra-
tion and routing maintenance cost of pStore
in an unstable network. With a total of
100MB of backup data on 50 nodes, the data
migration cost clearly dominates the DHT-
maintenance cost of the system.

having a high maintenance cost in unstable networks. Main-
tenance cost in DHT-based backup consists of routing main-
tenance cost and data migration cost. When nodes join or
leave the network, the actual data stored on affected nodes
needs to be transferred or replicated to make sure they are
stored on the correct responsible node. This is the data mi-
gration cost. Traffic caused by re-organizing the Peer-to-
Peer network is the routing maintenance cost. In PeerStore,
we concentrate on reducing the data migration cost by re-
laxing the strict guarantees a DHT imposes on data place-
ment. We focus on data migration, which has not received
much discussion in the literature, but according to our ex-
periments, is the dominating factor in DHT maintenance
cost in unstable networks.
We ran two different simulations: the first one uses pStore

to prove our forecast of the dominance of data migration
cost in a DHT-based Peer-to-Peer backup system, the sec-
ond one compares the performance of pStore and PeerStore,
focusing on their maintenance overhead in the comparison.
For both simulations, we chose a testbed approach, running
actual implementations of the systems on a network of 50
computers running the Sun Solaris operating system. Dur-
ing the simulations, nodes join and leave the network at ex-
ponentially distributed time intervals, chosen from two dis-
tributions, reflecting the different mean values of up- and
downtime. FreePastry was used as the peer-to-peer sub-
strate.
For the first simulation – testing our hypothesis that data mi-
gration cost dominates total maintenance cost – we created

 0

 50

 100

 150

 200

543210

M
eg

ab
yt

es
 tr

an
sf

er
re

d

Time (hours)

PeerStore Maintenance
PeerStore Backup

pStore Maintenance
pStore Backup

Figure 7. Comparison of PeerStore and
pStore backup and maintenance traffic.
While the backup traffic (top curves) is simi-
lar for both systems, pStore generates signif-
icantly more maintenance traffic, as it stores
larger amounts of data in the DHT.

50 pStore nodes, each doing backup with a backup data set
of 100MB. By instrumenting FreePastry, we were able to
record incoming peer-to-peer traffic at each node. Figure 6
shows the results: While the routing maintenance cost is al-
ready significant, the data migration cost is several orders
of magnitude larger. This result should be independent of
the underlying DHT type because according to a compari-
son study of the performance of different distributed hash
table under churn [7] is very similar.

The second simulation compares the performance of
pStore and PeerStore. Again, both systems were run on a
testbed setup of 50 computers. In order to do a fair com-
parison, we generate the same network scenario for both
networks, that is, the number of nodes connected to the net-
work at certain time, the time they start doing backup, the
time they join network and the time they leave network are
identical. We also use identical data sets for all test simula-
tions.
As depicted in Figure 7, the amount of backup data traf-
fic is quite similar for pStore and PeerStore. The backup
data traffic is the traffic caused by actual backup operations,
that is, the initial transfer of backup data from a peer to
its partners in the network. As both systems have to back
up the same data, we would expect the backup data traf-
fic to be identical for both systems. However, PeerStore
requires slightly less backup data traffic than pStore, be-
cause the metadata records in PeerStore enable the system
to detect duplicate blocksbeforethey are transferred over
the network. pStore, on the other hand, needs to transfer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

P
er

ce
nt

ag
e

of
 p

ee
rs

 th
at

 fi
ni

sh
ed

 b
ac

ku
p

Trade ratio

Figure 8. Trade ratio vs. Percentage of suc-
cessful backup. An increased trade ratio
makes peers accept more imbalanced trades
and thus allows a larger number of peers to
successfully finish their backup.

each block, as only the receiving node is able to judge if a
block is a duplicate.
The maintenance cost for these two systems displays a sharp
contrast. The main reason for this is the different amount of
maintenance required for the DHT in each system. pStore,
since it stores all data blocks directly in the DHT, must do
actual data migration, moving data blocks between neigh-
bors in the DHT, when a node joins or leaves. PeerStore, on
the other hand, only requires metadata maintenance to syn-
chronize the metadata among the set of consecutive peers
affected, nothing else needs to be done. This figure shows
that PeerStore requires significantly less maintenance traffic
than pStore in unstable scenarios.
Since PeerStore contains a trading mechanism for data dis-
tribution, it is interesting to explore the effect of applying
different trade ratiosto the system. The result of this third
simulation, which is shown in Figure 8, clearly shows that
the higher the trade ratio, the higher percentage of peers are
able to finish their backup. As the data points indicate, in-
creasing the trade ratio only marginally in the range of[1, 2]
allows a large number of additional peers to finish. Beyond
2, the effect of increasing the trade ratio is less pronounced,
hinting at asymptotic behaviour.

6 Future Work

PeerStore still has several limitations: the main disad-
vantage of the proposal at the moment, shared with systems
like Pastiche and Cooperative Internet Backup Scheme, is
that it cannot guarantee a backup for every peer. If a peer is

unable to find a sufficient number of suitable trading part-
ners, it cannot fully backup its data. Another problem is
the fragmentation of backup sets introduced by the dupli-
cate removal process, leading to the situation where a peer
might not have a trade for each of its blocks. Usually this
is no problem, as the blocks are covered by other trades,
but can lead to silent block loss in the unlikely case that all
peers directly involved in these trades lose interest. If the
fragmentation is substantial it would also have a negative
impact on the fairness mechanism, as trades are no longer
symmetric in the sense that a peer can punish every other
peer storing blocks for it. Finally, this complicates the in-
clusion of a deletion primitive. A security flaw PeerStore
shares with all systems using convergent encryption, is al-
lowing an attacker to probe backups for known data. All
these limitations indicate future research areas.

7 Conclusions

By combining different peer-to-peer network topologies,
PeerStore offers advantages in peer-to-peer backup in un-
stable networks. By seperating the concerns of block man-
agement and actual block storage, PeerStore can offer good
long-term availability with low maintenance cost. As a gen-
eral result, we have shown that the data migration cost is
the dominatng factor in the maintenance cost of distributed
hash tables in unstable networks.
For this reason, we expect to see more systems combin-
ing multiple peer-to-peer topologies, as none of the current
topologies can on its own efficiently support tasks as differ-
ent as searching and data distribution. Especially the com-
bination of (small) distributed hash tables with less rigid
mechanisms sounds promising, offering both good search
performance and a high flexibility.

References

[1] C. Batten, K. Barr, A. Saraf, and S. Treptin. pStore: A
secure peer-to-peer backup system. Technical Memo
MIT-LCS-TM-632, MIT Laboratory for Computer
Science, December 2001.

[2] William J. Bolosky, John R. Douceur, David Ely, and
Marvin Theimer. Feasibility of a serverless distributed
file system deployed on an existing set of desktop pcs.
In Proceedings of the 2000 ACM SIGMETRICS inter-
national conference on Measurement and modeling of
computer systems, pages 34–43. ACM Press, 2000.

[3] Landon P. Cox, Christopher D. Murray, and Brian D.
Noble. Pastiche: Making backup cheap and easy.
In Proceedings of the Fifth ACM/USENIX Symposium
on Operating Systems Design and Implementation,
Boston, MA, December 2002.

[4] Landon P. Cox and Brian D. Noble. Samsara: Honor
among thieves in peer-to-peer storage. InProceed-
ings of the 19th ACM Symposium on Operating Sys-
tems Principles, Bolton Landing, NY, October 2003.

[5] P. Druschel and A. Rowstron. PAST: A large-scale,
persistent peer-to-peer storage utility. InProceedings
of the Eigth Workshop on Hot Topics in Operating Sys-
tems (HotOS VIII), pages 75–80. IEEE Computer So-
ciety Press, May 2001.

[6] John Kubiatowicz, David Bindel, Yan Chen, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean
Rhea, Hakim Weatherspoon, Westly Weimer, Christo-
pher Wells, and Ben Zhao. Oceanstore: An architec-
ture for global-scale persistent storage. InProceedings
of the 9th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-IX). ACM Press, November 2000.

[7] Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert
Morris, and M. Frans Kaashoek. Comparing the
performance of distributed hash tables under churn.
In Proceedings of the 3rd International Workshop
on Peer-to-Peer Systems (IPTPS04), San Diego, CA,
February 2004.

[8] M. Lillibridge, S. Elnikety, A. Birrel, M. Burrows,
and M. Isard. A cooperative internet backup scheme.
In Proceedings of the 2003 Usenix Annual Technical
Conference, pages 29–41, 2003.

[9] U. Manber. Finding similar files in a large file system.
In Proceedings of the USENIX Winter 1994 Techni-
cal Conference, pages 1–10, San Fransisco, CA, USA,
17–21 1994.

[10] Michael O. Rabin. Fingerprinting by random poly-
nomials. Technical Report TR-15-18, Harvard Aiken
Computer Laboratory, 1981.

[11] Antony Rowstron and Peter Druschel. Pastry: Scal-
able, decentralized object location, and routing for
large-scale peer-to-peer systems.Lecture Notes in
Computer Science, 2218:329–350, 2001.

[12] Emil Sit, Josh Cates, and Russ Cox. A dht-based
backup system, August 2003.

[13] Ion Stoica, Robert Morris, David Karger, M. Francs
Kaashoek, and Hari Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet applica-
tions. InProceedings of the 2001 conference on ap-
plications, technologies, architectures, and protocols
for computer communications, pages 149–160. ACM
Press, 2001.

