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Abstract

We show in this paper that de Bruijn networks, despite
providing efficient search while using constant routing ta-
ble size, as well as simplicity of the understanding and im-
plementation of such networks, are unsuitable where key
distribution will be uneven, a realistic scenario for most
practical applications. In presence of arbitrarily skewed
data distribution, it has only recently been shown that some
traditional P2P overlay networks with non-constant (typi-
cally logarithmic) instead of constant routing table size can
meet conflicting objectives of storage load balancing as well
as search efficiency. So this paper, while showing that de
Bruijn networks fail to meet these dual objectives, opens
up a more general problem for the research community as
to whether P2P systems with constant routing table can at
all achieve the conflicting objectives of retaining search ef-
ficiency as well as storage load balancing, while preserv-
ing key ordering (which leads to uneven key distribution).

Keywords: Distributed Hash Tables, Routing, de Bruijn net-
works, Storage Load Balancing

1. Introduction

The growing popularity of peer-to-peer networks makes
them a very likely candidate for being a substrate for future
internet scale information systems. After the initial popu-
larity of centralized Napster, and flooding based networks
like Gnutella, several distributed hash tables(DHT), also
known as structured peer-to-peer networks or overlay net-
works, have emerged [1, 20, 22, 24], providing greater scal-
ability, accuracy and efficiency.
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DHTs are typically based on the PRR scheme [17] that
had been proposed for efficiently accessing cached copies
of distributed objects. The initial research related to DHTs
resulted in networks, where if the search space is par-
titioned in N disjoint partitions, then each peer needed
O(log(N)) references to route (forward) a query for any
particular key to the appropriate partition using on an aver-
age O(log(N)) network messages (query forwarding). This
includes Chord [24], CAN [20], Pastry [22], P-Grid [1].
Note that even though CAN has a constant routing table
size, it achieves logarithmic search only with routing tables
of logarithmic size. For the rest of the paper, we’ll refer to
these as the traditional DHTs. The next phase of research
resulted in P2P networks, where constant degree networks
with logarithmic search properties were proposed [13, 10].
These networks were typically emulations of the Butterfly
network or the de Bruijn network. Because of the simplic-
ity of realizing de Bruijn networks on top of many existing
DHTs as substrate, demonstrated originally by Koorde [10]
built on top of Chord, de Bruijn routing has gained a tremen-
dous popularity in the DHT research community, and re-
sulted in proposals for de Bruijn routing for several other
traditional DHTs, for instance CAN-d2B [8] on top of CAN,
or on P-Grid (as will be shown in this paper in Section 3).

While storage of routing information may not be criti-
cal, the constant size of the routing table (K) is expected
to marginalize the cost of route maintenance while retain-
ing the efficiency of logarithmic (base K) search cost.

In this paper, we take a more pragmatic look at the pos-
sibilities of using de Bruijn routing in DHTs. There are sev-
eral aspects, including resilience [3] of P2P networks, that
the initial researchers [10] have already pointed out to be
the possible Achilles heel1 for de Bruijn networks. We thus
focus on another aspect of these networks, that has so far
largely been ignored for even the traditional DHTs. Stor-
age load-balancing at individual peers when key distribu-
tion is uneven has until recently been left unaddressed.

Typically, storage load balancing is taken care of by us-

1 While a small value of K like 2 will make the network vulnerable to
faults, a larger (but sub-logarithmic) constant K can provide a good
trade-off between the maintenance cost as well as fault-tolerance. This
issue is beyond the scope of the present paper.



ing a cryptographic hash function to generate the keys that
are uniformly distributed over the key space, and hence triv-
ially solving the issue of load-balancing. The solution is el-
egant and simple, and hence immensely popular. The us-
age of cryptographic hashing makes sense for networks like
Freenet [5] where censorship resistance and anonymity are
primary objectives. For the other applications it is not only
unnecessary, but also limits the utility of the P2P network,
since a crucial information of ordering of keys is lost while
using cryptographic hashing. The resulting DHTs then can
not support simple extensions of keyword search, for exam-
ple range queries. Thus, as P2P networks become ever more
omnipresent, and more applications use such P2P overlays
as the substrate to develop next generation internet scale ap-
plications and information systems, we have to rethink the
design of DHTs to meet the conflicting goals of preserv-
ing the key ordering, storage load-balancing and search ef-
ficiency.

It has recently been shown that traditional distributed
hash tables which have non constant routing tables (on
an average logarithmic of number of partitions of the key
space) can have storage load-balancing and logarithmic
search cost even if key distribution and hence partitioning
of search space is uneven. This has particularly been proven
for P-Grid [2]. While this has specifically been proven for
only P-Grid, and uses some specific properties (randomiza-
tion) of its routing tables, a generalization of the proof for
other traditional DHTs is still an outstanding issue. How-
ever, skip graph based networks have also been recently
shown to have similar search efficiency and load-balancing
properties [4]. On the other hand, in this paper we show that
constant out-degree networks using de Bruijn routing are
unsuitable for achieving the dual goals of load-balancing
and efficient search. This demonstrates the limitations de-
spite the apparent advantages and recent interest around de
Bruijn network based P2P systems. The arguments we put
forward in this paper revolves around this central theme of
load-balancing and search efficiency for arbitrary key dis-
tributions.

In Section 2 we first give a background of distributed
hash tables, and introduce P-Grid, as well as a brief intro-
duction to de Bruijn networks, and describe in Section 3
how they can be realized for efficient routing on top of the
traditional DHT [1, 24, 20] abstractions. Next we provide a
more elaborate description of the conflicts arising from stor-
age load balancing in Section 4. In Section 5 we investigate
the consequences of uneven partitioning of search spaces
on de Bruijn routing, and arrive at the conjecture that while
traditional DHTs can meet the conflicting goals, de Bruijn
routing is not suitable for such requirements. We conclude
in Section 6, highlighting that while conventional DHTs
have reached a degree of maturity wherefrom they are well
suited as the substrate for internet-scale information sys-
tems, constant routing table sized based systems have var-
ious open challenges which will comprise our and indeed
the whole research communities future work. From the ar-
guments and evidence provided in this paper, we show that

de Bruijn networks in particular are unsuitable for many
important and practical applications that are expected to
use the P2P network as their underlying infrastructure, thus
clearly demarcating the assumptions under which and why
de Bruijn networks will (not) make sense.

2. Background

2.1. Distributed Hash Tables

Structured peer-to-peer networks based on distributed
hash tables(DHT) provide scalable distributed data struc-
tures(SDDS) that can be used to efficiently locate resources
in a decentralized manner. There are two important aspects
in defining DHTs.

• Association of resources (keys) to peers: When any
resource is searched in a P2P network, it essentially
translates to search for the peer that holds the resource
or an index for the resource. Consequently, a resource
(corresponding key) needs to be associated with a peer,
where the key is generated by using some hashing
function on that attribute of the resource (typically the
name), by which the resource is later searched.

A simple way to assign a key to a peer is to use
the same range for specifying peer identifiers as the
key range, and then associating keys based on close-
ness to peer identifier. This is for instance the case for
Chord. While simple, the drawback with this approach
is its implications on load-balancing if data distribu-
tion is skewed. Even with uniform key distribution,
Manku [14] identifies the problem of partition bal-
ance, which is only aggravated in presence of skewed
key distribution.

Ways to mitigate the effect may include generat-
ing peer identifiers that conform to the key distribu-
tion. While this will potentially solve the problem stat-
ically (assuming global knowledge), if key distribution
is temporal in nature, then such a mapping mechanism
will run into difficulties.

Another approach is to divide the key space dynam-
ically in explicit partitions based on the key distribu-
tion, and assign peers to be responsible for these parti-
tions. By disentangling the peer identifiers from keys,
and instead using a mechanism to discover the peers
responsible for the zones instead of the peers them-
selves, more flexibility for storage load-balancing is
achieved. This is the approach used in P-Grid [2] (also
for CAN [20] in principle), where we solve the parti-
tion balance problem [14] for any arbitrary key distri-
bution.

• Efficient mechanisms to route search requests to re-
sponsible peers: This determines the choice of rout-
ing table and mechanisms to forward and search (or
insert) requests using a proper choice of routing en-
try from the routing table.
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Often when the data structure for DHTs are defined, and
constructed, one tends to couple both the routing tables and
the association of data (key) to peers together. However we
would like to emphasize that these are essentially orthogo-
nal issues. For instance, the same partitioning of the search
space can still use different routing tables and hence differ-
ent routing mechanism.

We illustrate this later in the paper in Figure 1 where we
show an example on how the same partitioning of the key
space can be explored using P-Grid, CAN and de Bruijn
routing.

There are other important aspects for DHTs, including
maintenance of the routing tables and their resilience in
presence of dynamics in the network [3], also known as
churn [21, 12], and proximity and network latency related
issues, however these are beyond the scope of this paper.

Next we briefly introduce P-Grid, which has been shown
to achieve storage load-balancing while preserving search
efficiency even if the key distribution is skewed, that is, even
if the key-space is partitioned unevenly [2]. This is impor-
tant because it shows the existence of traditional P2P sys-
tems which can meet the conflicting goals of storage load
balancing and search efficiency, and hence its performance
becomes a natural benchmark to compare the performance
of any other DHT, including the new genre constant degree
P2P networks.

In P-Grid, we make the design choice of partitioning the
key space and assigning the zones to peers independent of
their identifiers, thereby retaining greater flexibility for stor-
age load-balancing.

2.2. The P-Grid data structure

Since we compare de Bruijn based networks with per-
formance of P-Grid [1, 2] (as a representative traditional
DHT with non-constant routing tables), here we briefly in-
troduce P-Grid. P-Grid is a distributed data structure based
on the principles of distributed hash tables (DHT) [17]. As
any DHT approach P-Grid is based on the idea of associat-
ing peers with data keys from a key space K. Without con-
straining general applicability we will only consider binary
keys in the following. In contrast to other DHT approaches
we do not impose a fixed or maximal length on the keys,
i.e., we assume K = {0, 1}∗.

In the P-Grid structure each peer p ∈ Peers is asso-
ciated with a binary key from K. We denote this key by
path(p) and will call it the path of the peer. This key deter-
mines which data keys the peer has to manage, i.e., the keys
in K that have path(p) as prefix. In particular the peer has
to store them. In order to ensure that the complete search
space is covered by peers we require that the set of peers’
keys is complete. The set of peers’ keys is complete, if for
every prefix spre of the path of a peer p there exists a peer
p′, such that path(p′) = spre, or there exist peers p0 and
p1, such that spre0 is a prefix of path(p0) and spre1 is
a prefix of path(p1). Naturally, one of the two peers p0

and p1 will be p itself in that case. Completeness is guar-
anteed by P-Grid’s construction algorithm. We do not ex-
clude the situation where the path of one peer is a prefix
of the path of another peer. This situation will occur dur-
ing the construction and reorganization of a P-Grid. Ide-
ally, this situation is avoided, since otherwise peers with
shorter paths (prefixes) will have high storage loads and
thus load balancing is compromised. Thus, any algorithm
for maintaining a P-Grid should eventually converge to a
state where the P-Grid is prefix-free, i.e., for peers p0 and
p1 we have path(p0) �⊆ path(p1) ∧ path(p1) �⊆ path(p0),
where s ⊆ s′ denotes the prefix relationship among strings
s and s′.

We also allow multiple peers to share the same paths, in
that case we call the peers replicas. The number of peers that
share the same path is called the replication factor of the
path. Replication is important to support redundancy and
thus robustness of a P-Grid in case of failures and to dis-
tribute workload when searching in a P-Grid.

To be able to search in P-Grid, peers maintain routing
tables. The routing tables are defined as (partial) functions
ref : Peers × N → {Peers} with the properties

1. ref(p, l) is defined for all p ∈ Peers and l ∈ N with
1 ≤ l ≤ |path(p)|

2. ref(p, l) ⊆ Peerss1s2...sl−1(1−sl) with path(p) =
s1s2 . . . sl−1sl . . . sk, k ≥ l

where Peerst = {p ∈ Peers|t ⊆ path(p)} for t ∈ K .
More detailed example on P-Grid’s routing will be shown
in Section 5.

For the same association of peers with paths, differ-
ent P-Grids can be obtained depending on the choice of
ref(p, l). Algorithms for construction and maintenance of
a P-Grid have been introduced in [2]. The construction al-
gorithm takes care of dynamically partitioning the search
space, such that approximately equal number of keys be-
long to each partition. The maintenance phase dynamically
splits or joins the partitions to preserve the storage load-
balancing, and works in harmony with the route mainte-
nance mechanisms [3].

Having multiple references at each level l again is neces-
sary to guarantee robustness of the data structure. In the fol-
lowing, r denotes the maximum number of references main-
tained at each level. The search algorithm for locating data
keys indexed by a P-Grid is defined as follows: Each peer
p ∈ Peers is associated with a location loc(p) (IP address
in the network). Searches can start at any peer. Peer p knows
the locations of the peers referenced by ref(p, l), but not of
other peers. Thus the function ref(p, l) provides the neces-
sary routing information to forward search requests to other
peers in case the searched key does not match the peer’s
path. Let t ∈ K be the searched data key and let the search
start at p ∈ P . Algorithm 1 shows P-Grid’s basic recursive
search algorithm.

Algorithm 1 always terminates successfully, if the P-
Grid is complete and all peers are reachable. Due to the
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Algorithm 1 Search in P-Grid: search(t, loc(p))
1: if path(p) ⊆ t then
2: return(loc(p));
3: else
4: determine maximal l such that t1 . . . tl−1(1 − tl) ⊆ path(p);
5: r = randomly selected element from ref(p,l);
6: search(t, loc(r));
7: end if

definition of ref , search(t, loc(p)) will always find the lo-
cation of a peer at which the search can continue (use of
completeness). With each invocation of search(t, loc(p))
the length of the common prefix of path(p) and t increases
at least by one. Therefore the algorithm always terminates.

In case of an unreliable network, it may occur that a
search cannot continue since the peer r selected from the
routing table is not available. Then alternative peers can be
selected from the routing table to continue the search.

2.3. de Bruijn Networks and routing mechanisms

We use the notation used by Ganesan and Prad-
han [9] for the description of de Bruijn networks [9, 18].
The order-n binary de Bruijn graph D(n) consists of the set
of nodes Zn

2 = {0, 1}n. For α, β ∈ Z2 and x ∈ Zn−2
2 , each

node αxβ is connected to:

• Node xβα via a shuffle arc.

• Node xβα via a shuffle-exchange arc.

• Node βαx via a inverse-shuffle arc.

• Node βαx via a inverse-shuffle-exchange arc.

Sometimes some of these arcs form loops, and the de
Bruijn network corresponding to the de Bruijn graph ex-
cludes these redundant arcs.

Definition: The directed de Bruijn network is the di-
rected graph of the nodes with the shuffle-arc and shuffle-
exchange-arc as the outgoing edges, and the inverse-arcs
as the incoming edges (excluding loops). The undirected de
Bruijn network thus comprises all the edges of the directed
de Bruijn network being bidirectional.

The definitions can be extended for a order-n k-ary de
Bruijn network as well, but for the rest of the paper we’ll
work with the binary network for simplicity, unless explic-
itly mentioned otherwise. Moreover, by default we’ll refer
to the directional de Bruijn graph and network, and will
specify explicitly whenever we refer to the undirected one,
as has been the practice in related literature.

2.3.1. Optimal routing in directed de Bruijn network.
It has been shown that the greedy routing scheme is optimal
for directed de Bruijn network [19], where optimality im-
plies that routing is done along a path of length less than or
equal to the diameter of the network, which is n. Thus, at
every step of routing, the edge corresponding to a left-shift
of the current binary string, appended with the next bit of
the destination node as the last bit is chosen. Thus, routing
from V = v1v2...vn to W = w1w2...wn will be along the

path v1v2...vn → v2v3...vnw1 → v3...vnw1w2 → ... →
w1w2...wn [19].

In the undirected de Bruijn network, such left-shifts are
called L-operation, and similarly R-operation too can be
defined, which forms the basis for shortest path routing in
undirected de Bruijn network, as described below.

2.3.2. Shortest path routing in undirected de Bruijn
network. For the undirected de Bruijn network, Mao
and Yang provided the shortest path routing algo-
rithm [16] by modifying the original routing algorithm
for undirected de Bruijn networks proposed by Prad-
han and Reddy [18]. We provide a brief overview of the
algorithm for de Bruijn shortest path routing in an undi-
rected network that is based on local computation at
the source. For further details and proof of the correct-
ness of the algorithm, please refer to [16], from which we
borrow the notations for this subsection.

Let X be a common substring in source V and destina-
tion W . Then, V may be represented as VLXVR, and W
as WLXWR, where each of X , VL, VR, WL and WR may
be empty. Let a left shift be defined as a L-operation. e.g.,
11100 → 1100∗ Then routing from V to W may be done
by |VR| R-operations, then perform |WR| L-operations to
correct the bits on the right side of X , then perform |WL|
L-operations, and then |WL| R-operations to complete the
routing. This route is the RLR path from V to W for the
common substring X , and length of this path can be locally
computed at source V . Similarly a LRL path too can be de-
fined, and its length be determined. Then the shortest path
from V to W will comprise of the shortest of the shorter
path computed for all possible common substrings X of V
and W .

3. de Bruijn Networks for DHTs

While de Bruijn networks have been in use for parallel
computing, interconnection networks and multi-processor
chip designing, all these have been static settings. Ko-
orde [10] pioneered in using the de Bruijn network in the
context of P2P DHTs. It used Chord as a substrate to build
Koorde. de Bruijn network may also be built from scratch,
as has been elaborated in CAN-d2B [8]. The simplicity of
such degree optimal network means implementation is easy,
either on top of an existing DHT substrate, or from scratch,
while search is efficient. Figure 1 shows how the same par-
titioning of key-space may be realized for some traditional
DHTs (P-Grid and CAN), and how de Bruijn routing may
be used instead.

Subfigure 1(a) shows an instance of P-Grid. P-Grid uses
greedy prefix based routing, and the routing process emu-
lates a virtual tree, though there is no hierarchy in P-Grid.
For instance peers with prefix 000 are stored in the partition
named A. A peer responsible for partition A thus keeps in
its routing table at least one (or more, for redundancy) ran-
dom reference for the other half of the subtree at each level.
So for the first bit, prefix 1, it needs to store any peer that
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is responsible for any of the partitions E,F ,G or H . For the
prefix 01, it similarly stores at least one reference of any
peer that is responsible for the partitions C or D, while for
prefix 001, it stores reference for a peer responsible for par-
tition B, while for prefix 000, it itself is responsible to store
the keys. Note that multiple peers can be responsible for
the same partition, and are called replicas, which thus pro-
vide redundancy and robustness, and probabilistic consis-
tency of these replicas is provided using a hybrid push and
pull gossiping mechanism [6]. Similarly, multiple random
routing references for each prefix may be stored for greater
resilience.

Subfigure 1(b) shows a 2-dimensional CAN network for
the same partitioning of the key space. Unlike prefix reso-
lution in P-Grid, CAN uses a greedy algorithm to resolve
any one of the possible bits, thus a peer in partition D(011)
maintains routes to C(010), B(001) and H(111)

Subfigure 1(c) shows de Bruijn routes for the same parti-
tioning. For instance, C(010) has routes for the partitions
corresponding to left-shift 10 appended with 0/1, that is
E(100) and F (101). Koorde [10] and CAN-d2B [8] use
similar principles for the routing network.

P-Grid is a traditional DHT with non-constant routing ta-
ble (typically logarithmic), but with logarithmic search cost
with high probability [2]. A d-dimensional CAN has a con-
stant 2d routing entries, but the search cost in CAN is log-
arithmic only if it has logarithmic dimension. On the other
hand, de Bruijn network has constant (2) routing entries,
and still logarithmic search cost. These capture a whole
spectrum of DHT designing. Another aspect of de Bruijn
network is, like P-Grid and CAN, its simplicity, in con-
trast with the complexity and need of approximate global-
knowledge in Viceroy [13], which emulates a butter-fly net-
work and pioneered the family of constant sized routing ta-
ble DHTs.

So far, the prospects of de Bruijn networks look all rosy.
Indeed, the degree optimality implies that cost of route
maintenance will also be marginal. These advantages make
it the ultimate choice for routing in distributed hash tables.
Or does it? We explore a critical limitation of de Bruijn rout-
ing as compared to traditional DHTs in the remaining of the
paper.

4. Storage load balancing in DHTs

As mentioned previously, for a wide range of applica-
tions using range queries, it is desirable to preserve the nat-
ural ordering of resources in the hashed key space. This will
lead to skewed key distribution, such that in order to bal-
ance storage load among peers, an uneven partitioning of
the key space will be desirable.2 Figure 2 shows an exam-

2 It is possible to formulate a more ambitious goal of balancing query
load by considering query distribution over the key space, however, it
is taken care of by adapting the replication factor accordingly. Balanc-
ing replication factor is elaborated in [2] and for brevity and simplic-
ity we exclude from this paper the issue of replication load-balancing
in DHTs.
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Figure 1. Some DHT routing possibilities

ple to illustrate the point. If a four-bit key space has key dis-
tribution with relative frequencies as shown in the bar chart,
then the desirable partitioning of the key space is as shown
in the upper part. In the figure, we also show the correspond-
ing P-Grid search structure for the partition so formed.

4.1. Logarithmic searches in P-Grid with non-
logarithmic depth

A random P-Grid that balances storage load per peer also
provides efficient (logarithmic) searches. Note that the P-
Grid shape is determined by the key distribution, and by
random, we mean that the choice of routing entries at each
peer for each level is randomly chosen from all the possible
options. Self-organizing algorithms for construction of a P-
Grid conforming to key distribution using only local knowl-
edge, and randomization of P-Grid routing tables is elabo-
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Figure 2. Storage load-balanced partitioning
of search space

rated in [2]. Here we provide a summary of the results.
Searches in an arbitrarily shaped P-Grid (constructed [2]

to ensure storage load balancing in presence of arbitrary key
distribution) will be successful using logarithmic messages
with high probability. That is to say, searches will be effi-
cient no matter how the key space is partitioned. This is a
consequence of the random choice of routing references at
each peer ensured by the P-Grid construction and mainte-
nance algorithm [2]. As a consequence of this, and the flex-
ibility obtained by disentangling the peer identifiers from
the associated keys (Section 2.1), and thus the flexibility of
arbitrary key space partitioning and assignment of peers to
these partitions, we can achieve the conflicting goals of stor-
age load balancing as well as efficient searches.

Thus, such a property of simultaneously balancing stor-
age load, while preserving key ordering (which leads to
arbitrarily skewed distributions) and search efficiency be-
comes a benchmark for comparing the properties and use-
fulness of any other P2P system. In the rest of this paper,
we show that de Bruijn routing based P2P networks do not
meet these objectives. This is essentially a consequence of
the properties of de Bruijn graph, including its determinis-
tic nature and assumption of homogeneity of the node-space
of the graph, which makes it unsuitable to be applied in the
context of P2P systems.

5. de Bruijn routing revisited

In the previous section we identified the benchmark for
comparing DHTs performance vis-a-vis load-balancing and
search efficiency in presence of arbitrary key distribution.
Next we seek to know whether such properties can be ex-
pected from de Bruijn routing based networks. We provide

examples to demonstrate limitations of de Bruijn routing for
an unevenly partitioned key-space.

0000 0001

001 010

0110 0111

10

110 111

0001 001

010
011*

10

110 111

00*
01*

10 110

0000 0001

001 010

0110 0111

10

110 111

0001 001

010
011*

10

110 111

00*
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Figure 3. de Bruijn routing when keyspace
partitioning is uneven.

In Figure 3, we look back at how the de Bruijn routing ta-
bles will be like, provided the key space is partitioned as in
the previous example of Figure 2. The logical routing table
entries for each peer is shown to be enclosed in the rectan-
gles. Solid arrows represent the entries in the routing table
(the arcs of de Bruijn graph) where the choice of the neigh-
bor is clear, whereas the dotted lines represent such routing
table entries where it is unclear which peer to choose as a
neighbor using de Bruijn graph building principles. For in-
stance peers responsible for the partition 0000 have route to
partition 0001. Similarly, peers of partition 0001 should ide-
ally have routes to 0010 and 0011. However, since the gran-
ularity of partition is different, there is only one zone 001
to be routed to. Since de Bruijn routing is essentially like a
shift-register, the effect of moving from a zone of finer gran-
ularity (longer key) to a coarser one (shorter key) is that
some information is lost, and if in future, a routing from a
coarser partition to a finer one is required, then there will be
a difficulty, as elaborated next.

In this example, peers at partition 10 will have the de
Bruijn routes 00 and 01, however, since each of 00 and 01
are further partitioned, hence a peer responsible for zone 10
will essentially have routes of the form 00∗ and 01∗. The
possible routing edges are shown in the figure using the per-
forated directed edges. In this case, there are two ways to
populate the routing tables.

(1) Choose any one of the partitions with prefix 00 (i.e.
partitions 001, 0001 and 0000. This may lead to the problem
that not all partitions will have incoming edges (in directed
de Bruijn network), such that these partitions will not be ac-
cessible to the network at all. For instance, if peer in parti-
tion 001 chooses 0110, peer in partition 10 chooses 0111
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and 0001 as their de Bruijn routes, partition 0000 will have
no incoming edge. One possible way to mitigate this ef-
fect will be to provide a back-edge to every incoming edge.
Note that while this will be like the undirected de Bruijn net-
work, it will not exactly be an undirected de Bruijn network.
Particularly, the back-edges can not be computed locally, as
were inverse-shuffle(-exchange) arcs, but indeed will have
to provide back-edges to the incoming shuffle(-exchange)
arcs from other partitions. More importantly, the routing al-
gorithms discussed in Section 2.3 will no more be efficient,
since the diameter bounds of de Bruijn graphs [7, 18] will
not hold good any more in the event of uneven partition-
ing of the search space.

(2) The other choice of routing entries will be to have
routes to all possible sub-partitions, in this case, 001, 0001
and 0000. This however will imply that the peers will no
more have constant outdegree. Additionally, such a system
will depend on global knowledge about partitioning granu-
larity for the rest of the key space.

A related problem in Koorde occurs because peers are
randomly distributed on the identifier (key) space, and of-
ten the target node is essentially an imaginary node. How-
ever, because the assumed distribution of actual nodes is
uniform, the required effort for imaginary hops in expec-
tation is also restricted (following two successor pointers).
However, when nodes are not uniformly distributed on the
key space, such a property can no longer be guaranteed.

5.1. A worst case scenario

Using de Bruijn routing in the worst case (in terms of
key distribution) may turn out to be like sequential search,
as shown in Figure 4, unlike traditional DHTs like P-Grid,
which will still have logarithmic searches with high prob-
ability. The arrows in the figure shows a possible instance
of de Bruijn graph when back-edges are provided (as de-
scribed in the previous section). In P-Grid, the conflict-
ing goals were achieved because of the randomization in
the routing process. Since de Bruijn routes are by defini-
tion deterministic, it is not surprising that in the event of
skewed distribution of keys and uneven partitioning of the
key space, de Bruijn routing fails to meet the conflicting
goals simultaneously, because it has to make some random-
ized decisions if it has to retain constant outdegree (choice
1, as elaborated above).

These examples demonstrated that de Bruin rout-
ing based DHTs will loose the desirable properties if the
key-space is not evenly partitioned. Even if the key-space
is partitioned evenly, there may not always be enough par-
titions N to satisfy N = Ki for some i for a K-ary de
Bruijn network. In such cases also more than K outde-
gree is required at some peers. The later problem was
exposed in CAN-d2B [8], but is not so critical as is the ef-
fect of uneven key-space partitioning, as elaborated in this
paper.

1

01

001

0001

0000100000

1

01

001

0001

0000100000

Figure 4. A worst case scenario.

5.2. Summary

Peer-to-peer systems increasingly need to accommodate
uneven distribution of keys, particularly if ordering of nat-
ural names is to be preserved in the key space. Such ar-
bitrary key distribution leads to either of uneven (storage)
load distribution, or else uneven partitioning of key spaces.
Since load balancing is an important and desirable prop-
erty for any distributed system, the system should be able
to accommodate arbitrary key distributions by dynamically
partitioning the key space among the participating peers. In
the event of such dynamic partitioning of key space, it has
been shown that there exists DHT based P2P systems with
non-constant routing table size (P-Grid [2]), which nonethe-
less retain logarithmic search efficiency. However because
of the deterministic nature of the de Bruijn graph, it lacks
the flexibility to preserve search efficiency in presence of
uneven partitioning of the key space, thus severely restrict-
ing their practical utility. This is despite the otherwise de-
sirable properties that de Bruijn networks are degree opti-
mal and logically simple (when key space is evenly parti-
tioned), and hence also easy to implement.

6. Conclusions

The interest in de Bruijn networks in the community
of distributed systems and parallel computing is quite old,
particularly in the VLSI designing of multiprocessor sys-
tems [23]. Such systems are static, and de Bruijn network
has been used for static interconnection networks. Unlike
P2P systems, they do not have to deal with storage load bal-
ancing for a dynamic and arbitrary load distribution.

Koorde proposed use of de Bruijn networks for a simple
degree optimal solution, followed by CAN-d2B [8]. These
initial papers make simplifying assumptions, particularly
that of uniform key distribution. In this paper, we showed
why such systems will fail to simultaneously meet all the
goals under more realistic conditions. There are other con-
stant routing table based P2P systems. Viceroy pioneered
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constant degree P2P networks, but is considered to be too
complicated for implementation. Moreover, the proof of ef-
ficiency of Viceroy also depends on uniform key distribu-
tion.

It is increasingly obvious though that the assumption of
an uniform key distribution severely restricts the utility of
the P2P systems, and thus arbitrary key distributions should
be efficiently handled. Even traditional DHTs have only re-
cently started to address this issue. Thus, we end this paper
with an outstanding question, as to whether it is possible to
construct a constant routing table sized DHT which meets
the conflicting goals of storage load balancing and search
efficiency for an arbitrary and changing key distribution?
As has been seen in many other domains, that randomiza-
tion is often the best way to handle randomization. Hence,
it appears that the possible approach would be to use some
sort of randomization in the choice of a constant number of
routing entries. Symphony [15] based on Kleinberg’s pro-
posal of small world networks [11] is such a candidate sys-
tem (it typically has poly-logarithmic rather than logarith-
mic search cost). How distributed hash tables using small
world routing will perform in presence of skewed data dis-
tribution and hence uneven partitioning of key-space is an
interesting facet that needs further study, and defines part of
the future work. Until then, the traditional DHTs with non-
constant routing table size (typically logarithmic) seem to
be the safest bet.
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