
P2P-Based Collaborative Spam Detection and Filtering

Ernesto Damiani1 Sabrina De Capitani di Vimercati1 Stefano Paraboschi2 Pierangela Samarati1

(1) Università degli Studi di Milano – Dip. di Tecnologie dell’Informazione – 20163 Crema, Italy

(2) Università degli Studi di Bergamo – Dip. di Ingegneria Gestionale e dell’Informazione – 24044 Dalmine, Italy

{damiani,decapita,samarati}@dti.unimi.it, parabosc@unibg.it

Abstract

Spam is one of the major problems of today email sys-
tems. While many solutions have been proposed to automat-
ically detect and filter spam, spammers are getting more and
more technically sophisticated and aware of internal work-
ings of anti-spam systems, finding ways to disguise their
emails to get around the different controls that can be en-
forced.

In this paper, we propose a decentralized privacy-
preserving approach to spam filtering. Our solution ex-
ploits robust digests to identify messages that are a slight
variation of one another and a structured peer-to-peer ar-
chitecture between mail servers to collaboratively share
knowledge about spam.

1. Introduction

Spam has been known as a major problem since
long, but its impact on the global network in-
frastructure has now reached epidemic proportions
(www.spamcop.net/spamstats.shtml). In the
earliest days of spam, users could simply delete the offend-
ing messages. Later, when spam became more common,
several client-side spam filtering tools became avail-
able, but they were often unreliable: users had to scan al-
leged spam to ensure that no important messages were
deleted by mistake, with an increasing loss of time. Due
to customers’ complaints, governments started to contem-
plate anti-spam legislation [4], while several companies
began offering spam filtering products to mail server oper-
ators and ISPs. When these countermeasures first reached
the market, it seemed that simple economics could sup-
port a rapid eradication of spam: filtering out 95% of spam
would suffice to increase the spammers’ cost to reach the
same audience by a factor of 20. It looked therefore rea-
sonable to assume that high-accuracy filters could put a
definitive end to spam, as few spammers had profit mar-
gins big enough to meet the cost increase. Unfortu-
nately, things went quite differently: while most commer-
cial anti-spam filters claim a much higher success rate than

95% in identifying spam, a huge amount of it still winds up
in users’ in-boxes, even when client-side and server-side fil-
ters are used in conjunction.

It may be argued that this lack of success in the war
against spam is partly due to the elusive nature of the no-
tion, which is difficult to identify by means of a software
program. Of course, many messages leave no doubt: drugs,
pornography, fraud and viruses now vastly outweigh the oc-
casional unsolicited product or service sales pitch. How-
ever, there are many borderline cases where what is spam
for a user could be useful information for the next person
(e.g., an opening for a job position), and it may seem un-
wise to curb the potential of email as a mass communication
channel in the spur of indignation against spam. Recently,
some approaches based on the development of a P2P net-
work for the collaborative sharing of knowledge about spam
between users have been proposed [10, 15]. While these ap-
proaches represent a step toward the design of a P2P collab-
orative spam filtering solution, they do not pay adequate at-
tention to the aspects of message confidentiality and robust-
ness against attacks.

In this paper, we build on the idea that a P2P-based rep-
utation mechanism can help in determining what a commu-
nity considers to be spam and getting rid of it. Our pro-
posal is aimed at achieving both flexibility and effective-
ness. We first provide a critical analysis of the desiderata of
spam control systems (Section 2) and of drawbacks and lim-
itations of current solutions (Section 3). We then describe
a structured peer-to-peer architecture between mail servers
together with related protocols for the propagation and shar-
ing of spam identifiers (Section 4).

2. Desiderata for spam control

While the main functions of an anti-spam filter may
seem obvious, its non-functional properties have been less
frequently discussed.1 The main non-functional, global re-
quirements that a spam control system should offer can be
summarized as follows.

1 An interesting discussion on this topic can be found
in the archives of the IETF Asrg mailing list,
https://www1.ietf.org/mailman/listinfo/asrg.

Compatibility with current email infrastructure. Open-
ness and flexibility of the email distribution system are the
two main success factors of email as an information inter-
change channel. Therefore, any effective anti-spam solution
should not impose too many constraints on existing email
protocols and architectures.

Absence of false positives. Blocking unsolicited spam
messages should not be an obstacle to the propagation of le-
gitimate emails. False positives are innocent messages that
get mistakenly identified as spam. For most users, miss-
ing a legitimate e-mail message is much worse than
receiving spam, so a filter that yields false positives is con-
sidered unacceptable.

Collaborative identification of spam. Collaborative iden-
tification of spam exploits the fact that every spam message
is usually sent by an automatic system to many recipients.
In general, function “spam/ham” is not a computable func-
tion, and an accurate determination can only be based on
the evaluation of the collective opinion of the user popula-
tion.

Robustness against attacks by spammers. Spammers are
becoming more and more technically sophisticated. An ef-
fective anti-spam system should be designed in the spirit of
a security solution, assuming the worst-case scenario and
the capability of spammers to pro-actively analyze filtering
strategies and take measures to overcome them.

Protection of email confidentiality. It is of paramount im-
portance that the content of email messages is never openly
revealed by the anti-spam systems (e.g., when comparing
messages or keywords). Sound privacy guarantees are im-
portant to ensure acceptance by end users.

3. Current anti-spam solutions

We briefly describe how current anti-spam solutions deal
with the above requirements, underlining some open issues
that will be tackled by our approach. Our discussion takes
into account two main aspects: the filters’ software archi-
tecture and their internal filtering engines.
Architecturally speaking, currently available spam filtering
systems rely on the following three main approaches.

Email client plug-in. Such solutions consist in software
plug-ins installed on every computer that needs spam fil-
tering. This approach is mainly used for organizations with
few computers whose users are in charge of managing the
filters; it proves awkward to adopt by larger organizations.
Web-based or mobile access to email is not protected by
plug-ins, because filtering only operates on the computer
where the plug-in is running.

Centralized filtering server. In this architecture, a sin-
gle anti-spam filter runs on a centralized organization-wide

mail server. This approach, like the following one, elimi-
nates the need to deploy software to email clients or to train
users. Centralized filters typically allow for customization
of filtering rules to fit the organization’s requirements. Cen-
tralized filters have the disadvantage that they do not typi-
cally use the specific preferences and opinions of the user.

Gateway Filtering. In this approach, all inbound email is
routed through a filtering gateway before being delivered
to the mail server. Gateway services work well with web-
based and mobile access to email, and may increase robust-
ness since they queue emails if the client network or server
is off-line. On the other hand, the gateway itself is a sin-
gle point of failure and may be difficult to manage in pres-
ence of multiple mail servers within an organization.

A correct approach to spam filtering should not man-
date any of the above choices. P2P architectures can provide
high flexibility, because they smoothly adapt themselves to
the underlying network and emerging application architec-
tures. Also, component-based design should be used to de-
ploy anti-spam filters on single-user mailers residing on per-
sonal computers as well as on organization-wide mailers
running on server clusters.

As far as the internal algorithms are concerned, current
anti-spam filtering engines can be classified in the follow-
ing categories.

List-based filtering. This solution was among the first to
be proposed against spam. Unlike all the following, it is a
coarse-grained technique operating at the server level. To-
day, both blacklisting and white-listing [8] are considered
ineffective, although server-based solutions adopt them as
an auxiliary technique often to be integrated with challenge-
response [13]. Some lists of known spammers are available,
like the Mail Abuse Prevention System – Realtime Black-
hole List (MAPS RBL). However, blacklisting sources has
become less effective since spammers learned to change
their source address to get around the recipient’s defenses.
Overall, list-based filtering is a coarse grained solution
that exhibits a limited degree of dynamicity: on the one
side, responses to novel spam sources may be relatively
slow, on the other it is often costly and difficult for an
organization to be removed from these lists, even if the
insertion was not correct or due to a transitory condi-
tion. An evolution of whitelisting is represented by special
codes issued by organizations and companies like TRUST-e
(www.truste.org) and Habeas (www.habeas.com) that iden-
tify legitimate communications. However, whitelists limit
the open nature of email communication

Rule-based filtering. Rule-based filters assign a spam
“score” to each email (spamassassin.org) based on
whether the email contains features typical of spam mes-
sages, such as fake SMTP components, keywords, HTML

formatting like fancy fonts and background colors. A ma-
jor problem with rule-based scores is that since their se-
mantics is not well-defined, it is difficult to aggregate
them (when a message includes multiple spam-related fea-
tures, how should its total score be computed?) and to
establish a threshold that can actually limit the num-
ber of false positives. Also, experience has shown that
spammers quickly learn feature-based rules and freely in-
vestigate ways to overcome them.

Source authentication/challenge-response. This tech-
nique requires the senders of a suspect email to reply to a re-
cipient’s challenge by simply clicking on “reply” and then
“send”. It looks promising inasmuch it has a one-time de-
velopment cost compared to the permanent costs of forever
looking for and implementing new filter-based technolo-
gies. Also, while filter-based systems need to include a
quarantine inbox for suspect e-mails to avoid false pos-
itives, source authentication requires no quarantine box.
However, there is one major obstacle: source authentica-
tion requires collective adoption of a modification to the
current open e-mail architecture, which is unlikely to hap-
pen in the short term.

Monitoring by a human operator. While at first sight
manual inspection may look like the best solution, the rate
of human error (especially when the inspector is a different
person from the intended recipient) should not be underes-
timated. Furthermore, monitoring by humans is very expen-
sive and violates the final recipient’s privacy.

Bayesian word distribution filters. Bayesian tools like
SpamProbe (spamprobe.sourceforge.net) assign
an actual frequency-based probability to (tokenized) words
(or possibly on word pairs or triples) as spam indicators
based on previous experience. Bayesian filters are initial-
ized on a corpus of known spam and continuously re-
vise probabilities [6] according to the incoming message
flow. The overall probability of a message being spam
is then computed by aggregating the single word proba-
bilities. The main advantage of the Bayesian approach is
that probabilities’ aggregation is well understood; therefore
Bayesian filters’ performance is easier to measure and fore-
cast. However, a main drawback of Bayesian filters is that
they havethe hardest time blocking messages that do not
lexically look like spam, e.g., messages composed of a sin-
gle line of text inviting the recipient to check out a URL.
Also, the Bayesian techniques may exhibit a latency both
in the initial training and in responding to messages built
on previously unknown vocabularies. Finally, Bayesian fil-
ters can be bypassed introducing noise within the most rec-
ognizable terms and adding a relatively high number of ran-
dom words to reduce detection power.

Collaborative spam filtering. In collaborative ap-
proaches, server-side automatic monitoring systems com-

spam

(1) classify an email as spam
generate a contrary report(2)

email
...

Local filters

P2P
(1)

(2)

read

Spam traps

feedback

User tier

Peer tier

Super−peer tier

Figure 1. Network topology

pare incoming messages to known spam as classified by an
automatic mechanism or by final recipients. These solu-
tions have achieved considerable success as they overcome
the single point of failure typical of centralized architec-
ture.

All the solutions presented above have strengths and
weaknesses. The solutions currently adopted that offer the
best performance are those that integrate many different
approaches. An example of these is SpamAssassin, which
started as a rule-based filtering solution, but now integrates
many different components implementing the other strate-
gies. The advantage of an integrated solution is that it is dif-
ficult for a spammer to fool all the filters at the time; rather,
techniques that operate against a filter are likely to increase
the chance of detection with another filter.

4. P2P architecture and protocol

We propose a P2P-based collaborative solution that can
be integrated with the filtering techniques above and that
permits the detection of a larger family of spam mes-
sages. Figure 1 illustrates the architecture of the mail filter-
ing/tagging mechanism as well as the P2P a network topol-
ogy by which information about spam is shared and prop-
agated. The network topology is based on a three-tiered
architecture, with users at the lower level and a P2P net-
work connecting mail servers above them. The P2P network
has two distinct roles for the peers [14], so that some mail
servers can play the role of super-peers.

Each mailer together with its set of users form a clus-
ter. Intra-cluster data communication takes place via direct
links between the users and their mailer, while inter-cluster
communication takes place via the P2P network. The rea-
son why in our approach users themselves do not partici-
pate as nodes of the P2P network is twofold: performance

and privacy. In particular, spam reports by users are commu-
nicated by the mail server without indication of the identity
of the users who originated them.2 Each mail server knows
the identity of its users (although it does not propagate it in
association with reports), so we can safely assume that each
user is identified by her mailer via a unique identifier.

At first sight, mailer identification may seem a bigger
problem, since in P2P systems identities are usually a major
concern, especially if heavyweight certificate-based tech-
niques need to be avoided. However, our solution can rely
on two aspects: (1) machines playing a specific role as mail
servers are likely to have a network-wide name registered
in the Internet Domain Name System (DNS), responsible
for translating names to IP addresses, and (2) our protocol
permits the construction of reputations for network partic-
ipants, that strongly limit the impact that a malicious user
may produce by acting as a mailserver into the P2P net-
work.

4.1. Spam reports recording and sharing

A P2P network can be used for the exchange among mail
servers of several pieces of information that contribute to
the identification of spam. Since the spammer has the goal
to make identification difficult, most of the components of
the spam message are not adequate identifiers since they can
be easily manipulated by the program managing the mass
mailing. Considering the structure of email messages, we
identify the following candidates as robust spam features:
message digests, originating mail servers (represented by
the content of the first SMTP’s Received record gener-
ated by a local mail server), and URLs within the message.
Each component requires a careful analysis and an ad hoc
treatment (e.g., URLs can only contribute in a negative way,
otherwise spammers could have an advantage in the intro-
duction of URLs with a good reputation). URLs and mail
servers can be represented by a combination of precise in-
formation whose sharing can be enforced with reputation
protocols (e.g., [1, 7]) exploiting the advantages of DHT
networks like Kademlia [9], or Chord [12]. In this paper
we focus then on message digests, which require a P2P net-
work with specific features, since comparison of digests re-
quires similarity searches (two messages are considered the
same if their digests differ in a limited number of bits).

We assume that each message m can be identified by a
digest Dm that is robust against typical disguising attempts.
In the following we consider two messages to be the same
message if they map to a similar digest. In our experiments
we used 256-bit digests and two messages were considered

2 If the mail server manages a small community of users worried about
their privacy, the mail server may choose to participate to the P2P net-
work only as a client, analogous to the free-riders of current file shar-
ing networks.

similar if their digests differed by at most 74 bits, in arbi-
trary positions within the digest [2].

For simplicity in the exposition, we use the term mes-
sage to denote either m or Dm when the fact that we refer
to a message or its digest is clear from the context. At each
tier, information is maintained about spam detected or re-
ceived. Intuitively, the idea is that the super-peers in the net-
work maintain a distributed collection of spam digests that
peers have identified; peers can query this collection to ob-
tain information about unknown emails.

We assume each mail server s is associated with a pair
of keys, 〈PKs,SKs〉 that it can use to sign outgoing commu-
nications. In the following we use [statement]s to indicate
a statement from a server s together with the correspond-
ing signature and public key for verification. In other words,
[statement]s stands as a shorthand for the triple 〈statement,
S(statement,SKs),PKs〉.

We also assume that each mail server maintains the cata-
logs and control information described in Figure 2. In addi-
tion, the mail server s maintains a reputation reps′ for each
other mail server s′ in the network. Such a reputation as-
sesses the trust that s has in spam notifications coming from
s′ and allows it weighing them accordingly. Such reputa-
tions are similar to the credibility reputations introduced
in [1] and to the reputations produced by Eigentrust [7].
How reputations are defined and maintained may differ for
different mail servers and it can directly exploit the solu-
tions presented in [1, 7].

4.2. Protocol

In our approach, a mail server identifies spam by means
of users. If a mail server decides that a message is to be clas-
sified as spam, it sends a spam report to its super-peers. On
the other hand, super-peers can be queried by mail servers
wishing to know whether similar messages have been re-
ported as spam. Upon reception of a query from a mail
server, the super-peers perform a polling at the super-peer
level. The polling consists in broadcasting the digest to the
other nodes at the super-peer level of the P2P network and
collecting possible significant records they might have reg-
istered. Consequently, the super-peers directly inquired by
the mail server will return to it their local spam records as
well as those they received from other super-peers.

To better illustrate the protocol and how spam reports
are propagated through the P2P network, let us now exam-
ine what happens at the different levels of the network (a
pseudo-code description is also provided in the appendix).

4.2.1. User tier
At the user tier, users receive emails. Upon reception of

a message m, a user can report the fact that m is spam to
its own mailer. We envision two principal tools to gener-
ate spam reports: users may directly classify m as spam

Catalog Description (for each message Dm)

Received(Dm , no copies
m

) The number of copies of Dm directed to its users that the mail server s has received
SpamInternalReports(Dm , {u1, . . . , un}) Users {u1, . . . , un} who have reported Dm as spam
Contrary(Dm , {u1, . . . , un}) Users {u1, . . . , un} who have submitted a contrary report about Dm

Spam(Dm) List of messages classified as spam
SpamReports(Dm , reports

m
) Set reportsm of signed spam reports each of the form [Dm, conf

s′,m
]s′

Threshold Description
Thr copies number of occurrences of similar messages that triggers the suspicion of a bulk mailing
Thr int reports number of user reports about similar messages needed by the mail server to classify it as spam
Thr ext reports threshold that measures whether external reports are sufficient to consider similar messages as spam
Thr contrary number of contrary reports considered as a sufficient indication that similar messages should have not been tagged as spam

Figure 2: Information maintained at each mailserver s

using the “spam” or “junk” button that many mail clients
already offer (e.g., www.mozilla.org/mailnews/spam.html),
or m may be addressed to a spam trap.3

If the email received by the user has been tagged as spam
by the mail server, and the user agrees with that, the user
does not need to do anything else. On the contrary, if the
user does not agree with the current assessment of the mes-
sage (i.e., she thinks the message is genuine or otherwise a
useful one) she can send a contrary report to her mailer.

4.2.2. Peer tier

At the peer tier, each mail server s receives emails di-
rected to its users as well as spam notifications or contrary
reports from its users. Let us examine the different cases.

Email processing. For every message m received which
has not been previously recognized as spam, mail server s

updates the Received catalog, adding an entry for Dm or in-
crementing the corresponding no copiesm. If after this up-
date no copiesm reaches threshold Thr copies, s will send a
Spam inquiry message to the super-peers inquiring whether
the message has been reported as spam by other mail-
ers. In response to such a query, s will receive a set of
Spam inquiry resp messages including a set of signed spam
reports of the form [D′

m
, conf

s′,m
]s′ on messages with iden-

tical or similar digest, which it can then evaluate to deter-
mine whether m is to be considered spam. Intuitively, s can
perform an aggregation of the reports, weighting them dif-
ferently depending on the reputations of the mail servers in-
volved. In other words, the aggregation can be expressed as
the sum of the conf

s′,m
received each weighted with the cor-

responding rep
s′ . If the aggregation of the reports produces

a value greater than the specified threshold Thr ext reports,
then s considers the message as spam, and adds it to the
Spam catalog, so to be able to tag as spam any other copy
of the message directed to its users. Finally, s updates rep-
utations associated with the mail servers that have sent an
answer to the Spam inquiry message.

3 Spam traps are fictions email addresses used to detect bulk mailing to
addresses detected by crawlers.

User spam report evaluation. Each time mail server s re-
ceives from a user a spam notification about a message m,
it updates the catalog SpamInternalReports by adding the
user to the list of those who reported the message as spam
(or adding an entry for it if the user is the first to report). If
this update causes the cardinality of the list to pass thresh-
old Thr int reports4, s classifies the message as spam and:
1) adds it to the Spam catalog, so that any other occur-
rence of the message directed to its users will be received
by the user in the folder for automatically classified spam;
2) sends a Spam message including a spam report of the
form [Dm, conf

s,m
]s to its super-peers reporting that it con-

siders the message to be spam (a confidence level conf
s,m

of 1 can be assumed as a default).

User contrary report evaluation. Each time mail server s

receives a contrary report stating that a user does not agree
with the tagging of a message m as spam, s adds the con-
trary report to the Contrary catalog. If the ratio between the
number of users that have generated a spam report for m

and the number of users that have submitted a contrary re-
port reaches the threshold Thr contrary, s can decide to re-
move m from the Spam catalog. Furthermore, if the classi-
fication of the message as spam was deduced by informa-
tion received by the P2P network, s can decrease the repu-
tation of the mail servers that reported that the message was
spam. By contrast, if the identification of m as spam was
done internally (since more users that Thr int reports had
classified the message as spam), s can submit a revoke mes-
sage to its super-peers revoking the reports previously sent.

4.2.3. Super-peer tier

At the super-peer tier, there are mail servers that, be-
sides the functionality just described, serve also as collec-
tors and pollers of spam reports. The additional workload
of the super-peer is related to managing spam reports and
spam inquiries coming from the mail servers that refer to it
or from other super-peers.

4 In principle, different thresholds could be used for triggering the local
spam catalog and the notification to the super-peers.

Spam report processing. Upon reception of a new spam
report Spam([Dm, conf

s,m
]s) from mail server s about mes-

sage Dm, the super-peer will add a corresponding entry in
its SpamReports catalog. If Dm does not belong to the Spam
catalog, then the super-peer may add it to its catalog.

Spam inquiry processing. Upon reception of a query
Spam inquiry([Dm]s) from mail server s, the super-peer
will broadcast the query to other super-peers in the P2P net-
work. Each of the super-peers receiving the query will
respond on the network returning the reports about di-
gests similar to Dm that appear in its SpamReports catalog.
The super-peer directly inquired will return all the re-
ports received as well as those it has locally stored to
the inquiring mail server that will process them as illus-
trated above. As for all the communications of our protocol,
the query response will be signed by the super-peer.

4.3. Notes on the approach

It is worth to draw the attention on some key aspects of
our solution and explain the rationale behind them.

A first aspect worth noticing is that super-peers provide
only a communication channel between mail servers and
do not perform an intermediate aggregation of reports. This
way mail servers can receive the original reports from their
peers and rate them according to the reputations they as-
sociate with each of such peers. The rationale for adopt-
ing this solution (in contrast to having super-peer’s aggre-
gating reports) is twofold. First, it does not mandate com-
plete trust in the super-peers: since each report is signed by
the mail server that has sent it, super-peers cannot fake re-
ports.5 Second, in our solution reports are weighted with the
reputation of who expresses them. The use of reputations al-
lows giving to reports coming from peers which proved re-
liable in the past a higher weighting than those expressed
by new mail servers we are unsure of. Assigning a reputa-
tion to the different mail servers requires distinguishing the
reports coming from them.

Another aspect worth noticing is that every communica-
tion by the nodes of the P2P network is always signed. The
reason for this is to guarantee the authenticity of the report
content as well as of its originator.

One may object that our solution appears resource de-
manding; however, the requested resources are local stor-
age, computational power, and network bandwidth which
have a limited cost compared with user time. User time is
the most precious resource, and its waste is the highest cost
the economy is today paying for spam.

5 The fact that super peers could selectively discard reports is taken care
of by the fact that each mail server uses more than one super-peer.

5. Security considerations

In our approach, two key security aspects have to be
taken into consideration. The first aspect is that the digest
mechanism must satisfy stringent requirements and needs a
careful design. In [2] we described an approach to produce
digests of mail messages that is robust against typical dis-
guising attacks (e.g., random addition, thesaurus substitu-
tion, perceptive substitution, and aimed addition). The sec-
ond is related to the robustness of an open P2P network to
malicious users. Indeed, a spammer can attack the system
at the infrastructure level or at the vote generation level.
At the infrastructure level, the spammer can have the ma-
jor impact if it assumes the role of super-peer, and then se-
lectively expunge votes against its messages. The defense
against this attack is twofold. First, we assume a node con-
nects to a super-peer only if it is a reliable node registered
in the DNS system as the mail server for a domain and if it
has already acquired a good reputation within the P2P net-
work. The second protection is given by the fact that the
node will connect with several super-peers, as customary in
current networks [5]. This will allow the node to compare
the results of the queries coming from the different nodes
and it will permit to identify anomalies.

At the vote generation level, a spammer can attack the
system by posing as a mail server and propagating contrary
reports for its own messages. However, even if the spam-
mer succeeds in impersonating a mail server, its reports will
typically be not considered as they have no associated rep-
utation. The spammer can try to acquire a good reputation
by doing a good service to the community and voting spam
for some time as it is detected, and then exploit this rep-
utation to protect the distribution of its spam. This attack
is mitigated by the fact that to acquire a good reputation
the spammer has to spend significant resources, producing
a concrete benefit for the community, and the good reputa-
tion that is acquired is rapidly dissipated as soon as it starts
again spreading faked contrary reports [11].

Instead of attacking the system, the spammer can try to
fool it by sending to each mail server a number of spam
messages below Thr int reports (i.e., number of users that
have to report a message as spam) and Thr copies (i.e.,
number of copies of the same email received by the mail
server). This attack is applicable only if the spammer can
acquire information about these thresholds, but this is in it-
self a difficult task, as each mail server will individually
choose its parameters; also, since forwarding mechanisms
are relatively common, the final destination of a message is
not detectable by the email address alone, and the number
of distinct mail servers is several orders of magnitude less
than the number of email addresses, increasing in a corre-
sponding way the costs for the spammer.

Another kind of attack is represented by malicious users

attempting to sabotage the delivery of an email message that
is not spam; e.g., a spammer may desire to stop the notifi-
cation to the mailing list of mail server administrators that
a new release of the P2P spam blocking client can be re-
trieved. Contrary reports allow detecting such situations and
act accordingly.

As a final remark, we note that generic attacks, like
denial-of-service attacks on the super-peers of the network,
are extremely difficult to realize, as it is a basic property of
P2P networks that they are able to resist to these attacks.
The experience on P2P networks for file sharing demon-
strates the capacity to manage significant loads.

6. Related work

Our solution falls in the class of collaborative spam fil-
tering. Two of the most known systems in this area
are Vipul’s Razor (razor.sourceforge.net),
now reincarnated in the commercial system Spam-
Net (http://www.cloudmark.com), and Distributed
Checksum Clearinghouse [3]. SpamNet uses a central-
ized catalog for storing and sharing digests of known
spam. When a user identifies an email as spam, the email
is sent to the SpamNet server. When a message is ac-
cessed by a mail client, a unique digest of the message is
sent to the SpamNet server to determine whether the mes-
sage is a known spam. If the digest matches one digest
in the spam catalog, further checks are executed that ex-
ploit the full knowledge that the server has of the spam mes-
sage. Users are characterized by a reputation, managed in-
ternally by the SpamNet server, that gives a greater weight
to users that have demonstrated to be good classifiers. How-
ever, if a user accidentally blocks an email that contains
important information, the email itself (which can be con-
fidential) is automatically transferred to SpamNet. Overall,
the system exhibits a single point of failure and the require-
ment that spam is centrally collected has a critical impact
on user confidentiality.

Distributed Checksum Clearinghouse is based on a num-
ber of open servers that maintain databases of message
checksums (a checksum is similar to the concept of digest
in the previous systems). Mail users and ISPs can submit
checksums of all messages received. The database records
how many copies of each message are submitted. If re-
quested, the DCC server can return a count of how many
instances of a message have been recorded. If the returned
count is higher than a threshold set by the client and accord-
ing to local whitelists the message is unsolicited, the DCC
client can then log, discard, or reject the message. The DCC
initiative is very interesting and it already offers a useful ser-
vice to the Internet community. It also demonstrates the ad-
vantages of a distributed architecture for spam detection.
However, DCC does not explicitly consider the security as-

pects that are introduced by the use of an open P2P architec-
ture and that have been an important subject of our investi-
gation. Currently, a malicious DCC client can report a mes-
sage to a DCC server as having been received many times
thus generating false positives (i.e., an email is marked as
“bulk” by a DCC server that is not). On message identifica-
tion, DCC uses techniques that try to strip the messages of
random noise and then it produces hashes on specific por-
tions of the message; this technique is more sensitive to at-
tacks than the digest functions that we propose in the pa-
per.

The protocol presented in this paper builds on a previ-
ous proposal using reputation to assess peers and resource
reliability in resource sharing. However, the spamming pro-
tocol presented in this paper differs from [1] in several re-
spects related to signing and encrypting. First, while [1] as-
sumes that each communication is encrypted for confiden-
tiality (also due to the pseudo-anonymous nature of the con-
sidered scenario) here confidentiality of reputation is not
considered an issue and therefore it suffices to provide a
signature for guaranteeing the integrity of the reports. Sec-
ond, the polling protocol in [1] included some direct com-
munication with randomly chosen nodes from which a vote
(corresponding to our report) had been received to counter-
act possible masquerading attacks. Reputation management
and lightweight authentication based on DNS allows avoid-
ing the burden of such additional checking in the present
context. Third, in [1], a polling could have reported both
positive and negative votes. Here, we use a single kind of
report: the consideration of both positive and negative votes
(intuitively reports stating that a message is genuine) would
have considerably increased the workload of the system and
affected the user as well. While we can imagine spam noti-
fications come at no cost to the user, the situation would be
different if users were required to return a positive report for
every genuine message they receive. While the choice of not
dealing with positive votes seems mandatory, complete ab-
sence of positive votes opens the door to abuses. Contrary
reports solve this problem.

7. Conclusions and future work

In this paper we presented a solution exploiting the P2P
potential to make a contribution to reduce the level of spam.
An important strength of our proposal is that it bases on an
open distributed architecture and does not rely on any au-
thority or centralized control. We believe that our solution
offers the opportunity to demonstrate how research on P2P
networks, that has until now been perceived by a great part
of the research community as mainly a mechanism to share
copyrighted material, can be immediately adapted to con-
tribute to the solution of an important and visible problem.

8. Acknowledgments

This work was supported in part by the European Union
within the PRIME Project in the FP6/IST Programme under
contract IST-2002-507591 and by the Italian MIUR within
the KIWI and MAPS projects.

References

[1] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and
P. Samarati. Managing and sharing servents’ reputations in
P2P systems. IEEE Transactions on Knowledge and Data
Engineering, 15(4):840–854, July/August 2003.

[2] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and
P. Samarati. Using digests to identify spam messages. Tech-
nical report, University of Milan, 2004.

[3] Distributed checksum clearinghouse.
http://www.rhyolite.com/anti-spam/dcc/.

[4] EC Directive on Privacy and Electronic Communications
(2002/58/EC).

[5] Gnutella. http://rfc-gnutella.sourceforge.net/.
[6] P. Graham. Better bayesian filtering. In Proc. of the 2003

Spam Conference, Cambridge, January 2003.
[7] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The eigen-

trust algorithm for reputation management in P2P networks.
In Proc. of the Twelfth International World Wide Web Con-
ference, Budapest, Hungary, May 2003.

[8] Mail abuse prevention system, llc. http://mail-abuse.org/.
[9] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer

information system based on the xor metric. In Proceedings
of IPTPS02, Cambridge, USA, March 2002.

[10] J. Metzger, M. Schillo, and K. Fischer. A multiagent-based
peer-to-peer network in java for distributed spam filtering. In
Proc. of the 3rd CEEMAS, Czech Republic, June 2003.

[11] A. Oram, editor. Peer-to-Peer: Harnessing the Power of Dis-
ruptive Technologies. O’Reilly & Associates, March 2001.

[12] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proc. of the SIGCOMM 2001, San
Diego, California, USA, August 2001.

[13] Tagged message delivery agent (TMDA). http://tmda.net/.
[14] B. Yang and H. Garcia-Molina. Designing a super-peer net-

work. In Proc. of the 19th Int’l Conference on Data Engi-
neering, Bangalore, India, March 2003.

[15] F. Zhou, L. Zhuang, B. Zhao, L. Huang, A. Joseph, and J. Ku-
biatowicz. Approximate object-location and spam filtering
on peer-to-peer systems. In Proc. of the ACM/IFIP/USENIX
International Middleware Conference, June 2003.

A. Pseudo-code description of the protocol

USER TIER [for each user u]

1. Email processing
1.1. Receive email m
1.2. If u recognizes m as spam or u is a spam trap then

a spam report is sent to the mail server
1.3. If m is tagged as spam and u recognizes it as relevant then

a contrary report is sent to the mail server

PEER TIER [for each peer p]

1. Email processing
1.1. Receive email m and compute Dm

1.2. If Dm ' D′ ∧ D′ ∈ Spam then m is tagged as spam
else if Dm ' D′ ∧ D′ ∈ Received then

update Received(D′ ,no copies+1)
else insert Received(Dm ,no copies: 1)
If no copies ≥ Thr copies then

Send message Spam inquiry(PKp,[Dm]SKp
) to super-peers

Expect back response messages from super-peers
Spam inquiry resp({(PKp1

,[D′

m
,confp1,m]SKp1

). . .})
If Aggr((repp1

,confp1,m),. . .) ≥ Thr ext reports then
Add Dm in Spam
Update reputations associated with p1 . . .

2. User spam report evaluation
2.1. Receive from user u a spam report including digest Dm

2.2. Update SpamReports(Dm ,{u1 . . . un ∪ u})
2.3. If |{u, u1, . . . , un}|≥ Thr int reports then

Add Dm in Spam
Send a spam message to super-peers
Spam(PKp,[Dm,conf p,m]SKp

)

3. User contrary report evaluation
3.1. Receive from user u a contrary report including digest Dm

3.2. Update Contrary(Dm ,{u1, . . . , un ∪ u})
3.3. If |{u, u1, . . . , un}|≥ Thr contrary then

Delete Dm from the Spam catalog
If Dm has been internally tagged as spam then

Send a revoke message to the super-peers
else Decrease reputation associated with mail servers that

reported Dm as spam

SUPER-PEER TIER [for each super-peer s]

1. Spam message processing
1.1. Receive from peer p a spam message

Spam(PKp,[Dm,conf p,m]SKp
)

1.2. Add Spam(PKp,[Dm,conf p,m]SKp
) in the SpamReports catalog

1.3. If Dm 6∈ Spam then Add Dm in the Spam catalog

2. Spam inquiry processing
2.1. Receive from peer p a Spam inquiry message

Spam inquiry(PKp,[Dm]SKp
)

2.2. Broadcast the Spam inquiry message toward other super-peers
2.3. Expect back response messages from super-peers
2.4. Send a Spam inquiry resp to p including all the reports on

similar digests
Spam inquiry resp({(PKp1

,[D′

m
,confp1 ,m]SKp1

). . .})

