
Aggregating Information in Peer-to-Peer Systems
for Improved Join and Leave∗

Keno Albrecht, Ruedi Arnold, Michael Gähwiler, Roger Wattenhofer
Swiss Federal Institute of Technology

Department of Computer Science
8092 Zurich, Switzerland

{kenoa@inf, rarnold@inf, mgaehwil@student, wattenhofer@inf}.ethz.ch

Abstract

In this paper, we introduce the Distributed Approxima-
tive System Information Service (DASIS) as a useful scheme
to aggregate approximative information on the state of a
peer-to-peer system. We present how this service can be in-
tegrated into existing peer-to-peer systems, such as Kadem-
lia and Chord. As a sample application, we show how DA-
SIS can be employed for establishing an effective determin-
istic join algorithm. Through simulation, we demonstrate
that the insertion of peers using DASIS information results
in a well-balanced system. Moreover, our join algorithm
gracefully resolves load imbalances in the system due to un-
fortunate biased leaves of peers.

1. Introduction

Peer-to-peer (P2P) systems connect ordinary desktop
computers throughout the Internet, leveraging their united
power beyond the sum of the individual parts. In a P2P sys-
tem, peers share computer resources and services without a
central coordinator. The most prevalent publicly available
peer-to-peer systems, such as Kazaa or BitTorrent, focus
on the task of sharing multimedia data. In the near future,
however, we envision P2P systems designed for more elab-
orate tasks, such as online collaborations or transactional
database systems.

The growing popularity of real-world P2P systems has
spawned a thriving research community. The focus of most
research is the development of an efficient lookup opera-
tion: given a search key, a peer responsible for the key must
be identified. This operation is related to hashing and is
therefore sometimes also known as distributed hashing in
conjunction with a distributed hash table (DHT).

∗ The work presented in this paper was supported (in part) by the Hasler
Stiftung under grant number 1828 and the Swiss National Science
Foundation under grant number 21-66768.01.

Following the seminal work of Plaxton et al. [9], an as-
sortment of variants of P2P systems and distributed hash-
ing algorithms have been proposed in the literature, such as
CAN [11], Chord [13], PAST [4], or Tapestry [17].

For concreteness, we present our results for “tree” topol-
ogy P2P systems, such as Kademlia [8]. As discussed in
Section 5, we can support other topologies as well. For com-
pleteness, we give a quick overview on a Kademlia-like tree
topology. Each peer is assigned a unique overlay identifier,
a binary bit string. This ID specifies the “domain space” of
the peer; a peer is responsible for storing all keys that are
within its domain space. In particular, a key is stored by the
peer whose bit string matches the longest prefix of the key.
A peer p with the bit string b1b2 . . . bk keeps contact with
k other peers—its “neighbors.” Neighbor pi (i = 1, . . . , k)
of peer p features a similar bit string as peer p; in particu-
lar, all the first (i− 1) bits are the same as the bits of peer p,
and the bit i itself is inverted. Note that various systems han-
dle the remaining bits differently; this difference is not rel-
evant in this paper.

The peers are connected in such a way that an efficient
logarithmic (in the number of peers) search operation is
guaranteed, and at the same time each peer only needs to
connect to a logarithmic or even constant (such as with
Viceroy [7] or Koorde [6]) number of peers.

In essence, the logarithmic degree (number of neighbors)
and the logarithmic diameter (search time) of P2P systems
are required by the dynamics and fluctuation of a P2P sys-
tem. Peers are highly unreliable—most users owning a peer
will join the P2P system only for the time they personally
use it, e.g. for searching and downloading files, which is on
average only one hour [12]. A P2P system does not feature
a stable central server (or a group of servers) that manages
the system. Instead, the P2P system is managed by the peers
themselves. Having only a logarithmic number of neighbors
helps in the case of a leaving peer, because only a logarith-
mic number of peers, that is, the neighbors of the peer that
left, must search for a replacement.



1.1. Joins and leaves

An important lingering problem, and the primary fo-
cus of this paper, is how the overlay ID is assigned to a
peer. Since the P2P system is completely decentralized and
highly dynamic, present solutions assign the overlay IDs
randomly: a newly joining (“bootstrapping”) peer connects
to an arbitrary peer in the P2P system and chooses a ran-
dom overlay ID, e.g. by hashing its own IP address. Simi-
larly to a lookup operation, the newly joining peer is routed
to its place—determined by the chosen overlay ID—in the
P2P system and connects to its neighbors. A peer leaving
the P2P system, which generally happens without notifica-
tion, drops all stored keys at once.

It is often argued that random overlay ID association will
balance the keys well. This is not quite true; in fact, a balls-
into-bins analysis will reveal that there is a logarithmic im-
balance factor [3]. In other words, with high probability a
highly loaded peer stores a factor of Θ(log n) more keys
than a peer with average load.

There have been a number of recent randomized propos-
als on how to improve the imbalance. Byers et al. [3] applied
the “power of two choices”-paradigm to reduce the log-
arithmic imbalance to Θ(log n/ log log n). Rao et al. [10]
adopted hill-climbing techniques. In this paper, we propose
a non-randomized join algorithm deploying a new abstract
distributed approximative information service for P2P net-
works, which leads to well-balanced P2P systems. Even
though we stress only join and leave and thus load balancing
in this paper, our aggregation mechanism can be applied to
several other applications, such as system monitoring, e.g.
the “health” of the system [16], or publish/subscribe, e.g.
how many peers are interested in some topic.

The paper is organized as follows: in Section 2 we in-
troduce the Distributed Approximative System Information
Service (DASIS) for P2P systems. Section 3 explains our
join algorithm based on DASIS. We show simulation re-
sults and discuss some implementational issues of DASIS
in Section 4. In Section 5, we consider how to integrate DA-
SIS into existing P2P systems, such as Chord. Section 6 dis-
cusses related work and, finally, Section 7 concludes the pa-
per.

2. Distributed Approximative System Infor-
mation Service

The Distributed Approximative System Information Ser-
vice (DASIS) is an abstract decentralized service which pro-
vides approximate1 information about the P2P system.

1 The exact up-to-date state of the whole system cannot be known. This
would be equivalent to consensus in an asynchronous and dynamic
distributed system, which is well known to be impossible.

ID:001

01

1

000

10

ID:1100

ID:011

Figure 1. A sample illustration of sub do-
mains. Dashed circles indicate the partition-
ing of the system into sub domains for peer
001.

DASIS is built on top of the regular P2P structure as
sketched in the introduction. The basic idea is as follows:
a peer p with the bit string b1b2 . . . bk is considered to
be an “expert” on all the sub domains of all the pre-
fixes of its bit string, that is, for b1b2 . . . bi, i = 0, . . . , k.
The expert knowledge is constructed inductively through
information exchange with the neighbor peers. The peer
p is by definition an expert about its own sub domain
b1b2 . . . bk. Also, the peer p can deduce the state in sub do-
main b1b2 . . . bi by aggregating its own knowledge on sub
domain b1b2 . . . bi+1, which is available by induction, with
the knowledge provided by neighbor peer pi+1 about sub
domain b1b2 . . . bi+1. In the end, peer p can deduce the state
of the whole P2P system, which is equivalent to the sub do-
main of the empty prefix.

For illustration, we give an example: we use DASIS to
learn the total number of peers in the P2P system. We as-
sume to have a stable P2P system, as shown in Figure 1.

We describe our example from the perspective of peer p
with the bit string 001 (see Figure 2). Peers (periodically)
exchange sub domain information with their neighbors. In
particular, peer p sends the information that there is one peer
in sub domain 001 to neighbor peer p3 (with ID 000), and
in exchange learns that there is one peer in sub domain 000
from neighbor p3. Literally summing up one and one, peer
p deduces that there are 2 peers with prefix 00. Similarly,
on the next higher level, peer p exchanges information with
neighbor peer p2 (ID 011) to learn that there are 2 peers
with prefix 01. This sums up to a total of 4 peers with pre-
fix 0. In a last step, peer p learns from neighbor peer p1 (ID
1100) that there are 5 peers with prefix 1.

Since there are 4 peers with prefix 0 and 5 peers with pre-
fix 1, peer p knows that there is a total of 9 peers in the P2P
system. Note that DASIS runs simultaneously at every peer,
and, therefore, provides information in a bottom-up aggre-
gated manner at every peer.



ID:1100

ID:001 ID:000

ID:011

“1 in 000“

2 peers

4 peers

9 peers

“1 in 001“

“2 in 00“ “2 in 01“

“4 in 0“ “5 in 1“

Figure 2. Illustration of the messages ex-
changed by peer p (ID 001) for the example
given in Figure 1.

The accuracy of DASIS depends on the message prop-
agation mechanisms of the implementation. In a static sys-
tem, that is, without peers joining or leaving, DASIS pro-
vides exact information without message overhead. In a dy-
namic system, however, more accuracy requires more fre-
quent message exchange between neighbors. We discuss
some of these implementational issues of DASIS in more
detail in Subsection 4.1.

Besides computing the total number of peers in the sys-
tem, DASIS can deliver a wide range of information, such
as the average up-time of peers, the total amount of bytes
stored in the system, or, as we show in the next section, the
minimal depth of a peer in the tree structure.

3. Join algorithm using DASIS

The insertion of new peers is an essential and challeng-
ing operation in a P2P system. In this section, we introduce
a join algorithm as an example application using informa-
tion provided by DASIS.

3.1. Random join (RJ)

Assignment of overlay IDs and insertion of new peers
into the P2P system is typically done similarly in various
P2P proposals. As stated in Section 1, joining peers are
routed to their destination, which is determined by their ran-
domly assigned overlay ID. We include this random join al-
gorithm (RJ) for reference in our simulations.

3.2. Depth join (DJ)

For our join algorithm, we employ the minimal depth
service. The depth of a peer is defined as the length of its
bit string. Note that we use bit strings of variable length. If

the bit strings would be of fixed length, the depth of a peer
is the length of the so far assigned prefix of its bit string.

The minimal depth service of DASIS works as follows
(we consider the example given in Figures 1 and 2 again):
peer p with ID 001 wants to know in which sub domain
a peer with minimal depth can be found. From its neigh-
bor peer p3 (ID 000) it knows that its minimal depth is 3,
and so deduces that with prefix 00 the minimal depth is 3,
since both the sub domain of p3 and p have the same min-
imal depth. In the next inductive step, through information
exchanged with neighbor p2 (ID 01), peer p learns that the
minimal depth in the sub domain of p2 is 3 as well. In a last
step, peer p gets to know from neighbor p1 (ID 1100) that
the minimal depth in its sub domain is 2. Thus, the over-
all minimal depth is 2, and DASIS provides peer p with this
result.

Generally, using the depth join algorithm (DJ), each peer
can deduce the minimal depth of its sub domains. A new
peer (joiner) is first routed through the P2P system to sub
domains with the smallest minimal depth and then assigned
an overlay ID. At every peer passed, one bit of the bit string
of the joiner is fixed; this guarantees termination. If a peer
(inserter) cannot route the joiner any further, it becomes re-
sponsible for inserting the new peer. The inserter assigns
the joiner its own bit string plus a 1, and appends a 0 to
its own bit string, thus splitting its domain space in half. In
our example, the joiner would be routed to the peer with ID
10 which splits its current domain space in half, inserts the
new peer with ID 101 into the system, and chooses the ID
100 as its own. Afterwards, the tree is balanced with a min-
imal depth of 3

It is worth mentioning that the number of peers in a cer-
tain sub domain is not a good criterion for inserting new
peers. Consider Figure 1 again. A newly joining peer is in-
serted on the left half of the tree, that is with prefix 0, be-
cause the sub domain with prefix 0 is sparser. Since the most
loaded peer (ID 10) remains at depth 2, this does not reduce
the imbalance in the P2P system. Therefore, we chose the
minimal depth as our criterion for inserting peers.

Note that our join approach can also adapt to other cri-
teria than the depth of a node, such as the average number
of requests per node, the available disk space or cpu time,
or even combinations thereof. Moreover, it can be used
with other load balancing strategies, such as load-stealing
or load-shedding as described in [3].

As an additional feature, our join algorithm also works
against attackers: a malicious adversary might attack a ran-
dom join system by simply taking out all the peers of a
sparse sub domain, making that sub domain even sparser,
and raising the load of the remaining peers in the sub do-
main. Our non-randomized solution will constantly guide
newly joining peers towards the sub domain with smallest
minimal depth, filling the gaps of the peers that left.



4. Simulation

We conducted a series of experiments running fine-
grained event-driven simulations of our algorithm—
factoring in, for example, message delay. We ran several
simulations in order to test the algorithm in different realis-
tic situations. The size of the simulated P2P systems varies
in the range from a couple of hundreds up to tens of thou-
sands of peers. New peer arrivals are modeled as a Pois-
son process. In addition, each simulation consists of 10
runs in order to average all measures and have statisti-
cally stronger results.

We use two simple, but reasonable and handy criteria for
evaluating the proposed algorithms. The first is the minimal
depth D of a peer in the system. We have chosen this qual-
ity measure since a small depth denotes a high load. We as-
sume a large and uniform distributed key population. There-
fore, we do not assign keys to peers in our simulation. Note
that in this case, decreasing the depth of a peer by 1 in-
creases its load by a factor of 2. We desire a minimal depth
to be as close as possible to the optimal minimal depth.

The second measure, the balance measure B, is more
fine-grained and also takes the number of peers with small
depths into account:

B =
∑

i∈V

2−2di > 0

where V is the set of all peers in the system and di is the
depth of peer i. This way we have a weighted measure in
which peers with smaller depth contribute more than peers
with larger depth. For expressiveness, we normalize the bal-
ance BAlg of algorithm Alg with the optimal balance BOpt:

ρAlg =
BOpt

BAlg
> 0

Note that in an optimal balanced P2P system all peers
are at depth blog2(n)c and dlog2(n)e. By definition, an op-
timal algorithm Opt has a ρOpt of 1.0.

4.1. Implementational issues

In this subsection, we describe three different implemen-
tations of our join algorithm.

As a first approach, the description of DASIS in Section
2 mentioned that every peer periodically sends update mes-
sages to all of its neighbors. The shorter the update inter-
val, the more accurate is the information available for join-
ing peers. On the other hand, the shorter the interval, the
more update messages must be transmitted. To be practi-
cal, the number of messages should be small and scale with
the size of the system.

As an improvement, our second algorithm uses an adap-
tive technique. Messages are only sent if there is a change in

Comparison of DASIS Strategies

0

50

100

150

200

250

300

350

400

450

500

7 8 9 10 11 12 13
Depth

N
um

be
r 

of
 P

ee
rs

DJ/Periodic 90 DJ/Adaptive DJ/Piggyback

Message count for DASIS with 
DJ/Periodic 90 -> 2,615,000
DJ/Adaptive -> 2,700
DJ/Piggyback -> 0

In comparison:
Message count for Join-> 5,000

�
DJ/Periodic 90 = 0.99

�
DJ/Adaptive = 0.91

�
DJ/Piggyback = 0.85

Figure 3. This graph shows the comparison
of the minimal depth join algorithm using the
three described DASIS approaches—periodic
DASIS with an update interval of 90 time
units, adaptive DASIS, and piggyback DASIS.
The simulation started with an initial P2P sys-
tem containing two peers and inserted 561
peers. This leads to an optimal depth of 9.

the DASIS data set. For the DASIS service providing mini-
mal depth information this means: a peer sends an update of
the DASIS information to its neighbor if the peer detects a
change in the minimal depth. Because changes of minimal
depth in a P2P system only take place rarely, this clearly re-
duces the amount of messages sent. Using the adaptive tech-
nique, the total message count drops from millions to thou-
sands, as can be seen in Figure 3. However, reducing the
number of messages also reduces the quality of the join al-
gorithm.

Our final and preferred approach to reduce the message
overhead employs updating DASIS information while rout-
ing “regular” (e.g. lookup) messages through the P2P sys-
tem. For our join application, we simply piggyback the min-
imal depth with the regular messages. This introduces no
additional messages into the P2P system. As illustrated in
Figure 3, the quality reduces gracefully.

Of course, piggybacking does not restrictively apply to
the join application. Any application using a P2P system
can employ piggybacking to spread information within its
regular messages.

4.2. Scalability and imbalances

The advantage of the DJ algorithm is that it lev-
els out imbalances. This can be seen in Figure 4, where
the DJ/Piggyback algorithm levels out the initial imbal-
anced system much better than the RJ algorithm. Conse-



Comparison of Join Algorithms with Imbalanced Initial System

0

100

200

300

400

500

600

700

800

900

1,000

7 8 9 10 11 12 13 14 15 16
Depth

N
um

be
r 

of
 P

ee
rs

Initial P2P System RJ DJ/Piggyback

�
initial = 0.04

�
RJ = 0.49

�
DJ/Piggyback = 0.68

DOpt �
���

DRJ = 7
DDJ/Piggyback = 10

Figure 4. Initially the P2P system is populated
with 995 peers in an imbalanced fashion. The
graph shows the distribution of peers after
inserting 1,113 peers to a total of 2,108 peers.

quently, the DJ algorithm is superior to the RJ algorithm
in resolving load imbalances. Imbalances may for exam-
ple arise from biased leaves of peers.

Simulations described so far use in the order of hun-
dreds of peers. In order to evaluate the scalability of our
approach, we simulate our proposed DJ algorithm with pig-
gyback DASIS in a larger setting. Figure 5 shows that our
solution performs better with respect to balancing in a P2P
system with about 22,000 peers inserted, compared to the
commonly used random join, at no additional message cost.

4.3. Steady state

In a last simulation, we use a realistic scenario where
peers join, leave (fail), and perform lookup operations.
The initial perfectly balanced P2P system consists of 1,024
peers. Peers join and leave at the same rate, that is, the ex-
pected number of peers stays at 1,024.

The lookup messages are used to spread piggybacked
DASIS information. As argued in Subsection 4.1, regular
routing traffic helps piggyback DASIS to approximate the
system state, which in turn improves the join algorithm. For
the simulation, we introduce a load parameter L: on aver-
age, a peer performs L lookups (helping DASIS) before it
leaves the system (troubling DASIS).

Surprisingly, all algorithms (RJ as well as DJ/Piggyback
with loads from 1 to 50) get into a steady-state depth distri-
bution quite quickly. After a few thousand joins and leaves,
the depth distribution as shown in Figure 6 remains more
or less fixed, independently of the initial distribution. Since
there are more messages which piggypack DASIS updates,
a higher load L balances the system better. If every peer ini-

Comparison of Join Algorithms

0

2,000

4,000

6,000

8,000

10,000

12,000

12 13 14 15 16 17 18
Depth

N
um

be
r 

of
 P

ee
rs

RJ DJ/Piggyback

�
RJ = 0.78

�
DJ/Piggyback = 0.88

Figure 5. This graph shows the distribution of
peers after insertion of 22,211 peers with an
optimal depth of 14.

tiates on average L = 50 lookup messages before leaving,
this leads to a well balanced system with ρ ≈ 0.88.

More surprisingly, even when there are almost no
lookups (L = 1), the steady-state balance is as good as RJ.

Note that with L → ∞, ρDJ/L∞ converges to 1. In this
case, DASIS is accurate at any time and new joining peers
are inserted at a “correct” position, that is, a peer with small-
est minimal depth would split.

5. Integrating DASIS into existing P2P sys-
tems

The DASIS approach translates directly to several other
(non-tree) P2P topologies. In this section, we exemplarily
sketch how to integrate DASIS into ring topologies used,
for example, by Chord [13]. Similarly, this description is
also applicable to recently developed P2P systems based on
the skip list data structure [1, 5]. On the other hand, P2P
systems based on the De Bruijn graph [6] cannot easily be
adapted to support DASIS because they have only a con-
stant number of neighbors.

5.1. DASIS on Chord

In Chord, peers, respectively their IP addresses, and data
keys are hashed into an identifier circle containing 2m val-
ues, where m is the number of bits used for an identifier. For
simplicity, we assume that all identifiers are in the interval
[0, 1). Every peer knows about O(log n) other peers (its fin-
gers), where n denotes the number of peers in the system.
To allow for routing a key in O(log n) hops toward its des-
tination, the ith finger (1 ≤ i ≤ log n) spans about 1/2i of



Steady State Comparison

0

100

200

300

400

500

600

700

800

7 8 9 10 11 12
Depth

N
um

be
r 

of
 P

ee
rs

DJ/L50 DJ/L10 DJ/L1 RJ

�
DJ/L50 = 0.88

�
DJ/L10 = 0.80

�
DJ/L1 = 0.67

�
RJ = 0.65

Figure 6. This simulation started with 1,024
perfectly balanced peers. It shows the depth
of peers after peers leave and join at the
same rate.

the circle so that every hop at least halves the distance to the
destination.

Figure 7 shows the identifier circle of Chord and some
finger information. For example, “A.finger[3]” de-
notes the 3rd finger of peer A and thus references a peer
whose identifier is at least 1/23 larger than the identifier of
peer A.

In the following, we sketch how to aggregate, for
example, the number of peers in the Chord system.
In this case, the request that a peer P with identi-
fier P.id sends to its ith finger is not “How many
peers do you know with prefix length i?” as in DA-
SIS, but “How many peers do you know in the inter-
val [P.finger[i].id,P.finger[i+1].id)?”,
where 1 ≤ i ≤ log n and P.finger[(log n)+1] de-
notes P itself. Thus, P.finger[i] is an “expert” on the
interval [P.finger[i].id,P.finger[i+1].id),
and P can deduce the state of the whole P2P system by ag-
gregating the information delivered by all of its fin-
gers.

Our scenario shows an ideal Chord system where peers
referenced by fingers have exactly the desired identifier, that
is, the identifier of a peer referenced by P.finger[i] is
exactly P.id+1/2i. Unfortunately, in a real Chord system,
finger interval lengths are not exactly powers of 1/2; in-
deed, P.finger[i] often references a peer whose iden-
tifier is larger than the desired one. Thereby, it is likely that
information delivered by different fingers is based on over-
lapping intervals. In our example of aggregating the num-
ber of peers, this means that the calculated values tend to be
too large because some peers are counted twice. Thus, peer
P needs to adjust the delivered values before summing them

A.finger[1]

A.finger[2]

A.finger[3]

A.f[5]
A.finger[4]

A
B

C

D

E

F

B.finger[5]

C.finger[4]

D.finger[3]

E.finger[2]

F.finger[1]

Figure 7. A Chord identifier circle and addi-
tional finger information. P.finger[i] de-
notes the ith finger of peer P which spans
about 1/2i of the circle length.

up. Since P is able to determine overlapping intervals, this
is approximately possible.

Note that this problem is not relevant when comput-
ing the max and min functions because they are correct
for overlapping intervals, too. Therefore, our proposed join
algorithm can easily be adapted to work with Chord: the
peers gather and aggregate information about the “maxi-
mum gap,” that is, the largest interval between two neigh-
boring peers on the identifier circle. A newly joining peer is
then assigned an identifier within this interval.

6. Related work

In this section, we first present work related to DASIS as
a general aggregation service. Thereafter, we compare our
improved join algorithm to other approaches to load balanc-
ing in P2P systems.

6.1. Aggregation services

The Astrolabe system [14] is a distributed information
management system, which the authors describe as a decen-
tralized hierarchical database. Astrolabe employs an aggre-
gation technique that is similar to the one presented here,
although more powerful using a SQL-like query style. In
comparison to our work, Astrolabe is presented as a new
stand-alone system, which uses a gossip protocol to dis-
seminate information, whereas DASIS is intented to be in-
tegrated into a P2P system, such as Chord [13] or Kademlia
[8].



Improving a join algorithm or load balancing does not
seem an obvious application of Astrolabe itself. Neverthe-
less, such an algorithm can leverage Astrolabe’s aggrega-
tion mechanism. Just like SelectCast [2] sets up its own
tree—maintained by Astrolabe information—of TCP con-
nections for supporting publish/subscribe applications, our
depth join algorithm can be employed in a separate DHT,
again, using depth information provided by Astrolabe.

Astrolabe’s follow up work Willow [15] also allows for
SQL-like queries to aggregate information in a P2P sys-
tem. Unlike Astrolabe, Willow integrates DHT functional-
ity and directly supports publish/subscribe. Willow’s aggre-
gation mechanism works quite similar to that of DASIS. In
fact, Willow could directly benefit from using our join algo-
rithm.

Zhang et al. [16] introduced another infrastructure pro-
viding system meta information. In this approach, a “Self-
Organized Meta Data Overlay” (SOMO) tree is built and
maintained on top of an arbitrary DHT, such as CAN [11].
The tree grows and shrinks dynamically as the system size
changes. All the information is aggregated bottom up along
this tree, and disseminated down again.

Since SOMO implements a hierarchical approach, it can
be used in a plug-in like fashion independently of the under-
lying (P2P) topology. Although this offers a variety of fea-
tures, it can be criticized in a “pure P2P mindset,” as done
by the authors themselves. In some sense, DASIS provides
SOMO functionality in a downright P2P style, with zero
message overhead.

Furthermore, we consider the deterministic assignment
of SOMO’s root node a drawback. Although in the case of
failures, another node automatically takes over the respon-
sibility of the SOMO root node, with permanent—probably
malicious—failures of the changing root node the SOMO
service is at risk. Since DASIS operates on the regular P2P
topology, it does not have a single point of failure, and,
therefore, provides reliable information even in malicious
environments.

6.2. Load Balancing

Assignment of IDs to joining peers using DASIS em-
ploys approximative global system information. At a high
level, the idea of employing information about the system
in order to assign IDs to joining peers can be found, in a lo-
cal scope though, in CAN [11]. CAN proposes a join al-
gorithm in which the joining peer chooses a random ID,
and the peer responsible for this ID returns another ID that
would split the most loaded peer among itself and all its
neighbors.

Chord [13] maps multiple virtual nodes to each real peer
to achieve load balancing. That is, each peer is inserted
O(log n) times (n is the total number of peers in the sys-

tem) with unrelated identifiers into the Chord ring. While
this approach balances the number of key/data item pairs
stored at each peer so that it differs (with high probabil-
ity) only by an arbitrarily small constant factor ε, our ap-
proach could easily be adapted to match other criteria, such
as the number of requests per peer, the total disk space avail-
able, or even combinations thereof. Furthermore, in Chord,
a peer has to maintain a routing table for each virtual node,
while the depth join algorithm can be employed without ad-
ditional overhead. Finally, our join algorithm can even be
used in conjunction with virtual nodes.

7. Conclusions

We introduced the Distributed Approximative System
Information Service as a simple yet useful tool to aggre-
gate information in a P2P system. As a sample application,
we use minimal depth information provided by DASIS for
our proposed join algorithm. We showed by simulations that
a join with DASIS results in better balanced P2P systems
than the standard assignment of random overlay IDs, espe-
cially in the case where the P2P system is imbalanced due
to a high number of leaving peers. Finally, we sketched how
to integrate DASIS into existing P2P systems.

Currently, we are planning to implement DASIS and our
join algorithm in Java to perform real-world measurements.
We are also integrating DASIS into the Chord join protocol.
Additionally, we will provide a theoretical analysis of our
join algorithm.

References

[1] J. Aspnes and G. Shah. Skip Graphs. In Proceedings of
Fourteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2003.

[2] A. Bozdog, R. Van Renesse, and D. Dumitriu. Selectcast – a
scalable and self-repairing multicast overlay routing facility.
Proceedings of the First ACM Workshop on Survivable and
Self-Regenerative Systems, 2003.

[3] J. Byers, J. Considine, and M. Mitzenmacher. Simple Load
Balancing for Distributed Hash Tables. In Proceedings of
IPTPS, Berkeley, CA, USA, February 2003.

[4] P. Druschel and A. Rowstron. PAST: A Large-Scale, Per-
sistent Peer-to-Peer Storage Utility. In HotOS VIII, pages
75–80, Schloss Elmau, Germany, May 2001.

[5] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A Scalable Overlay Network with
Practical Locality Properties. In Proceedings of USITS, Seat-
tle, WA, USA, March 2003.

[6] M. F. Kaashoek and D. R. Karger. Koorde: A simple degree-
optimal distributed hash table. In Proceedings of IPTPS,
Berkeley, CA, USA, February 2003.

[7] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable
and Dynamic Emulation of the Butterfly. In Proceedings of
PODC, Monterey, CA, USA, July 2002.



[8] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer
Information System Based on the XOR Metric. In Proceed-
ings of IPTPS, Cambridge, MA, USA, March 2002.

[9] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
Nearby Copies of Replicated Objects in a Distributed Envi-
ronment. In ACM Symposium on Parallel Algorithms and
Architectures, pages 311–320, 1997.

[10] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load Balancing in Structured P2P Systems. In
Proceedings of IPTPS, Berkeley, CA, USA, February 2003.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
Proceedings of ACM SIGCOMM, 2001.

[12] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Mea-
surement Study of Peer-to-Peer File Sharing Systems. In
Proceedings of Multimedia Computing and Networking, San
Jose, CA, USA, January 2002.

[13] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A Scalable Peer-To-Peer Lookup Service for
Internet Applications. In Proceedings of ACM SIGCOMM,
2001.

[14] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system moni-
toring, management, and data mining. ACM Trans. Comput.
Syst., 21(2):164–206, 2003.

[15] R. van Renesse and A. Bozdog. Willow: DHT, Aggrega-
tion, and Publish/Subscribe in One Protocol. In Proceedings
of IPTPS, San Diego, CA, USA, February 2004.

[16] Z. Zhang, S.-M. Shi, and J. Zhu. SOMO: Self-Organized
Metadata Overlay for Resource Management in P2P DHT. In
Proceedings of IPTPS, Berkeley, CA, USA, February 2003.

[17] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and
Routing. Technical Report UCB/CSD-01-1141, UC Berke-
ley, 2001.


