

Grid Computing in the Enterprise with the UD MetaProcessor

Jikku Venkat Chief Technology Officer United Devices, Inc. http://www.ud.com/ 05 September 2002

UNITED DEVICES™

Outline

- The High Performance Computing landscape today
- A compelling alternative opportunity Enterprise Grid
- Some of the key challenges to overcome
- The MetaProcessor Architecture
- Solution Case Studies
- The future and a final summary

High-Performance Computing Today

- Departmental usage in industry; more sharing in universities
- Low utilization and duplication of compute and data resources
- Expensive resources: Supercomputers, SMP, Linux cluster
- Are the applications appropriate?
- Obsolete in 2-3 years

Massive amount of under-utilized capacity – mostly PCs

UNITED DEVICES™

Relative processing capacity

	1989 Cray Y-MP8/4128	Intel® Pentium™ 4 Processor		
CPUs	4 166MHz	1 P4 1.5GHz		
Max RAM	1 GB	1 GB+		
MFLOPS	~1333	~1800		
Cost	~ \$14,000,000	Under \$300		
	3/20/89 Electronic News	11/00 www.hardwarecentral.com		

... and interconnect bandwidth, storage

- > All PC's are now connected
 - Bandwidth at 10, 100 and rapidly evolving to 1000 Mb/sec
- PC hard drive sizes at 20+ GB
 - Large amounts of disk space go unused
 - Nearly 50% unused per MS study

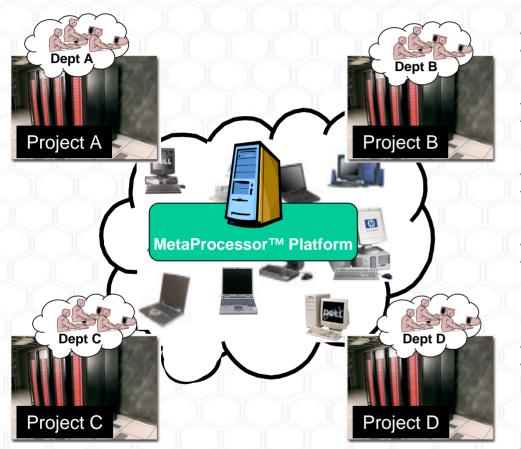
1000s of underutilized resources across the enterprise

*Data from Microsoft SIGMetrics Paper ('98-'00)

Availability, Utilization

50% of all PCs available nearly 95% of the time

➢ 9% of PCs utilized nearly 100%


1000s of underutilized resources across the enterprise

Remaining 91% at or near idle
Median load is at 1-2%

*Data from Microsoft SIGMetrics Paper ('98-'00)

Harness it! The MetaProcessor Extending the Grid

- 10x to 70x reduction in cost millions of dollars in savings
- Nearly 100% resource utilization
- Enterprise-wide use for appropriate applications
- Preserve departmental control of policies and access controls
- Single virtual system view for application developers, administrators, users
- Asset appreciates over time Moore's Law

The Challenges

Security

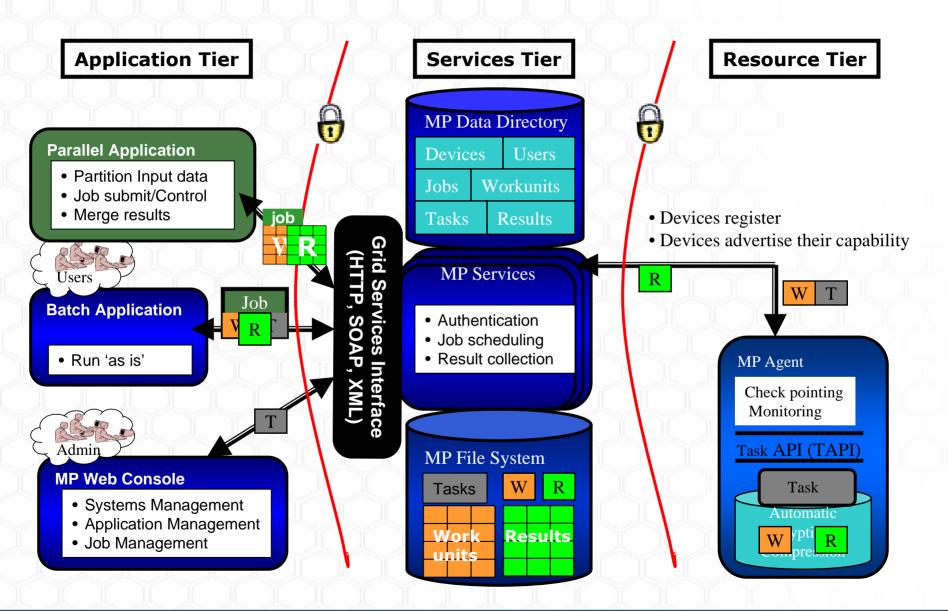
- Providing controlled access to resources, applications, and data
- Preserving the integrity of applications and data
- Securing applications
- Securing the application execution environment
- Unobtrusiveness
 - Will this be unobtrusive to the primary user of the PC?
 - How will this impact other users of the network infrastructure?
- Scalability
 - Will the resource scale to tens of thousands of devices? How?
 - What about application scalability?
- Manageability
 - How will this virtual system be administered and maintained?
 - How are reliability and availability addressed?
 - **Dealing with non-dedicated resources**
 - Resources are not always available, connected, reliable

The Challenges

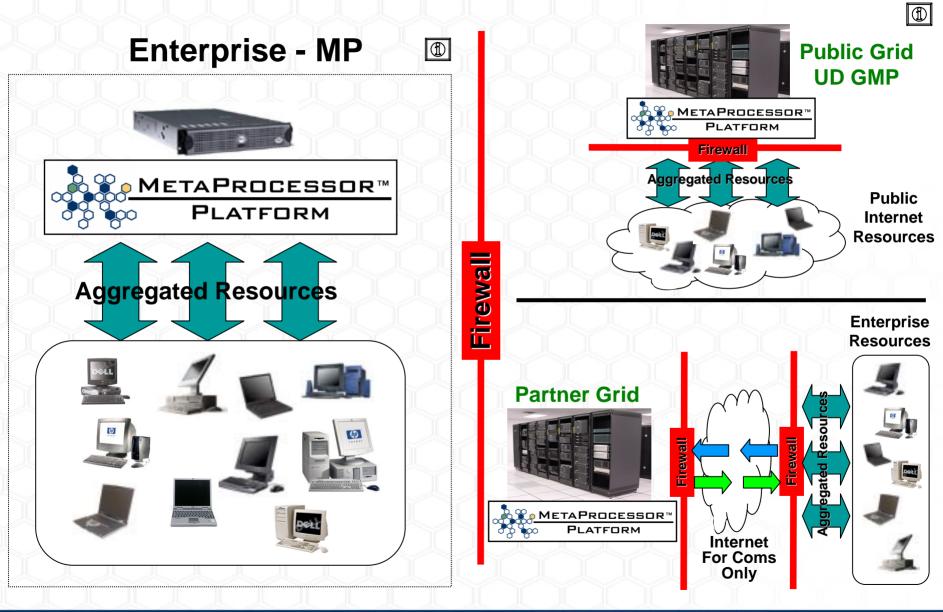
Application Feasibility

- This is feasible only for a small subset of embarrassingly parallel applications
- How do we determine application feasibility?
- Application Migration
 - What is required to migrate applications to this grid?
 - Are source code modifications necessary?
 - How long does it take to migrate applications? What is involved?

Application Management


How are applications updated as new versions become available

Data Management


- How are application datasets managed in the system?
- Resource and Workload management
 - Controlling and balancing workloads across a very large resource set
 - Application user interface
 - Are application users aware of the grid?

MetaProcessor Architecture

Enterprise Grid / Public Grid / Partner Grid

UNITED

<u>UNITED</u> DEVICES™

Security

> Authentication

- User access to MetaProcessor requires an identifier and password
- SSL-like protocol for authentication and network encryption key generation
- Unique device identifiers and network session keys for authenticating devices

Encryption and Checksum

- Network communications encrypted using triple-DES network key
- All data stored on devices is encrypted using triple-DES device key
- All files stored on the devices are tamper-proofed using checksum validation

Organizations and Roles

- Users and applications allocated into organizations
- User roles based on four levels of access control to the system

Digital Signature

- Application executable modules may be signed and validated on devices
- DSA signature keys can be modified for each customer

Constrained execution environment

MP Agent executes tasks in a sandbox with limited access to device resources

Unobtrusiveness

Preference profiles

- Control computation and communication time windows
- Control disk space usage on devices
- Control tasks that can execute on devices

Agent deployment

- Installation does not require a machine reboot
- Deployed silently using enterprise software distribution tools
- Run as a protected process such as, 'WinNT Service' or a user level application

Optimal usage of resources

- MP agent has a negligible memory foot-print
- Lowest priority supported by the operating system
- Limit disk usage based on device preference settings
- Optionally configured to run in 'screen saver only' mode

Network unobtrusiveness

- Network communication only after task completion
- All data transmitted on the network is automatically compressed

Optional User control

- User can snooze the task on non-dedicated devices
- User can shutdown MP agent

Product Scalability

<u>Devices</u>	<u>Connections per</u> <u>hour,</u> <u>Data-In/hour</u>	MP Dispatch Service	Management Service	Application Service	<u>MP Database</u>
500	83 conn/hr, 4 MB/hr	1 Server – 1CPU, 1GB RAM, 50 GB disk, Linux			
<u>1,000</u>	167 conn/hr 8 MB/hr	1 Server – 1 CPU, 1GB RAM, 20 GB disk, Linux			1 Server-1cpu, 1GB RAM, 50 GB disk, Linux
<u>10,000</u>	1,667 conn/hr 83 MB/hr	1 Server-1cpu, 1 GB RAM, Linux	1 Server-1 cpu, 512 MB RAM, 30 GB disk (shared w/UD servers), Linux		1 Server-2cpu, 4 GB RAM, 100 GB disk, Linux
<u>25,000</u>	4,167 conn/hr 208 MB/hr	1 Server- 2 cpu, 1 GB RAM, Linux	1 Server-1cpu 512 MB RAM 100 GB shared disk, Linux	1 Server-1cpu 1 GB RAM, 20 GB disk, Linux	1 Server-2cpu 8 GB RAM, 150 GB disk. Linux + Warehousing
<u>150,000</u>	25,000 conn/hr 1,250 MB/hr	3 Servers-2 cpu, 1 GB RAM, Linux	1 Server-2 cpu 512 MB RAM, 500 GB shared disk, Linux	1 Server-1cpu, 1GB RAM, 20 GB disk, Linux	1 Server–4cpu, 8 GB RAM, 150 GB disk, AIX + Failover + Warehousing

Manageability

Web-based administration Console

- Remote administration of users, devices, applications and jobs
- Features accessible based on role and access control policies
- System management functions to control core services

Self-updating infrastructure

- Automatic update of MP Agent and tasks
- Phases and versioning enable smooth transition to new code base

> Automated systems management

- Periodic review and cleanup of stale data in the database and file system
- Manager process restarts failed slave service processes

Rapid installation and upgrades

- Single command installation of MetaProcessor services in most environments
- MP Agent compatible with most software distribution tools
- Average time for MetaProcessor deployment is less than a day
- Customized migration scripts to enable smooth upgrades

Dealing with non-dedicated resources

Optional redundancy parameters

- Each unit of work can be scheduled more than once
- System can be set to wait for a minimum number of results to assure result integrity

Optional application-level checkpointing

- Provides features to enable applications to checkpoint their state periodically
- System automatically resumes application execution from last saved state

Application Feasibility

> Running many, many instances of the same application

Coarse-grain data parallelism

- Data can be partitioned into independent chunks for executions
- Large computation to communication ratios
- Static data dependencies can be resolved

Coarse-grain control parallelism, pipelined execution

- The application itself can be partitioned into independent pieces
- Output of one stage feeds the input of the next stage

> Number of applications with this criteria

- Virtual screening of small molecules to develop drug leads
- Genetic sequence analysis algorithms
- Monte Carlo simulations
- Decryption, key-breaking applications
- Text mining applications

Windows executable exists

- Tools available to enable rapid migration – cygwin is an example

Application Management

Registration

- Programs are registered as <u>tasks</u> in the system
- Registered tasks may be shared by one or more applications
- Tasks have platform-specific executables called <u>task modules</u>

Versioning

- Tasks and task modules have versions
- Versions enable tasks to be centrally upgraded and managed

> Phases

- Tasks can be released in <u>test</u>, <u>pilot</u> and <u>production</u> phases
- Phases enable developers & administrators to unobtrusively release tasks

Application Migration

MetaProcessor Task Wrapper

- packages executable programs without source code modifications. Runs 'as is'
- Transparent encryption and compression without source code modifications
- Monitors and controls programs when executing on device

MetaProcessor Grid Services Interface (MGSI)

- Programmatic Web services interface based on HTTP, SOAP and XML
- Support for 22 different programming languages
- Minimal effort to develop <u>Application services</u>, tools and utilities

MetaProcessor Application Services

- Application services pre processes data, submit jobs and post processes results
- Uses MGSI to interface with the MetaProcessor. Optionally can use batch utilities

MetaProcessor Task API

- Optional source code modifications for task check-pointing and monitoring

MetaProcessor SDK

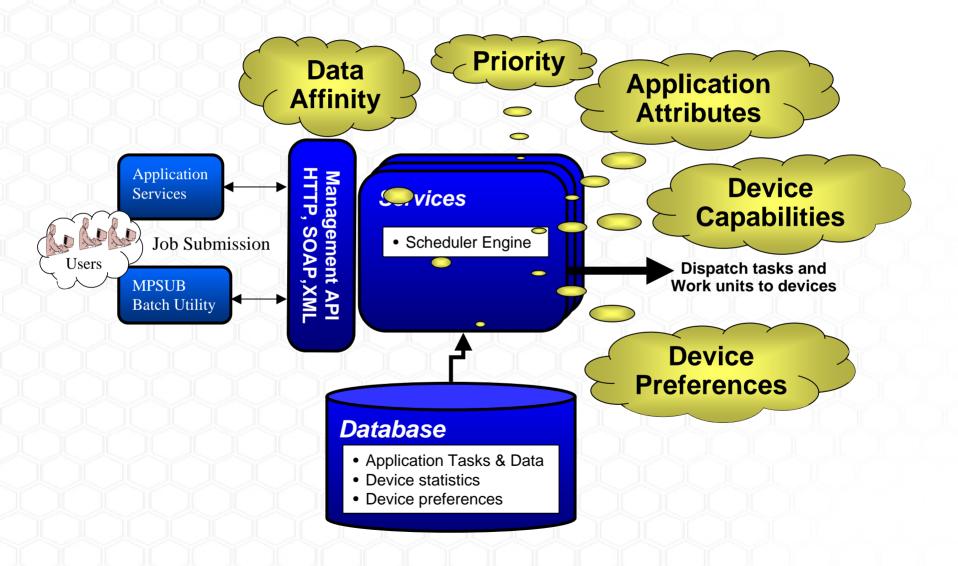
- Detailed documentation for all components
- Reference implementation and value-added modules for rapid development

Data Management

Registration

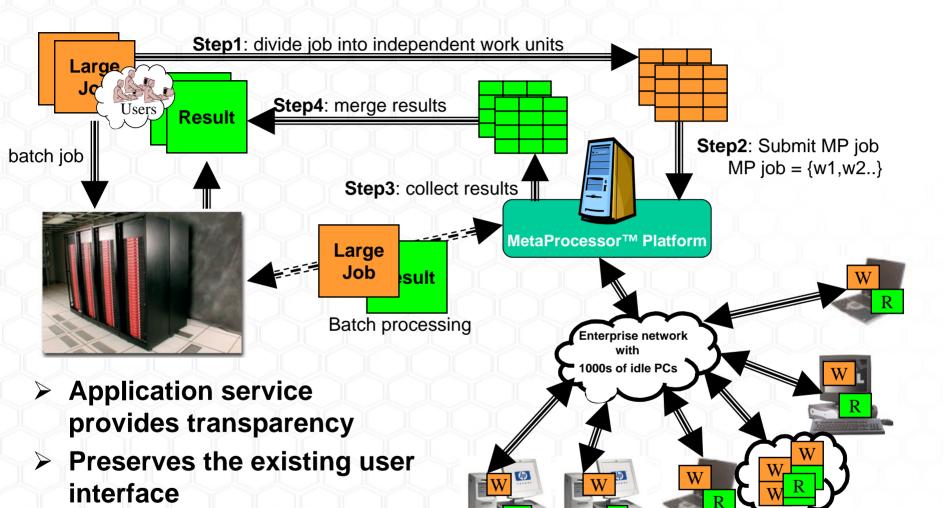
- Data is registered as <u>work data</u> and <u>resident data</u> using MGSI
- Data is uniquely named to avoid name collision
- Data can be grouped as <u>work data set</u> and <u>resident data set</u>

Resident Data


- Data is always cached on devices to reduce network traffic
- Data once registered may be shared by many jobs and users
- Enables scheduling based on resident data affinity

Annotation

- Enables application services to store information such as, a data index


Workload and Resource Management

End-user Transparency

Works for both batch jobs and data parallel jobs

Case Studies

The Novartis Grid

🕛 NOVARTIS

Goal

- Accelerate lead identification and profiling 10X within one year
- Find a way to accomplish the goal without raising costs 10X
- Solution
 - Adopt a PC-based Grid solution
- Pilot Highlights
 - Rapid deployment across 600+ Windows desktops
 - Exceeded expectations on all pilot criteria
 - Aggregated 3.18 years of processing time in first 7 days
 - Migrated proprietary application during the pilot

Results

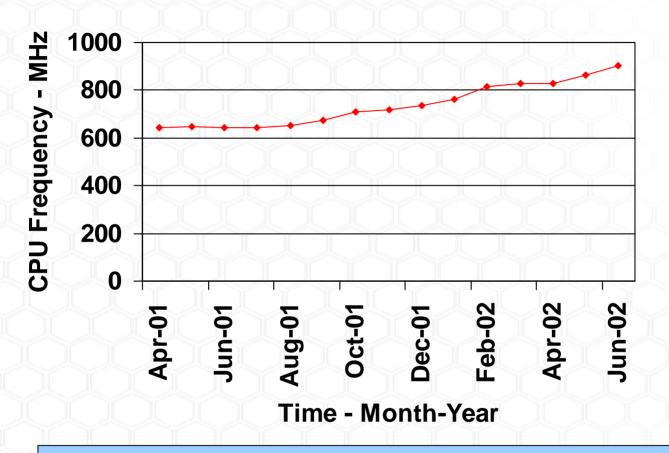
- Currently running a 1000 device Grid
- Response time on virtual screening reduced from days to hours
- Network bandwidth usage increased by less than 2.5%
- Investigating text mining application as well

Oxford University – A Global Grid

Goal

- Be able to screen a public database of small molecules against 12 protein targets identified in several cancers
- Solution
 - Adopt a Global Grid solution and use volunteered PCs

Project Highlights


- A total of over 1.6M PCs from around the world 220 countries represented, including the Vatican
- Unprecedented scope project scope was increased 70-fold based on the available compute power
- Total CPU time is over 126,000 years; 200+ years every day!

> Results

- Other related projects completed: Anthrax screen in 24 days!
- "Hits" will undergo the next stage of analysis
- Largest, general-purpose, public compute Grid

The Global MetaProcessor Grid

Performance improved 50% in 14 months. The asset appreciates over time!

Summary and the Future

- The opportunity with enterprise grid computing (or P2P) is REAL
- There are some challenges but they can be overcome
 - Applications and end-user transparency
 - Administration and manageability
- The benefits are compelling and it is happening TODAY
 - Novartis and Oxford University are example projects
- The Future
 - Every device is "plugged" into this type of grid
 - It becomes ubiquitous you don't have to think about it anymore
 - True peer-to-peer features enable less loosely-coupled applications