Internet Distributed Computing

The Intersection of Web Services, Peer-to-Peer, and Grid Computing

David Barkai
Distributed Systems Labs
Corporate Technology Group
Intel Corporation

September 5, 2002

Outline

- Why "Internet Distributed Computing" (IDC)
- What is IDC
- Technology Pillars
- Gaps and Challenges
- Future Applications

The Vision

- A computing world with
 - Sharing networked resources
 - Through dynamic pooling, aggregation, and load balancing
 - Automation enabled by
 - Reliable access to resources
 - Proactive and responsive processes and agents
 - Adaptive computing sensitive to changes of bandwidth and presence
 - Ultimate mobility with seamless and un-tethered access to computing resources in the environment

Motivation: Foundation for Evolving Computing Environments

- Proactive computing
 - react to real-world stimuli
 - initiate actions based on user's context (intent, activity, location)
- Pervasive/ubiquitous computing
 - grand scale: Internet of things (devices, sensors, objects)
 - Mobile, intermittent connectivity
 - compute resources all around in the environment
 - Islands of "smart spaces"
 - Users augment capabilities from the environment

Goals of Internet Distributed Computing (IDC)

- Accelerate distributed computing on the Internet, to increase business and consumer end-user value
- Provide a foundation for pervasive computing from a small-scale Personal Area Network (PAN) to virtual, planetary grids.

Foundational Computing Domains

- Web Services
 - Standard protocols for service oriented architecture
 - Impetus in business process
- Grid Computing
 - Infrastructure services for sharing distributed resources
 - Origins in high performance computing community
- Peer-to-Peer Computing
 - Collaboration and computing at the edges of the net
 - Focused on client-side of network computing

Web Services: Protocols

- Standard, platform-independent, componentbased distributed computing paradigm
 - for data exchange, capability descriptions, publishing and discovery mechanisms
 - Internet-centric, open, scalable, distributed components
- Fundamental standards/protocols for IDC
 - [OGSA*] SOAP for communication
 - [OGSA] WSDL and WS-Inspection for describing and locating services/resources
 - [desired] UDDI-like discovery mechanism

* "The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration," I. Foster et al, June, 2002 SOAP: Simple Object Access Protocol

WSDL: Web Services Description Language

UDDI: Universal Description, Discovery, and Integration

OGSA: Open Grid Services Architecture

Grid Computing: Services

- Infrastructure and basic services for large-scale resource sharing
- Virtualization through focus on interoperable services
 - Services = cycles, storage, networks, databases, files,...
- Basic services
 - Resource allocation, resource management
 - Information discovery service
 - Security infrastructure
- Service semantics

P2P: Action to the Edge

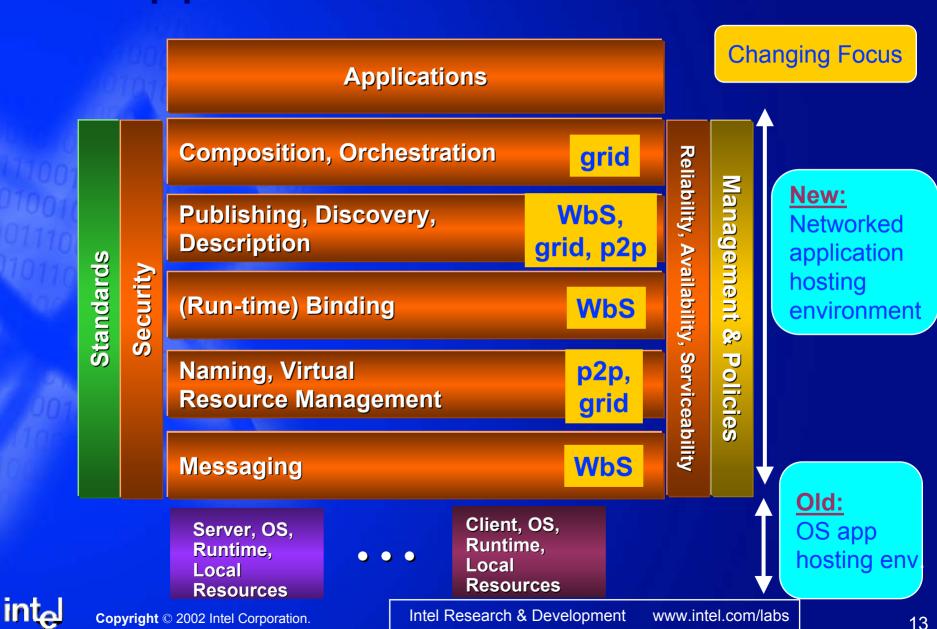
- Peer-to-Peer technologies to enable PC/device to be a grid node and to offer services
 - In particular, naming mechanisms to deal with NAT/Firewall traversal (that applies to most users)
- Devices at the edge are the focus for mobility in IDC
- Foundation for mobile discovery and services
- Extend classes of applications with Collaboration and Content Sharing

Synergy with Trends and Drivers

- Web Services
 - Basis for common protocols, app-to-app communication
- Grid Computing
 - share and amplify computing resources, access to unique data
- Peer-to-Peer Computing
 - Direct communications for ad hoc comm and collaboration
- Autonomic computing
 - automated operation, self-management
- Utility computing
 - Efficient use of computing resources through resource pooling and load balancing, dynamic allocation/provisioning of servers, storage

A Unifying Computing Platform

The Internet as a distributed computing platform unified by common aspects of Web Services, Peer-to-Peer, and Grid computing, while also preserving the best of their unique, problem-solving aspects.



Converged Middleware: The Building Blocks

reliable messaging)

Apps WbS P₂P **Grid (HPC)** (Collaboration) (e-biz Workflow) IDC = Dynamic, Task-Specific Aggregation of Resources Multi-Scale Resource description and discovery + WbS Virtualized Resources (computation, storage, apps) Web Service Protocols (XML, SOAP, WSDL, UDDI,

IDC App Functional Stack

The Benefits from IDC

- Dynamic aggregation of resources for computing on demand.
- Reusable SW and associated developer benefit.
- Foundation for proactive and pervasive computing.
- Reduce manageability cost and complexity.
- More efficient use of computing resources.
- Reliability, availability and scalability.

Realizing the Vision

- Define a common building-block architecture that scales from PAN to global grid
- Apply research and construct concept proofs of IDC fundamentals
- Work with key Standards/Industry groups,
 - W3C (SOAP), OASIS (UDDI), WS-I, GGF (P2PWG)

Elements of the IDC Model

- The Internet as a modular service-oriented computing platform
- Dynamic, task-driven configuration of computing elements
- A universe of globally connected services utilizing a vast pool of resources on all devices
- Dynamic discovery and combining of components into taskspecific functional groupings
 - aggregate, augment device capability
 - capacity on demand, reusable: return to pool when task completed
- Multiple scales: proximity-area to global grids

Fundamental Principles

To realize the vision (scale from PAN to global grid):

- Virtualization
 - Of resources: cycles, storage, UI
- Automation
 - Of dynamic configuration and runtime binding
 - through resource discovery, ad-hoc networking, platform independence
- Modularity
 - For aggregation and orchestration of resources: pooling, dispatching, synchronization
- Trust
 - Through security, authentication by ownership, proximity, organizational boundaries, intranet, Internet

Virtualization

- Virtualization through use of functional software components
- Apply to services and hardware elements
- Scalable to a planetary-size pool of composable resources
 - Connected via networks of networks
 - Described, accessed via standard web services protocols, directories, and conventions

Dynamic Binding

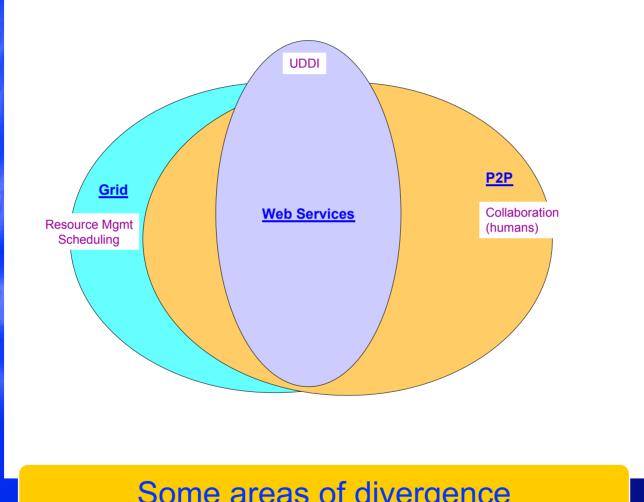
- Combination of discovery and binding mechanisms
- Application portability
 - Through decoupling of application design and execution from system configuration and physical connectivity
- Decouple development of uses from the provision of the service
- Necessary for ad-hoc and self-configuring networks
- Quality of Service
 - Improved reliability
 - Load balancing

Aggregation, Orchestration

- Dynamically aggregate the exact collection needed for task at hand – central to IDC
- Apps need to state requirements/hints
- Key element to vision of pervasive computing
- Orchestration: control and management of aggregated resources
 - Enables collective progress
 - Coordination and collating via synchronization, communication functionalities

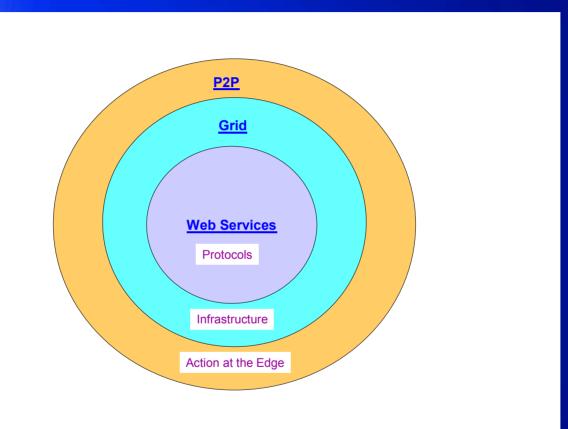
Security, Authentication

- Goal is the protection and trust for both host and consumer/guest app
- Robust IDC allows crossing distinct security domains and varying levels of trust
 - Must not violate local policies (<u>not</u> a lowest common denominator approach)
- Single sign-on across aggregated collection of resources
 - Desirable, if not necessary



Design Implications

- Edge processing
 - Proximity to user access to more devices, optimize bandwidth requirements
- Hybrid Connectivity wired & wireless
 - WAN and broadband short-range wireless
 - Aggregate bandwidth at the edges
 - Ad-hoc networking
 - Discovery & self-configuring require device intelligence and autonomy
- Data+Communication-centric model
 - Majority of computations support access to content and connectivity
- Intermittent connectivity
 - Mobile devices move in and out of range, power down
 - Manage through caching, data and service proxies
- User-Environment integration
 - Users carry devices, but augment capabilities from the environment


The Intersection, Today

Some areas of divergence

A Vision for the Future

Foundation for a truly interoperable distributed computing

The Hard Problems

- Interoperability for mobility and access to environment
- Trust for sharing resources in the "cloud" and on own devices
- Connectivity for access, bandwidth, mobility, intermittency
- Virtualization of all resources
- Device Intelligence for automation, proactive, context-based computing

Manage complexity of dynamic, scaled-up, environment

Missing from Grid+WbS

- PC/Client as a provider of services and as a fullfledge node on a grid
 - Getting to/from in presence of NAT and firewalls
 - Preserving local autonomy
 - Availability, allowing for users' whims and needs
- Allowance for Mobility
 - Location context awareness
 - Access to data when device is resource-constrained

Let's talk about Mobility this time ...

Mobility - The Missing Domain

- Current web services, grid computing, and most P2P are designed for static configuration
 - Albeit allowing for intermittent connectivity (some P2P)
- Challenge: Include mobile devices and users
 - Both as providers and consumers of services and resources

Mobility – Embodiment of Challenges

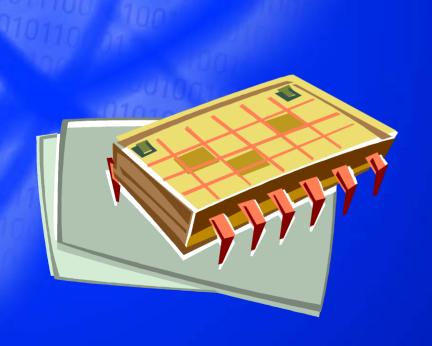
- Mobility and rate of change
 - permanent, nomadic, moving
- Connectivity
 - full, intermittent, none
- Spectrum of trust/security
 - -untrusted, mix, trusted
- Available internal resources
 - power, CPU, memory, etc
- Available external resources/infrastructure

Mobility extends IDC requirements for supporting dynamic and ad hoc usage models.

Handling Intermittent Connectivity

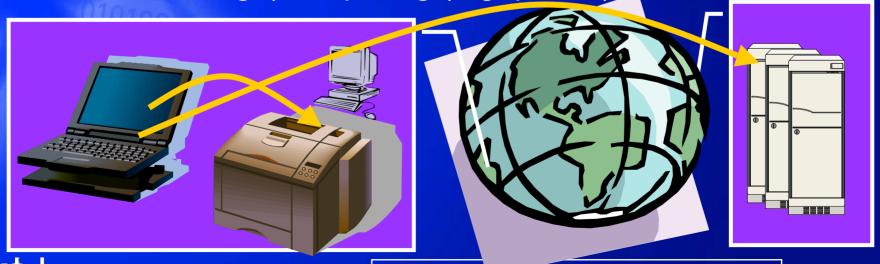
- Support for asynchronous communications, reliable messaging and caching.
 - Masks mobility (e.g. device on/off, here/not here).
 - Handling intermittent and unreliable connectivity.

Dynamic, Adaptive Security


- Provide automatic, dynamic, telescoping security.
 - Security with reduced user burden.

Sensitivity to Limited Resource

- Sensitivity to resource-constrained devices and communication channels, modulo Moore's Law.
 - E.g. power, network traffic, memory footprint, etc.



Dynamic Discovery, Binding, & Invocation

- Provide dynamic, ad hoc discovery, binding and invocation to services
 - Discover (possibly transient) resources and services that are available in proximity, local, and remote.
 - E.g. Location-based services.
 - Opportunistic use of local resources enhancing (e.g. CPU, storage) or sparing (e.g. power).

IDC Provides Foundation for Mobile "Magic"

- IDC with Mobility enables important capabilities for new usage models and applications:
 - Proximity and long-distance location-based services.
 - Automatic printer location, proximity synchronization with desktop.
 - Ad hoc or Spontaneous collaboration.
 - Discovery and use of compute resources
 - Cost-aware network connection sharing.
 - Cross-device resource sharing and application/data migration.

Example: Proactive Data Staging

- Mobile users accessing data not available on devices
 - Storage constraints (PDA's, other mobile devices).
 - Data was unavailable (i.e did not exist (e-mail)) when device disconnected from network.
- Data is staged proactively for use consumption at local hotspots (airport lounges, hotels etc).
- Data can be staged on demand at hotspots (Starbucks etc).

Efficient, data access for mobile clients by moving user data closer to the user (proactively or on demand)

Benefits of Proactive Staging

- Reduced latency for data access for mobile clients.
- Enhanced storage capacity for constrained devices such as PDA's.
- Efficient (faster) access to user data.
 - May not be resource constrained (such as laptops) but data was not cached due to dynamic nature of content or contextual relevance. Availability of data near to a user while away from home machine.

IDC + Mobility with Dynamic Discovery

- Provides "Innovation commons" for development of new apps
- Enables technology for next-generation distributed computing and ubiquitous computing.
 - For example, can use for gathering context from others and from environment
 - Provides information ecosystem for advanced, proactive personal services
- Facilitates dynamic use of distributed transient resources

Scalability and Usage Examples

- intranet/Internet
 - a company pools its workstations, servers and (off hours)
 office PCs into a grid to perform crash testing
- Home Area Network
 - home PCs pool their collective cycles temporarily to compress edited home movie (e.g. into DVD-R format)
- Personal (proximity) Area Network
 - user carries some of her hardware and data, augments capabilities, such as storage and UI, from the environment
 - assumes pervasive, rich embedded computer resources in the environment, initially hot spots "smart spaces"

Future Use Models

- Pervasive computing in an "Internet of things"
 - Data flow from sensors everywhere
- Augmented computing
 - "Smart" environments
- Context-aware usages
 - Based on location, identity, calendar, 'history', ...
- Automated business processes
- And many more ...

In Summary ...

- IDC is the unifying convergence of three central computing environments
- IDC ideas may be applied to add transparent mobility to today's static distributed computing
- IDC provides foundations for proactive and ubiquitous computing

