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Motivation for this work

e Large classes of multithreaded applications do not scale well in CMPs due
to memory bandwidth limitations
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Motivation for this work

e Large classes of multithreaded applications do not scale well in CMPs due
to memory bandwidth limitations

* bt, ep, is taken from NAS parallel benchmarks, atax, jacobi, floyd-warshall
taken from Polybench (platform: 8-core Sandy Bridge)
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Motivation for this work

e Large classes of multithreaded applications do not scale well in CMPs due
to memory bandwidth limitations

* bt, ep, is taken from NAS parallel benchmarks, atax, jacobi, floyd-warshall
taken from Polybench (platform: 8-core Sandy Bridge)
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cores
e Huge fights with memory-bandwidth limitations for SpMV (=Sparse Matrix-
Vector multiplication) in our previous works, e.g.
[KourtisPPoPP11], [KarakasisTPDS13]
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Motivation for this work

e What about emerging workloads for CMPs?
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Motivation for this work

e What about emerging workloads for CMPs?

e (Quoted from C. Bienia, S. Kumar, J. P. Singh and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications, Technical Report TR-
811-08, Princeton University, January 2008:

“Since many PARSEC workloads have high bandwidth requirements and
working sets which exceed conventional caches by far, off-chip bandwidth
will be their most severe limitation of performance.”
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Motivation for this work

Why do we really care?

* Non-scalable applications running on the full system are a clear resource
waste. Badly utilized cores could alternatively be:
— Switched off to save energy
— Assigned to another application
e We need resource-aware systems for CMPs, e.g.
— Resource/power/contention-aware schedulers
— Compilation frameworks and runtime systems
e Key component of such a system is a resource utilization predictor

— Capable of predicting with acceptable accuracy the resource utilization of an
application

— In our case: “best” number of cores (in terms of speedup, efficiency, EDP, etc)

— In this paper we take one step back and try to predict maximum scalability
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Defining the problem

e Platforms: CMPs with Uniform Memory Access (no NUMA)
 Programming constructs: Parallel loops
e Objective: Predict the scalability, i.e. maximum speedup of each parallel
loop region of an application.
— Deciding upon the best number of cores is left for future work

e Disclaimer: We do not work on scalability limitations due to:
— serial parts of the code
* these reside outside the parallel regions we work on
— load imbalance
* |oops are considered balanced
— task/thread synchronization overhead

* no synchronization occurs in the loop constructs of our model
e task/thread orchestration is considered of minimal overhead
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Defining the problem

Parallel loop 1
#pragma omp parallel for
for (1 = 0; 1 < N; 1++)
for (j = 0; j < N; j++)
CLil = CLi] + ALnl]

* Bl1:

Parallel loop 2

#pragma omp parallel for

for (1 = 0; 1 < N; 1++)
for (j = 0; j < N; j++)

CLil = CLi]1 + ADILi] * B
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Defining the problem

Parallel loop 1 Parallel loop 2
#pragma omp parallel for #pragma omp parallel for
for (1 = 0; 1 < N; 1++) for (1 = 0; 1 < N; 1++)
for (J = 0; J < N; jJ+t) for (J = 0; J < N; j++t)
CLil = CLi] + ALlDa1 * B CLil = CLal + ALY * BLJ1;

Any bets on the scalability of these loops?
Good, fair or bad scalability?
Any differences between them?
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Defining the problem

Parallel loop 1 Parallel loop 2
#pragma omp parallel for #pragma omp parallel for
for (1 = 0; 1 < N; 1++) for (1 = 0; 1 < N; 1++)
for (J = 0; J < N; jJ+t) for (J = 0; J < N; j++t)
CLil = CLi] + ALlDa1 * B CLil = CLal + ALY * BLJ1;
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Core idea

What we learn from the roofline prediction model [williamsComACM2009]
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Image taken from http://lorenabarba.com/news/new-paper-published-cise-journal/

e Key metric for the performance of memory-bound applications: flop/byte ratio
e Applications with:

— High flop/byte ratio perform close to machine peak
— Low flop/byte ratio are memory-bound
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Core idea
Scalability of multithreaded applications

Rule of thumb: Parallel loops with activity inside the chip are expected to
scale well (put small pressure on the scarce memory link)

We need a way to quantify on-chip (good) and off-chip (bad) activity

Try to collect as much information as possible at compile time to
characterize the loop bodies

Augment this with runtime information to get the full picture of the
execution profile

We do not care to be extremely precise, actually we need to classify loop
regions as bad performing, fair performing or good performing

Promote simplicity (sacrificing accuracy and applicability) in order to
validate the potential of the idea
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A synergistic scalability predictor

In a nutshell

Offline: train a prediction model based on a quantification of on-chip and off-chip
traffic

At compile-time:

Classify operations as arithmetic or memory
Count and score arithmetic operations

e Different scores are assigned for addition/multiplication/division
Classify memory references as streaming or latency (explained later on)

Calculate reuse distance of memory references as a function of data structure size
(unknown at compile time)

Conditionally classify memory references as hits (on-chip traffic) or misses (off-chip
traffic)

At runtime:

Classify memory references as on-chip or off-chip taking into account the data structure
size known at runtime

Finalize on-chip and off-chip scores
Apply the scores to the model and get the prediction
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Algorithmic model
What we handle

for (ip = Ly; 0y < Uy; 1pt=cy) do

CS,

for (i, = L;; 1; < U;; 1;+=c,) do
CS,
for (1, = L,; 1, < U,; 1,+=c,) do

CS,
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Algorithmic model
What we handle

for (i, = Ly; 0y < Uy; Ipt=cy) do * Imperfectly nested loops with bounds in
CS, canonical form (e.g. as required by the
for (i, = L,; i, < Uy; i+=c,) do OpenMP standard)
CS,
for (i, = L,; 1, < U,; 1,+=c,) do
CS,
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Algorithmic model
What we handle

for (ip = Ly; 0y < Uy; 1pt=cy) do

CS,

for (i, = L;; 1; < U;; 1;+=c,) do

CS,
for (1, = L.;
CS,

1, < U,;

1,+=c,) do

Imperfectly nested loops with bounds in
canonical form (e.g. as required by the
OpenMP standard)
Loop bodies are compound statements
that can include:

— other loop nests (recursive definition)

— arithmetic operations and memory
references on regular data structures

© © © © Nanonal Technical University of Athens

5/9/2013

csCSLab




Algorithmic model
What we handle

for (ip = Lg; 0y < Uy; 1pt=Ccy) do Imperfectly nested loops with bounds in
CS; canonical form (e.g. as required by the
for (i, = Ly; i, < Uy; i,+=c,) do OpenMP standard)
CS, * Loop bodies are compound statements

_ _ _ that include:
for (i, = L: i. < U.: i.+=c.) do at can include

CS,

— other loop nests (recursive definition)

— arithmetic operations and memory
references on regular data structures

* Any single loop in the nest can be
parallelized

e Legality of parallelization and insertion of
parallelization primitives are left to the
programmer
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Predictor details
On-chip to off-chip ratio (S,)

 We need to quantify on-chip and off-chip activity
* On-chip (good) activity is expressed by score 5,4 as:

—  S,= > new,
0€0,,

— where n_ is the number of operations of type and w, the operation’s weight

e Off-chip (bad) activity is expressed in the same way by score S, as:

S,= Zno-wo

00y

* Key predictor metric: on-chip to off-chip ratio §,=5,/S,
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Predictor details
On-chip to off-chip ratio (S,)

 We need to quantify on-chip and off-chip activity
* On-chip (good) activity is expressed by score 5,4 as:

—  S,= > new,

0€0,,

— where n_ is the number of operations of type and w, the operation’s weight

Off-chip (bad) activity is expressed in the same way by score S, as:

= Zno'wo

00y

Key predictor metric: on-chip to off-chip ratio S, =S, /'S,

EECTTEENETTE T T

addition/substraction 1 read

multiplication 2 write 3 1
division 4 off-chip operations and their weights
cache hit 3 for Dunnington and Sandy Bridge

on-chip operations and their weights @@ @@ tctneni ok Severty of s
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Predictor details

Classification of memory accesses

Calculate the reuse distance (number of iterations before the element is
accessed again) for each array reference

If the reuse distance is smaller than the aggregate Last Level Cache (LLC)
Size
— The reference is considered a hit

EIse 0,ws<cs

— The reference is considered a miss with probability: p=y Ws-cs
WS

where ws is the working set size and cs the LLC size
— In this case we calculate the expected value of the operation’s weight, i.e. we
multiply the probability with the weight
If the fastest changing dimension of the array is indexed using the
innermost loop index, we characterize a miss as streaming, otherwise we
characterize it as a latency miss.
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Predictor details

Prediction approach

e Speedup (o) is considered a piecewise function of S, as follows:

M

a-S+p,S.<sp
O raxs O 1> SP

G(Sr):{

W

* 0, B and sp are platform specific
e we use a training set to find sp and calculate a and B with linear regression
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Example
Polybench adi benchmark, line 72

for (t = 0; t < PB TSTEPS; t++) {
#pragma omp parallel for
for (i1 = 0; 11 < PB N; 1l1++)
for (12 = 1; i2 < PB N; i2++) {
X[il][i2] = X[i1]Q[i2] - X[i1][i2-1]
* A[il1][i2] 7/ B[il][i2-1];
Blil1][12] = BLil1][i2] — AL[il][i2]
* A[il1][i2] 7/ B[il][i2-1];
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Example
Polybench adi benchmark, line 72

for (t = 0; t < PB TSTEPS; t++) {
#pragma omp parallel for
for (i1 = 0; 11 < PB N; 1l1++)
for (12 = 1; i2 < PB N; i2++) {
X[il][i2] = X[i1]Q[i2] - X[i1][i2-1]
* A[il1][i2] 7/ B[il][i2-1];
Blil1][12] = BLil1][i2] — AL[il][i2]
* A[il1][i2] 7/ B[il][i2-1];

}

Assume the code is executed:
*  Onamachine with 64MiB LLC size (cs = 64 * 1024 * 1024)
*  With data type double (8 bytes)
*  With _PB_N =4000 (known at runtime)
Thus:
e Working set sizeisws=3 * 8 * 4000 * 4000

arrays doubles array dimension
e miss probability p,,.. = (ws—cs)/ws =0.825

i hit prObability phlt = 1 - pmiss = 0-175 © © © © Nanonal Technical University of Athens

5/9/2013 §§@ SLab



Example
Polybench adi benchmark, line 72

for (t = 0; t < _PB_TSTEPS; t++) { Work on first statement:
#pragma omp parallel for

for (i1 = 0; 11 < PB N; 1l1++)
for (12 = 1; i2 < PB N; i2++) {
X[il][i2] = X[i1]Q[i2] - X[i1][i2-1]
* A[il1][i2] 7/ B[il][i2-1];
Blil1][12] = BLil1][i2] — AL[il][i2]
* A[il1][i2] 7/ B[il][i2-1];

}

Assume the code is executed:
*  Onamachine with 64MiB LLC size (cs = 64 * 1024 * 1024)
*  With data type double (8 bytes)
*  With _PB_N =4000 (known at runtime)
Thus:
e Working set sizeisws=3 * 8 * 4000 * 4000
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Example
Polybench adi benchmark, line 72

for (t = 0; t < _PB_TSTEPS; t++) { Work on first statement:
#pragma omp parallel for 1 substraction (weight = 1)
for (il = 0; i1l < PB N; il++) 1 mulplication (weight = 2)
for (i2 = 1; 12 < PB N; i2++) { 1 division (weight = 4)
X[i1][i2] = X[i1]Q[i2] - X[i1][i2-1] Sg1 =1+ 2+ 4+ ... (on chip memory accesses)

* A[i1][i2] 7 B[il1][i2-1];

BLi1][i2] = B[i11[i2] - A[il][i2]
* A[i1][i2] 7 B[il1][i2-1];

}

Assume the code is executed:
*  Onamachine with 64MiB LLC size (cs = 64 * 1024 * 1024)
*  With data type double (8 bytes)
*  With _PB_N =4000 (known at runtime)
Thus:
e Working set sizeisws=3 * 8 * 4000 * 4000

arrays  doubles array dimension
e miss probability p,,.. = (ws—cs)/ws =0.825

i hit prObability phlt = 1 - pmiss = 0-175 © © © © Nanonal Technical University of Athens
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Example
Polybench adi benchmark, line 72

for (t = 0; t < _PB_TSTEPS; t++) { Work on first statement:
#pragma omp parallel for 1 substraction (weight = 1)
for (il = 0; i1l < PB N; il++) 1 mulplication (weight = 2)
for (i2 = 1: i2 < _PB N; i2++) { 1 division (weight = 4)
X[i1][i2] = X[i1][i2] - X[i1][i2-1]

_ _ _ . X[11][12-1] is a hit since reuse distance from
* ALi11[i2] 7 BLil][i2-1]; X[i1][i2]= 1 (weight = 3)

B[il][12] = B[il1][12] — A[11][12]
) * ALI1][i2] 7 BLi1][i12-1]; Sg1=7+3+(restofon—chip memory references)
s

Assume the code is executed:
*  Onamachine with 64MiB LLC size (cs = 64 * 1024 * 1024)
*  With data type double (8 bytes)
*  With _PB_N =4000 (known at runtime)
Thus:
e Working set sizeisws=3 * 8 * 4000 * 4000

arrays doubles array dimension
e miss probability p,,.. = (ws—cs)/ws =0.825

i hit prObability phlt = 1 - pmiss = 0-175 © © © © Nanonal Technical University of Athens
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Example
Polybench adi benchmark, line 72

for (t = 0; t < _PB_TSTEPS; t++) { Work on first statement:
#pragma omp parallel for 1 substraction (weight = 1)
for (il = 0; il < PB N; il++) 1 mulplication (weight = 2)
for (i2 = 1: i2 < _PB N; i2++) { 1 division (weight = 4)
XLiillez] = X[Il:![IZ:! - X[Il:_l[lzjl] X[11][12-1] is a hit since reuse distance from
* ALI1][i2] 7 BLi1][i2-1]; X[11][i2]=1 (weight = 3)
Blil1][i2] = B[il][12] — A[i1][i2]
* A[i1][i2] 7/ Blil][i2-1]; X[i1][i2] (twice), ALi1][i2] and

B[11][12-1] are read hits with probability 0.175

¥ S;;=10+ 4 * 3% 0.175=12.1

references weight probability

Assume the code is executed:
*  Onamachine with 64MiB LLC size (cs = 64 * 1024 * 1024)
*  With data type double (8 bytes)
*  With _PB_N =4000 (known at runtime)
Thus:
e Working set sizeisws=3 * 8 * 4000 * 4000

arrays doubles array dimension
e miss probability p,,.. = (ws—cs)/ws =0.825

i hit prObability phlt = 1 - pmiss = 0-175 © © © © Nanonal Technical University of Athens
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Example
Polybench adi benchmark, line 72

for (t = 0; t < _PB_TSTEPS; t++) { Work on first statement:
#pragma omp parallel for S, =12.1
for (il = 0: il < PB_N: il++) ;
for (i2 = 15 12 < _PB_N; 12++) { X[i11[i2]. A[i11[i2] and BLi1][i2-1]
X[i1][2] = X[i1][i2] - X[i1][i2-1] are streaming read misses with probability 0.825
* A[i1][i2] 7 B[i1][i2-1];
BLil][i2] = BLi1][12] - A[11][i2] Sp;=3 * 2% 0.825= 4.95 + (write misses)
* A[il][iZ] / B[il][iZ—l]; references weight probability
s
}

Assume the code is executed:
*  Onamachine with 64MiB LLC size (cs = 64 * 1024 * 1024)
*  With data type double (8 bytes)
*  With _PB_N =4000 (known at runtime)
Thus:
e Working set sizeisws=3 * 8 * 4000 * 4000

arrays doubles array dimension
e miss probability p,,.. = (ws—cs)/ws =0.825

i hit prObability phlt = 1 - pmiss = 0-175 © © © © Nanonal Technical University of Athens
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Example
Polybench adi benchmark, line 72

for (t = 0; t < _PB_TSTEPS; t++) { Work on first statement:
#pragma_omp parrftllel for _ S,y = 12.1
for (i1 = 0; 11 < PB N; 1l1++)
for (12 = 1; 12 < _PBN; 12++) { X[i1][i2], A[i11[i2] and B[i1][i2-1]
X[i1][i2] = X[i1][i2] - X[i1][i2-1] are streaming read misses with probability 0.825
= A[i1][i2] 7/ BLi1][i2-1];
B[il][12] = B[il1][12] — A[11][12] X[i1][i2] is a streaming write miss with probability
= A[i1][i2] 7/ BLi1][i2-1]; 0.825
1 Sp1 = 4.95+3%0.825=7.425

weight  probability

}

Assume the code is executed:
*  Onamachine with 64MiB LLC size (cs = 64 * 1024 * 1024)
*  With data type double (8 bytes)
*  With _PB_N =4000 (known at runtime)
Thus:
e Working set sizeisws=3 * 8 * 4000 * 4000

arrays doubles array dimension
e miss probability p,,.. = (ws—cs)/ws =0.825

i hit prObability phlt = 1 - pmiss = 0-175 © © © © Nanonal Technical University of Athens
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Example
Polybench adi benchmark, line 72

for (t = 0; t < _PB_TSTEPS; t++) { Work on second statement:
#pragma omp parallel for In an similar way we get:
for (i1l = 0; 11 < PB N; i1l++
(11 =0; 41 < _PBN: 11++) S, = 19.52
for (12 = 1; 12 < PB N; 12++) {
S, = 2.47

X[i11[i2] = X[i1]1[i2] - X[i1][i2-1]
* A[i1][i2] 7 B[i1][i2-1];

BFi11ri21 = Brit1ri21 — AFi111i2 Note that in this case references in the rhs are
[11]1[12] L :_I [ :_I ! :_I L :_I _ all hits due to reuse from previous statement
* A[il][i2] 7/ BL[il][i2-1];

1 Overall for the loop:
S, = (S, % S,,) /(S5,;+S,,) =3.19

Assume the code is executed:

*  Onamachine with 64MiB LLC size (cs = 64 * 1024 * 1024)

*  With data type double (8 bytes)

*  With _PB_N =4000 (known at runtime)
Thus:

e Working set sizeisws=3 * 8 * 4000 * 4000

arrays  doubles array dimension
e miss probability p,,.. = (ws—cs)/ws =0.825

i hit prObability phlt = 1 - pmiss = 0-175 © © © © Nanonal Technical University of Athens
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Experimental evaluation

Setup: architectures

Package 0

Package |

MCH

ém[—mmlmmlm @m[ﬁnnmuﬁ;g;
24-core Dunnington 8-core Sandy Bridge
4 packages, 6 cores per package 1 package, 8 cores per package
16MB LLC per package, 64Mb aggregate 8MB LLC
Linux kernel 3.7.10 Linux kernel 3.7.10
gcc version 4.6.3 gcc version 4.6.3
programs compiled with —03 programs compiled with —03
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Experimental evaluation

Setup: benchmarks and data sets

* Loops collected from the Polybench suite:
http://www.cse.ohio-state.edu/~pouchet/software/polybench/

e Initially 60 loops:
— Discarded 9 with trivial workloads (e.g. initialization loops)
— 5 loops violated the restrictions of our model
— 6 loops could not be parallelized

— Finally worked on 40 loops
e 11 as training set
e 29 as testing set

* Two data sets per architecture (small / large)

— Small: almost equal to the size of the (aggregate) LLC
— Large: 2-5 times larger than the LCC (depending on the arch and benchmark)
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Experimental evaluation
Correlation of S, with Speedup
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Experimental evaluation
Correlation of S, with Speedup

Dunnington

95.7% correlation

S

Sandy Bridge

84.1% correlation
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Experimental evaluation
Correlation of S, with Speedup

Sr Sr
Dunnington Sandy Bridge
95.7% correlation 84.1% correlation
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Experimental evaluation

Prediction accuracy

We use as prediction error the metric:

predicted speedup —max speedup|
number of cores

expressed in %

We argue that a prediction error <25% is acceptable for a scalability predictor
as it would successfully classify a loop as bad, fair or good performing

© © © © Manonal Technical University of Athens
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Experimental evaluation

Prediction accuracy: large data set / Dunnington
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Experimental evaluation

Prediction accuracy: large data set / Dunnington

Core Speedun Maximum Spesdup W Spesdup Prediction
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Experimental evaluation

Prediction accuracy: large data set / Dunnington
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Experimental evaluation

Prediction accuracy: small data set / Dunnington
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Experimental evaluation

Prediction accuracy: small data set / Dunnington

B Full Core Speedup Maximum Speedup W Spesdup Prediction
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average prediction error: 12.8%
maximum prediction error: 48.7%
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Experimental evaluation

Prediction accuracy: small data set / Dunnington

ull Core Spesdup Maximum Speedup W Spesdup Prediction
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average prediction error: 12.8%
maximum prediction error: 48.7%
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Experimental evaluation

Prediction accuracy: large data set / Sandy Bridge

B Full Core Speed Maximum Spesdu W Spesdup Predic
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Experimental evaluation

Prediction accuracy: large data set / Sandy Bridge

Maximum Spesdup W Spesdup Predic
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average prediction error: 15.28%
maximum prediction error: 46.66%
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Experimental evaluation

Prediction accuracy: large data set / Sandy Bridge

Maximum Spesdup W Spesdup Predic
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Experimental evaluation

Prediction accuracy: large data set / Sandy Bridge

N Full Core Speedup Maximum Spesdup W Spesdup Predic

prediction error < 25%
25 loops
l I I I] I I I | I | I I prediction error > 25%
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average prediction error: 15.28% speedup prediction is much closer to

maximum prediction error: 46.66% full core speedup™ in this case
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Experimental evaluation

Prediction accuracy: small data set / Sandy Bridge

Core Speedup Maximum Spesdup W Spesdup Predic
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Experimental evaluation

Prediction accuracy: small data set / Sandy Bridge

Core Speedup Maximum Spesdup W Spesdup Predic
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average prediction error: 18.48%
maximum prediction error: 61.5%
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Experimental evaluation

Prediction accuracy: small data set / Sandy Bridge

Core Speedup Maximum Spesdup W Spesdup Predic
prediction error < 25%
22 loops
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average prediction error: 18.48%
maximum prediction error: 61.5%
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Experimental evaluation

Overall remarks

e S, shows a good correlation with scalability

e Scalability predictor exhibits acceptable accuracy

— In 116 experiments (39 loops * 2 archs * 2 data sets) 101 predictions had an
error <25%

e OQur predictor worked better in memory constrained situations (e.g.
Dunnington machine and large data set)
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Current status, limitations and future work

e Currently, approach is applied by hand
— Encouraging results urge us to implement a tool
e Limitations in algorithmic model:

— Do not handle branches and function calls in loop body. Certainly requires
more attention

— Synchronization: approach can be extended to deal with scalability limitations
due to synchronization (maybe in an orthogonal way)

e Future work:
— Enrich hardware model to capture more architectures (e.g. NUMA)
— Improve prediction accuracy (elaborate more on subtle issues)
— Predict “best” number of cores
— Automate parameter selection (e.g. weights) with microbenchmarks
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Conclusions

e We took a first step towards predicting an efficient core assignment of
multi-threaded applications

e We embraced a simple approach to verify the potential of our method

 We applied a synergistic prediction approach involving compile and
runtime submodules

 We base our prediction on the quantification of on-chip and off-chip
traffic

* Experimental results on ~30 loops are encouraging regarding the ability of
our model to predict bad, fair or good scalability
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Questions?
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Backup slides
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Algorithmic model
What we do not handle

for (ip = Ly; 0y < Uy; 1pt=cy) do

CS;

for (i, = L;; 1; < U;; 1;+=c,) do
CS,
for (i, = L,; 1, < U,; 1,+=c,) do

CS,
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Algorithmic model
What we do not handle

for (ip = Ly; 0y < Uy; 1pt=cy) do
CS;
for (1,

CS,

L,; 1, < U;; 1,;+=c,) do

for (1, = L,; 1, < U,; 1,+=c,) do

CS

n

5/9/2013

Loop bodies do not include
conditional or unconditional
jumps, function calls, return
statements, etc.
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Algorithmic model
What we do not handle

for

(i, = Ly; 1y < Uyp; 1yt=Ccy) do

CS;
for (i, = L;; 1; < U;; 1;+=c,) do

CS,
for (1, = L,; 1, < U,; 1,+=c,) do
CS

n

Much more difficult to handle
Occurs in several cases
Left for future work

5/9/2013

Loop bodies do not include
conditional or unconditional
jumps, function calls, return
statements, etc.
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Algorithmic model
What we do not handle

for (i, = Lo; By < Up; 1gt=Cy) do e Loop bodies do not include
CS; conditional or unconditional
for (i, = L;; 1; < Uy; i;+=cy) do jumps, function calls, return
CS, statements, etc.
for (i, = L,; i, < U,; i,+=c,) do  Loop bodies are free of
CS,, synchronization primitives (e.g.

critical sections)
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Algorithmic model
What we do not handle

for (ip = Ly; 0y < Uy; 1pt=cy) do

CS;

for (i, = L;; 1; < U;; 1;+=c,) do
CS,
for (i, = L,; 1, < U,; 1,+=c,) do

CS

n

e Current focus is on scalability restrictions
due to memory bandwidth limitations

* Future work can augment predictor to
handle scalability issues due to
synchronization overhead (most probably
in an orthogonal way)

5/9/2013

Loop bodies do not include
conditional or unconditional
jumps, function calls, return
statements, etc.

Loop bodies are free of
synchronization primitives (e.g.
critical sections)
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Algorithmic model
What we do not handle

for (i1, = Lo; B < Up; 1gt=Cy) do e Loop bodies do not include
CS; conditional or unconditional
for (i, = Ly; 1; < Uy; iy+=cy) do jumps, function calls, return
CS, statements, etc.
for (i, = L,; i, < U,; i,+=c,) do  Loop bodies are free of
CS, synchronization primitives (e.g.

critical sections)

e Asingle loop in the nest is
parallelized

— No recursive parallelism
 More difficult to handle

e Occurs infrequently in reqular, parallel-for
loop nests
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Algorithmic model
What we do not handle

for (1p = Ly; 0y < Uy; 1pt=cy) do

CS;

for (i, = L;; 1; < Uy; 1;+=c,) do
CS,
for (i, = L,; 1, < U,; 1,+=c,) do

CS,

e Actually a dummy restriction (posed to
facilitate analysis)

 Can easily be handled by straightforward
extension of the model

5/9/2013

Loop bodies do not include
conditional or unconditional
jumps, function calls, return
statements, etc.

Loop bodies are free of
synchronization primitives (e.g.
critical sections)
A single loop in the nest is
parallelized

— No recursive parallelism

— Does not support multiple
parallel loops at the same
level
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Algorithmic model
What we do not handle

for (ip = Ly; 0y < Uy; 1pt=cy) do

CS;

for (i, = L;; 1; < U;; 1;+=c,) do
CS,
for (i, = L,; 1, < U,; 1,+=c,) do

CS

n

e Sounds like a severe restriction, but is it?

e Typically memory-bandwidth bound
applications do access reqular data
structures

5/9/2013

Loop bodies do not include
conditional or unconditional
jumps, function calls, return
statements, etc.

Loop bodies are free of
synchronization primitives (e.g.
critical sections)

A single loop in the nest is
parallelized

— No recursive parallelism

— Does not support multiple
parallel loops at the same
level

Loop bodies involve operations
on regular data structures (e.g.
arrays)
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