Optimizing Sparse Matrix Vector Multiplication
on Emerging Multicores

Orhan Kislal, Wei Ding, Mahmut Kandemir I[1teris Demirkiran

The Pennsylvania State University University =~ Embry-Riddle Aeronautical University

e, e v U San Diego, California, USA
omk103, wzd109, kandemir@cse.psu.edu demirdad @erau.edu

Saturday, September 7, 13

mailto:kandemir@cse.psu.edu
mailto:kandemir@cse.psu.edu
mailto:demir4a4@erau.edu
mailto:demir4a4@erau.edu

INTRODUCTION

o Importance of Sparse Matrix-Vector
Multiplication (SpMV)

o Dominant component for solving eigenvalue
problems and large-scale linear systems

o Difference from uniform/regular dense matrix
computations

o Irregular data access patterns

o Compact data structure

2

Saturday, September 7, 13

BACKGROUND

SpMV is usually in the form of b=Ax+b, where
A is a sparse matrix, and x and b are dense

vectors x: source vector
b: destination vector

» Only x and b can be reused.

One of the most common data structures for A:
Compressed Sparse Row (CSR) format

urday, September 7, 13

BACKGROUND CON'T

// Basic SpMV implementation,
/ b=A%*x + b, where A is in CSR and has m rows

H ' COl/T\ LLLLLT - for 1 =0;1<m;++i) {
double b = b[i];
PRENG ~ for (k = ptr[i]; k < ptr[i+1]; ++k)
] A b+= val[k] * x[col[K]];
b[i] = b;
[ptr [11 }

Each row of A is packed one after the other in a dense array val
integer array (col) stores the column indices of each stored element.

ptr: keeps track of where each row starts in val and col.

Saturday, September 7, 13

NMOTIVATION

165:0

oycYeycyoye
ajeselesleales
s T] T N

3

(@)

)
H{2)

e |
g
i

Computation mapping and scheduling

Mapping assigns the computation
that involves one or more rows of A

to a core (computation block)

Scheduling determines the execution

order of those computations

How to take the on-chip cache
hierarchy into account to improve
the data locality?

5

NMOTIVATION CON'T

» If two computations share data -> better to
map them to the cores that share a cache in
some layer (more frequent sharing -> higher
layer) Mapping!

» For these two computations, better to let the
shared data accessed by two cores in close
proximity in time. Scheduling!

Saturday, September 7, 13

NMOTIVATION CON'T

o Data Reordering
» The source vector x is read-only

o Ideally, x can have a customized layout for
each row computation rx, i.e., data elements in x
that correspond to the nonzero elements in r are
vlaced contiguously in memory (reduce cache
footprint)

e However, can we have a smarter scheme?

5

Saturday, September 7, 13

FRAMEWORK

Original SpMV Cache hierarchy

code description
Mapping Scheduling Data

Reorderin

Optimized SpMV
code

Mapping (cache hierarchy-aware)
Scheduling (cache hierarchy-aware)

Data Reordering (seek a way to determine the
minimal number of layouts for x that keep
cache footprint during computation as small as

possible)

8

Saturday, September 7, 13

NMAPPING

» Only consider the data sharing among the
cores

o Basic idea: for two computation blocks, higher
data sharing means mapping them to higher
level of cache.

o We quantify the data sharing for two
computation blocks as the sum of the number
of nonzero elements at the same column (for
those computation blgcks).

Saturday, September 7, 13

MAPPING CON'T

vii

Constructing the reuse graph 1 1

<:> V6 v10
Vertex: computation block z

Weight on an edge: the amount of data
sharing

10

@

@

ST
k
@

MAPPING-ALGORITHM

SORT: Edges are sorted by their weights in a
decreasing order

PARTITION: Vertices are visited based on the
order of edges. We then hierarchically partition
the reuse graph. The number of partitions is
equal to the number of cache levels.

LOQOP: Repeat Step 2 until the partition for the
LLC is reached. The assignment of each

partition to a set of cores is based on the cache
hierarchy.

11

Saturday,

September 7, 13

MAPPING-EXAMPLE

Saturday, September 7, 13

SCHEDULING

» Specify an order in which each row block is to
be executed

o Goal: ensure the data sharing among the
computation blocks can be caught in the
expected cache level.

13

SCHEDULING CON'T

o SORT (same as the mapping component)

o INITIAL: assign the logical time slot for the two
nodes (vl and vr) that have the edge in between
with the highest weight, and set up the offset o(v)

for each vertex v. (o(vl) =

1, o(vr) =-1)

» Purpose of employing offset: ensure the nodes
mapped to the same core with high data sharing
are scheduled to be executed as closely as

possible.

14

Saturday, September 7, 13

SCHEDULING CON'T

e SCHEDULE

o CASE 1: vx and vy are mapped to different cores.
Then assign vx and vy to be executed at the same
time slot or | T(vx) - T(vy)| is minimized

o CASE 2: vx and vy are mapped to the same core.
If vx is already assigned, then vy will be assigned
at T(vx) + o(vx) and o(vy) = o(vx). Otherwise,
initialize vx and vy at Step 2

o LOOP: repeat Step 3 until all vertices are scheduled.

15

Saturday, September 7, 13

SCHEDULING-eEXAMPLE

20 t0-2 t0-1 t0 tO+1

—O + >~
4 V2 (-\/ time slot
v2 vi v3
19 -\
\ _ /
v3 (—> <:>
v3 Vv2 Vi
(a) (b)

(a) is a portion of the reuse graph and (b) is the
illustration of two schedules for v3. The first one
places v3 next to vl and the second one places v3
next to v2. Using the offset, our scheme successfully
generates the first schedule instead of the second one.

Saturday, September 7, 13

DATA REORDERING

Original layout: I x1 X2 x3 I l I I x10 x11 x12 ‘
|< memory blocks store x4-x9 g I
Layout 1: I x1 x2 x12 I I I I
memory blocks store x3-X
= >]
Layout 2: | x3 x11 x12 I I I I I
|<rnemory blocks store x1, x2 and x4-x9 >| . .

Find a customized data layout for x used in
each set of rows or row blocks such that the
cache footprint generated by the computation
of these rows can be minimized.

5%

Saturday, September 7, 13

DATA REORDERING CON'T

Layout 1: ‘ X1 x2 x3 i‘ i ‘ i p%b (ni-p)%b b-(ni-p)%b-pYb
ooz [FEsl_J » 3 [-WJ -
Combined X1 x2 x3 x4 x5 x6 “ee

layout: ‘—‘ ;‘ ‘a

(b)

Case 1: 1 and 72 have no common nonzero
elements, then x can have the same data layout for
r1x and r2x (see (a))

Case 2: otherwise, assuming they have p common
nonzero elements, the memory block size is b, and
the number of nonzero elements in r1 and r2 are ni
and nj, respectively. (see (b))

18

Saturday, September 7, 13

EXPERIMENT SETUP

Intel Dunnington

AMD Opteron

Number of Cores

12 cores (2 sockets)

Number of Cores

48 cores (4 sockets)

Clock Frequency

2.40GHz

Clock Frequency

2.20GHz

L1 32KB, 8-way, 64-byte line size, 3 cycle latency L1 64KB, full, 64-byte line size

L2 3MB, 12-way, 64-byte line size, 12 cycle latency L2 512KB, 4-way, 64-byte line size

L3 12MB, 16-way, 64-byte line size, 40 cycle latency L3 12MB, 16-way, 64-byte line size
Off-Chip Latency about 85 ns TLB Size 1024 4K pages

Address Sizes

40 bits physical, 48 bits virtual

Address Sizes

48 bits physical, 48 bits virtual

Benchmarks

Name Structure Dimension | Non-zeros
caidaRouterLevel symmetric 192244 1218132
netd-1 symmetric 88343 2441727
shallow_water2 square 81920 327680
ohne2 square 181343 6869939

Ipll square 32460 328036
rmn10 unsymmetric 46835 2329092

kim1 unsymmetric 38415 933195
besstk17 symmetric 10974 428650

tsc_opi_300 symmetric 9774 820783
ins2 symmetric 309412 2751484

Saturday, September 7, 13

EXPERIMENT SETUP
CON'T

Ditferent versions in our experiments
Default
Mapping
Mapping+Scheduling
Mapping+Scheduling+Layout

20

EXPERIMENTAL RESULTS
CON'T

Performance improvement on Dunnington

® Mapping ™ Mapping+Scheduling Mapping+Scheduling+Layout

z hlﬂlhhm_l

Q
(\'\,

7
NGNS W
o wun O

[EY
o

Performance Improvement (%)
[N
Ul

A
&

%

x& C Q
) &/ 0 0/0
)

Mapping over Default: 8.1%
Mapping+Scheduling over Mapping: 1.8%
Mapping+Scheduling+Layout over
Mapping+Scheduling: 1./%

Saturday, September 7, 13

EXPERIMENTAL RESULTS
CON'T

Perf_ormance improvement on AMD

B Mapping ™ Mapping+Scheduling Mapping+Scheduling+Layout

Ohuﬁ i I

Mappmg over Default: 9. 1%

Mapping+Scheduling over Default: 11%

Mapping+Scheduling+Layout over
Default: 14% 2

Improvement (%)
N N w
o U o

Performance
= =
o Ul

(9

THANK YOU!

