
Optimizing Sparse Matrix Vector Multiplication
on Emerging Multicores

Orhan Kislal, Wei Ding, Mahmut Kandemir

The Pennsylvania State University University
Park, Pennsylvania, USA

omk103, wzd109, kandemir@cse.psu.edu

Ilteris Demirkiran

Embry-Riddle Aeronautical University

San Diego, California, USA
demir4a4@erau.edu

1
Saturday, September 7, 13

mailto:kandemir@cse.psu.edu
mailto:kandemir@cse.psu.edu
mailto:demir4a4@erau.edu
mailto:demir4a4@erau.edu

Introduction

Importance of Sparse Matrix-Vector
Multiplication (SpMV)

Dominant component for solving eigenvalue
problems and large-scale linear systems

Difference from uniform/regular dense matrix
computations

Irregular data access patterns

Compact data structure
2

Saturday, September 7, 13

Background

SpMV is usually in the form of b=Ax+b, where
A is a sparse matrix, and x and b are dense
vectors

Only x and b can be reused.

One of the most common data structures for A:
Compressed Sparse Row (CSR) format

x: source vector
b: destination vector

3
Saturday, September 7, 13

BackGround con’t

CSR format

Each row of A is packed one after the other in a dense array val

integer array (col) stores the column indices of each stored element.

ptr: keeps track of where each row starts in val and col.

...

...

val

col

ptr

(a) (b)

// Basic SpMV implementation,
// b = A*x + b, where A is in CSR and has m rows

for (i = 0; i < m; ++i) {
 double b = b[i];
 for (k = ptr[i]; k < ptr[i+1]; ++k)

 b+= val[k] * x[col[k]];

 b[i] = b;

}

4
Saturday, September 7, 13

Motivation

Computation mapping and scheduling

Mapping assigns the computation
that involves one or more rows of A
to a core (computation block)

Scheduling determines the execution
order of those computations

How to take the on-chip cache
hierarchy into account to improve
the data locality?

L2

L1 L1

C1C0

L1 L1

C3C2

L1 L1

C5C4

 (a)

L2

L3

L2

L1 L1

C1C0

L1 L1

C3C2

L1 L1

C5C4

 (b)

L2

L3

L2

5
Saturday, September 7, 13

Motivation con’t

If two computations share data -> better to
map them to the cores that share a cache in
some layer (more frequent sharing -> higher
layer) Mapping!

For these two computations, better to let the
shared data accessed by two cores in close
proximity in time. Scheduling!

6
Saturday, September 7, 13

Motivation con’t

Data Reordering

The source vector x is read-only

Ideally, x can have a customized layout for
each row computation rx, i.e., data elements in x
that correspond to the nonzero elements in r are
placed contiguously in memory (reduce cache
footprint)

However, can we have a smarter scheme?
7

Saturday, September 7, 13

Framework

Mapping (cache hierarchy-aware)

Scheduling (cache hierarchy-aware)

Data Reordering (seek a way to determine the
minimal number of layouts for x that keep
cache footprint during computation as small as
possible)

 Original SpMV
code

Mapping Scheduling Data
Reordering

Cache hierarchy
description

 Optimized SpMV
code

8
Saturday, September 7, 13

Mapping

Only consider the data sharing among the
cores

Basic idea: for two computation blocks, higher
data sharing means mapping them to higher
level of cache.

We quantify the data sharing for two
computation blocks as the sum of the number
of nonzero elements at the same column (for
those computation blocks). 9

Saturday, September 7, 13

Mapping con’t

Constructing the reuse graph

Vertex: computation block

Weight on an edge: the amount of data
sharing

v1

v2

v3

v4

v5

v6

v7
v8

v9
v10

v11

v12

1

1

1
2

1

1 1

1

1

10
Saturday, September 7, 13

Mapping-Algorithm
SORT: Edges are sorted by their weights in a
decreasing order

PARTITION: Vertices are visited based on the
order of edges. We then hierarchically partition
the reuse graph. The number of partitions is
equal to the number of cache levels.

LOOP: Repeat Step 2 until the partition for the
LLC is reached. The assignment of each
partition to a set of cores is based on the cache
hierarchy.

11
Saturday, September 7, 13

Mapping-example

10

L2

L1 L1

10

L1 L1

32

L3

L2

L2

L1 L1

10

L1 L1

32

L3

L2

10

11
12

1
1

5

10

2

10

10

11
12

1
1

5

10

2

(a)

(b)
12

Saturday, September 7, 13

Scheduling

Specify an order in which each row block is to
be executed

Goal: ensure the data sharing among the
computation blocks can be caught in the
expected cache level.

13
Saturday, September 7, 13

Scheduling con’t

SORT (same as the mapping component)

INITIAL: assign the logical time slot for the two
nodes (vl and vr) that have the edge in between
with the highest weight, and set up the offset o(v)
for each vertex v. (o(vl) = +1, o(vr) = -1)

Purpose of employing offset: ensure the nodes
mapped to the same core with high data sharing
are scheduled to be executed as closely as
possible.

14
Saturday, September 7, 13

Scheduling CON’T

SCHEDULE

CASE 1: vx and vy are mapped to different cores.
Then assign vx and vy to be executed at the same
time slot or |T(vx) - T(vy)| is minimized

CASE 2: vx and vy are mapped to the same core.
If vx is already assigned, then vy will be assigned
at T(vx) + o(vx) and o(vy) = o(vx). Otherwise,
initialize vx and vy at Step 2

LOOP: repeat Step 3 until all vertices are scheduled.
15

Saturday, September 7, 13

Scheduling-example

v1v2 v3

v1v2v3

v1 v2

v3

20

19

t0t0-1 t0+1t0-2

time slot

(a) (b)

(a) is a portion of the reuse graph and (b) is the
illustration of two schedules for v3. The first one
places v3 next to v1 and the second one places v3
next to v2. Using the offset, our scheme successfully
generates the first schedule instead of the second one.

16
Saturday, September 7, 13

dATA rEORDERING

Find a customized data layout for x used in
each set of rows or row blocks such that the
cache footprint generated by the computation
of these rows can be minimized.

x1 x2 x12

x3 x11 x12

Layout 1:

Layout 2:

x1 x2 x3 x10 x11 x12Original layout: ...

...

...

memory blocks store x4-x9

memory blocks store x3-x11

memory blocks store x1, x2 and x4-x9

17
Saturday, September 7, 13

data reordering con’t

Case 1: r1 and r2 have no common nonzero
elements, then x can have the same data layout for
r1x and r2x (see (a))

Case 2: otherwise, assuming they have p common
nonzero elements, the memory block size is b, and
the number of nonzero elements in r1 and r2 are ni
and nj, respectively. (see (b))

x1 x2 x3

x4 x5 x6

Layout 1:

Layout 2:

x1 x2 x3Combined
layout: x4 x5 x6 ...

...

...

(a)

... ...

(b)

...

b

p%b (ni-p)%b b-(ni-p)%b-p%b

18
Saturday, September 7, 13

experiment Setup

Algorithm 3 Data reordering
INPUT: Sparse matrix A, the source matrix ~x, and the last
level cache block size b
OUTPUT: The k different layout for ~x.

1: /* A = (~r1,~r2, · · · ,~rn)T */
2: k = 0;
3: for each row ~ri of A do
4: if ri.layout == NULL then
5: layoutk newLayout(~x);
6: ri.layout = k;
7: end if
8: for each row ~r j of A do
9: /* overlap(~ri,~r j) is a function to test if~ri and~r j have

the same non-zero column.*/
10: if overlap(~ri,~r j) == NULL then
11: if the data elements in ~x can be placed in the way

shown in Figure 9(a) without conflicting with the
constraints in Ck then

12: r j.layout = k;
13: add constraint to Ck
14: end if
15: else if overlap(~ri,~r j) 6= NULL^ (ni� p)%b+ p%b <

b^ f (~ri)� dn j%be then
16: if the data elements in ~x can be placed in the way

shown in Figure 9(b) without conflicting with the
constraints in Ck then

17: r j.layout = k;
18: add constraint to Ck
19: end if
20: end if
21: end for
22: k++;
23: end for

TABLE I. IMPORTANT CHARACTERISTICS OF THE INTEL
DUNNINGTON ARCHITECTURE.

Number of Cores 12 cores (2 sockets)
Clock Frequency 2.40GHz

L1 32KB, 8-way, 64-byte line size, 3 cycle latency
L2 3MB, 12-way, 64-byte line size, 12 cycle latency
L3 12MB, 16-way, 64-byte line size, 40 cycle latency

Off-Chip Latency about 85 ns
Address Sizes 40 bits physical, 48 bits virtual

E7450 employs six 32 KB, 8 way private L1 caches. There
are three 3 MB, 12 way L2 caches that are shared pairwise
among cores and also a 12 MB, 16 way L3 cache to be shared
by all six cores. The 1066 MTS front side bus is a quad
pumped bus with a theoretical 8.5 GB/s data transfer rate.
The MTS technology enables source synchronous transfer of
address and data, therefore the data is transferred four times
faster and addresses are transferred two times faster. E7450
also supports an architecture called Multiple Independent Bus
with one processor on each bus. We use 16 GB of DDR2-1066
RAM.

2) AMD Opteron: The AMD Opteron 6100 series was the
first twelve core machine to enter the market (the relevant
details of this architecture are presented in Table II). We use
four Opteron 6174 processing units on a single blade. Every
socket contains twelve cores. Each core works at 2.2 GHz and

TABLE II. IMPORTANT CHARACTERISTICS OF THE AMD OPTERON
ARCHITECTURE.

Number of Cores 48 cores (4 sockets)
Clock Frequency 2.20GHz

L1 64KB, full, 64-byte line size
L2 512KB, 4-way, 64-byte line size
L3 12MB, 16-way, 64-byte line size

TLB Size 1024 4K pages
Address Sizes 48 bits physical, 48 bits virtual

uses a 64-bit instruction set. The TLB size is 1024 4K pages.
SSE 4a is supported but SSSE3 support is missing.

On a single socket of Opteron 6174, we have twelve 64
KB private L1 caches and twelve 512 KB private L2 caches.
In addition every socket employs a single 12 MB L3 cache to
share among all cores. Opteron 6100 series processors include
HyperTransport technology links, providing system bandwidth
among CPUs to improve the system balance and scalability.
Four x16 links are used in this system to provide 6.4 GT/s per
link. The input/output bus frequency is 1.8 GHz and the max
I/O bandwidth it provides is 102.4 GB/s. This model comes
with an integrated DDR3 memory controller with DDR3-133
support with up to 42.7 GB/s memory bandwidth per CPU.
Our RAM size is 128 GB.

B. Matrices and Code Versions

An overview of the important characteristics of our sparse
matrices is given in Table III. These sparse matrices are ex-
tracted from the University of Florida Sparse Matrix Collection
[1], and represent a wide variety of application domains. They
also exhibit diversity regarding type of the matrix, overall
matrix dimension, and the number of non-zeros.

For each matrix in Table III, we conducted experiments
with four different versions. All these versions include well-
known data locality optimizations such as loop permutation
and iteration space tiling as well as SIMD optimization strate-
gies (whenever possible innermost loops with no dependences
are rewritten to use SIMD extensions). They differ only in
how loop iterations are assigned (mapped) to cores, how loop
iterations are scheduled, or how data is laid out in memory.
Our versions are as follows:

• Default: In this version, the iterations are distributed
across cores in a blocked fashion (i.e., each core gets
a set of successive iterations) and the set of iterations
assigned to a core are scheduled in their original order
(lexicographic order).

• Mapping: This version employs the mapping strategy
discussed in Section IV, but after the mapping is per-
formed, the iterations assigned to a core are scheduled
in their default relative order.

• Mapping+Scheduling: This version first uses the map-
ping strategy described in Section IV and then applies
the scheduling strategy discussed in Section V.

• Mapping+Scheduling+Layout: This version is the
same as mapping+Scheduling except that it follows
that with the data layout optimization presented in
Section VI.

Algorithm 3 Data reordering
INPUT: Sparse matrix A, the source matrix ~x, and the last
level cache block size b
OUTPUT: The k different layout for ~x.

1: /* A = (~r1,~r2, · · · ,~rn)T */
2: k = 0;
3: for each row ~ri of A do
4: if ri.layout == NULL then
5: layoutk newLayout(~x);
6: ri.layout = k;
7: end if
8: for each row ~r j of A do
9: /* overlap(~ri,~r j) is a function to test if~ri and~r j have

the same non-zero column.*/
10: if overlap(~ri,~r j) == NULL then
11: if the data elements in ~x can be placed in the way

shown in Figure 9(a) without conflicting with the
constraints in Ck then

12: r j.layout = k;
13: add constraint to Ck
14: end if
15: else if overlap(~ri,~r j) 6= NULL^ (ni� p)%b+ p%b <

b^ f (~ri)� dn j%be then
16: if the data elements in ~x can be placed in the way

shown in Figure 9(b) without conflicting with the
constraints in Ck then

17: r j.layout = k;
18: add constraint to Ck
19: end if
20: end if
21: end for
22: k++;
23: end for

TABLE I. IMPORTANT CHARACTERISTICS OF THE INTEL
DUNNINGTON ARCHITECTURE.

Number of Cores 12 cores (2 sockets)
Clock Frequency 2.40GHz

L1 32KB, 8-way, 64-byte line size, 3 cycle latency
L2 3MB, 12-way, 64-byte line size, 12 cycle latency
L3 12MB, 16-way, 64-byte line size, 40 cycle latency

Off-Chip Latency about 85 ns
Address Sizes 40 bits physical, 48 bits virtual

E7450 employs six 32 KB, 8 way private L1 caches. There
are three 3 MB, 12 way L2 caches that are shared pairwise
among cores and also a 12 MB, 16 way L3 cache to be shared
by all six cores. The 1066 MTS front side bus is a quad
pumped bus with a theoretical 8.5 GB/s data transfer rate.
The MTS technology enables source synchronous transfer of
address and data, therefore the data is transferred four times
faster and addresses are transferred two times faster. E7450
also supports an architecture called Multiple Independent Bus
with one processor on each bus. We use 16 GB of DDR2-1066
RAM.

2) AMD Opteron: The AMD Opteron 6100 series was the
first twelve core machine to enter the market (the relevant
details of this architecture are presented in Table II). We use
four Opteron 6174 processing units on a single blade. Every
socket contains twelve cores. Each core works at 2.2 GHz and

TABLE II. IMPORTANT CHARACTERISTICS OF THE AMD OPTERON
ARCHITECTURE.

Number of Cores 48 cores (4 sockets)
Clock Frequency 2.20GHz

L1 64KB, full, 64-byte line size
L2 512KB, 4-way, 64-byte line size
L3 12MB, 16-way, 64-byte line size

TLB Size 1024 4K pages
Address Sizes 48 bits physical, 48 bits virtual

uses a 64-bit instruction set. The TLB size is 1024 4K pages.
SSE 4a is supported but SSSE3 support is missing.

On a single socket of Opteron 6174, we have twelve 64
KB private L1 caches and twelve 512 KB private L2 caches.
In addition every socket employs a single 12 MB L3 cache to
share among all cores. Opteron 6100 series processors include
HyperTransport technology links, providing system bandwidth
among CPUs to improve the system balance and scalability.
Four x16 links are used in this system to provide 6.4 GT/s per
link. The input/output bus frequency is 1.8 GHz and the max
I/O bandwidth it provides is 102.4 GB/s. This model comes
with an integrated DDR3 memory controller with DDR3-133
support with up to 42.7 GB/s memory bandwidth per CPU.
Our RAM size is 128 GB.

B. Matrices and Code Versions

An overview of the important characteristics of our sparse
matrices is given in Table III. These sparse matrices are ex-
tracted from the University of Florida Sparse Matrix Collection
[1], and represent a wide variety of application domains. They
also exhibit diversity regarding type of the matrix, overall
matrix dimension, and the number of non-zeros.

For each matrix in Table III, we conducted experiments
with four different versions. All these versions include well-
known data locality optimizations such as loop permutation
and iteration space tiling as well as SIMD optimization strate-
gies (whenever possible innermost loops with no dependences
are rewritten to use SIMD extensions). They differ only in
how loop iterations are assigned (mapped) to cores, how loop
iterations are scheduled, or how data is laid out in memory.
Our versions are as follows:

• Default: In this version, the iterations are distributed
across cores in a blocked fashion (i.e., each core gets
a set of successive iterations) and the set of iterations
assigned to a core are scheduled in their original order
(lexicographic order).

• Mapping: This version employs the mapping strategy
discussed in Section IV, but after the mapping is per-
formed, the iterations assigned to a core are scheduled
in their default relative order.

• Mapping+Scheduling: This version first uses the map-
ping strategy described in Section IV and then applies
the scheduling strategy discussed in Section V.

• Mapping+Scheduling+Layout: This version is the
same as mapping+Scheduling except that it follows
that with the data layout optimization presented in
Section VI.

Intel Dunnington AMD Opteron

TABLE III. TESTED MATRICES.

Name Structure Dimension Non-zeros
caidaRouterLevel symmetric 192244 1218132

net4-1 symmetric 88343 2441727
shallow water2 square 81920 327680

ohne2 square 181343 6869939
lpl1 square 32460 328036

rmn10 unsymmetric 46835 2329092
kim1 unsymmetric 38415 933195

bcsstk17 symmetric 10974 428650
tsc opf 300 symmetric 9774 820783

ins2 symmetric 309412 2751484

Note that the way these versions are created is to allow us
measure the additional impact of scheduling (over mapping)
and data layout optimization (over scheduling and mapping).
Also, unless stated otherwise, our default computation block
size is 50 iterations.

C. Results and Discussion

Figure 10 presents the performance results (GFlops/s) on
our Intel Dunnington system. All results are normalized with
respect to that of the Default version (they show percent-
age improvements over Default), which ranged between 0.65
Gflops/s and 1.81 Gflops/s for Intel and between 1.24 Gflops/s
and 2.96 Gflops/s for AMD machine (one thread per core; 12
threads on Intel execution and 48 threads on AMD execution).
The important observations one can make from this graph can
be summarized as follows. First, we see that the optimized
mapping helps with all cases except two small cases (bcsstk17
and tsc opf 300), indicating the importance of being careful
in iteration-to-core mapping. When all 10 matrices considered,
optimized mapping achieves an average performance improve-
ment of 8.1%. Second, in half of the cases tested, optimized
scheduling plays an important role and bring an additional
1.8% performance improvement over optimized mapping. In
cases where our proposed scheduling strategy is not effective,
this is due to the fact that the default scheduling in these cases
already generates very good results, and it is hard to optimize
over it. Third, we see that, except for three cases, layout
optimization is generally effective in improving performance,
its additional benefits over the Mapping+Scheduling version
averaging on 1.7%.

We next move to the discussion of our results on our 48-
core AMD based system. We see from Figure 11 that our
savings with this system are similar to those obtained on our
Intel based system. In particular, the average performance im-
provement brought by Mapping, Mapping+Scheduling, Map-
ping+Scheduling+Layout over Default are 9.1%, 11%, and
14%, respectively. Overall, the results presented in Figures 10
and 11 clearly demonstrate the effectiveness of our proposed
optimization schemes, and indicate that all three components
of our approach are important, except in few cases.

The source of these performance improvements are the
improvements in on-chip cache statistics. We do not present the
detailed cache hit/miss numbers, but just mention that the av-
erage improvements in last-level cache misses with Mapping,
Mapping+Scheduling, Mapping+Scheduling+Layout (over the
Default version) are, respectively, 13.6%, 24.8% and 31.6% for
the Intel system, and 16.1%, 23.3% and 19.5% for the AMD
system.

Our last graph plots scalability results from our experi-
ments. We focus on the Dunnington experiments since the
same observations hold for the AMD system as well. One
can observe from the results plotted in Figure 12 that the
effectiveness of our approach increases as we increase the
number of cores (note that each point of a curve on this
graph indicates percentage improvement brought by Map-
ping+Scheduling over Default). This is mainly because using
a larger number of course makes the original data accesses
of Default spread more in the linear memory space, which
in turn renders locality optimization more critical. Detailed
investigation of interactions between our optimizations and
parallelization is in our future research agenda.

Finally, we also made experiments with different compu-
tation block sizes, and found that a block size between 50–
100 iterations performs very well in most cases. Investigating
the optimal computation block size selection is in our future
research agenda as well.

VIII. RELATED WORK

Sparse matrix vector multiplication has been studied by
many researchers as the algorithm stayed popular for various
fields. Vuduc et al. explored the bounds of performance with
their register blocking optimization [27], [28]. Agarwal et
al. proposed a feature extraction based algorithm to exploit
regular structures of sparse matrices to process separately [2].
The work of White et al. demonstrated the effects of data
locality oriented reordering of the target matrix [30]. Pinar et
al. proposed a different reordering strategy in addition to a new
blocked compressed row storage [21]. Compressed formats
proved valuable as Willcock et al. demonstrated significant
improvements using byte-oriented delta coding and row pattern
compression [31]. Eun-Jin Im’s toolkit SPARSITY offered an
automatic optimization system for SpMV [11]. This toolkit
uses profiling to predict the effectiveness of register and cache
blocking for the given system and matrix. Toledo explored
techniques such as reordering, blocking and prefetching for
both memory and system performance improvements on su-
perscalar RISC processors [25].

There are a number of optimizations for distributed mem-
ory architectures. Romero et al. devised a new data distribution
method (Multiple Recursive Decomposition) as well as a
new storage scheme (storage-by-row-of-blocks) to improve the
efficiency [22]. Catalyurek et al. proposed two computational
hypergraph models for minimizing communication while keep-
ing the load among processors balanced [8]. Vastenhouw et al.
tackled this problem with a different approach and developed a
two-dimentional distribution method [26]. Lee et al. offered an
adaptive runtime optimization system for load balancing and
selection of communication algorithms [16]. Wolf et al. studied
this problem for symmetric matrices and presented a two
step solution: corner partitioning algorithm and an ordering
technique based on vertex cover [33]. Numerous researchers
proposed various different optimizations for SpMV on GPU
based architectures such as Bell et al. [5], [3], [6], [20], [19],
[29] but exploring such works in detail is out of the scope of
this paper.

Multicore applications of SpMV attracted attentions of
researchers as well. Goumas et al. conducted a vast number of

Benchmarks

19
Saturday, September 7, 13

Experiment Setup
CON’T

Different versions in our experiments

Default

Mapping

Mapping+Scheduling

Mapping+Scheduling+Layout

20
Saturday, September 7, 13

Experimental Results
Con’t

!"

#"

$!"

$#"

%!"

%#"

&!"

'(
)*
+)
,
-.
/(
"0,

1)
+2
(,

(.
3"4
5
6"

7-118.9" 7-118.9:;/<(=>?8.9" 7-118.9:;/<(=>?8.9:@-A+>3"

Fig. 10. Performance improvements with the Intel Dunnington system.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'(
)*
+)
,
-.
/(
"0,

1)
+2
(,

(.
3"4
5
6"

7-118.9" 7-118.9:;/<(=>?8.9" 7-118.9:;/<(=>?8.9:@-A+>3"

Fig. 11. Performance improvements with the 48-core AMD based system.

!"

#"

$!"

$#"

%!"

%#"

$" &" $%"

'(
)*
+)
,
-.
/(
"0,

1)
+2
(,

(.
3"4
5
6"

78,9()"+*":+)(;"

/-<=->+83()?(2(@"

.(3AB$""

;C-@@+DED-3()%""

+C.(%"

@1@$"

),.$!"

F<,$"

9/;;3F$G""

3;/E+1*EH!!""

<.;%"

Fig. 12. Scalability results from our experiments.

experiments and offered guidelines for optimizing SpMV not
only via cache-reuse but also padding, working set reduction
and reducing indirect memory references [10]. Williams et al.
explored thread, cache, local, TLB and register blocking in
addition to other methods such as padding, index size selection,
SIMDization, loop optimizations and software prefetching
[32]. Storage systems for the sparse matrix attracted many
researchers as the memory bandwidth for multicore systems
became crucial. Schubert et al. explored this problem using a
Hamiltonian matrix from solid state physics [23]. In addition,
they analyzed SpMV performance with two different storage
systems and computational kernels [24]. Compressed sparse
blocks are presented by Buluc et al. to improve the asymptotic
bounds on SpMV execution time [7]. Krotkiewski et. al.
proposed a new storage system for memory optimization,
prefetching for cache performance and reordering technique
for load balancing [15]. Kourtis et al. attacked the memory

bandwidth problem with compression methods augmented for
index and numerical values [14]. Liu et al. compared traditional
scheduling algorithms with their non-zero scheduling variants
(the non-zero elements are balanced among threads) on two
different storage formats [18]. Belgin et al. experimented with
both sequential and parallel implementations of their pattern-
based representation technique on multicore architectures [4].
Kotakemori et al. focused on ccNUMA systems and analyzed
the effects of different storage formats on such architectures
[13]. Yzelman et al. adopted a different approach and studied
cache-oblivious partitioning methods using an idealized cache
model simulation [34].

IX. CONCLUSION

Targeting SpMV applications, this paper investigates the
SpMV optimization problem in the context of emerging

Performance improvement on Dunnington

Mapping over Default: 8.1%
Mapping+Scheduling over Mapping: 1.8%
Mapping+Scheduling+Layout over
Mapping+Scheduling: 1.7%21

Saturday, September 7, 13

Experimental Results
Con’t

!"

#"

$!"

$#"

%!"

%#"

&!"

'(
)*
+)
,
-.
/(
"0,

1)
+2
(,

(.
3"4
5
6"

7-118.9" 7-118.9:;/<(=>?8.9" 7-118.9:;/<(=>?8.9:@-A+>3"

Fig. 10. Performance improvements with the Intel Dunnington system.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'(
)*
+)
,
-.
/(
"0,

1)
+2
(,

(.
3"4
5
6"

7-118.9" 7-118.9:;/<(=>?8.9" 7-118.9:;/<(=>?8.9:@-A+>3"

Fig. 11. Performance improvements with the 48-core AMD based system.

!"

#"

$!"

$#"

%!"

%#"

$" &" $%"

'(
)*
+)
,
-.
/(
"0,

1)
+2
(,

(.
3"4
5
6"

78,9()"+*":+)(;"

/-<=->+83()?(2(@"

.(3AB$""

;C-@@+DED-3()%""

+C.(%"

@1@$"

),.$!"

F<,$"

9/;;3F$G""

3;/E+1*EH!!""

<.;%"

Fig. 12. Scalability results from our experiments.

experiments and offered guidelines for optimizing SpMV not
only via cache-reuse but also padding, working set reduction
and reducing indirect memory references [10]. Williams et al.
explored thread, cache, local, TLB and register blocking in
addition to other methods such as padding, index size selection,
SIMDization, loop optimizations and software prefetching
[32]. Storage systems for the sparse matrix attracted many
researchers as the memory bandwidth for multicore systems
became crucial. Schubert et al. explored this problem using a
Hamiltonian matrix from solid state physics [23]. In addition,
they analyzed SpMV performance with two different storage
systems and computational kernels [24]. Compressed sparse
blocks are presented by Buluc et al. to improve the asymptotic
bounds on SpMV execution time [7]. Krotkiewski et. al.
proposed a new storage system for memory optimization,
prefetching for cache performance and reordering technique
for load balancing [15]. Kourtis et al. attacked the memory

bandwidth problem with compression methods augmented for
index and numerical values [14]. Liu et al. compared traditional
scheduling algorithms with their non-zero scheduling variants
(the non-zero elements are balanced among threads) on two
different storage formats [18]. Belgin et al. experimented with
both sequential and parallel implementations of their pattern-
based representation technique on multicore architectures [4].
Kotakemori et al. focused on ccNUMA systems and analyzed
the effects of different storage formats on such architectures
[13]. Yzelman et al. adopted a different approach and studied
cache-oblivious partitioning methods using an idealized cache
model simulation [34].

IX. CONCLUSION

Targeting SpMV applications, this paper investigates the
SpMV optimization problem in the context of emerging

Performance improvement on AMD

Mapping over Default: 9.1%
Mapping+Scheduling over Default: 11%
Mapping+Scheduling+Layout over
Default: 14% 22

Saturday, September 7, 13

Thank you!

23
Saturday, September 7, 13

