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Kalray MPPA ® Products

High performance, low power single-
chip massively parallel processors

C/C++ based Software Development Kit 
(SDK) for massively parallel programing

Development platform
Reference Design Board
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� High processing performance
700 GOPS – 230 GFLOPS SP

� Low power consumption

� High execution predictability

� High-level programming models

� PCI Gen3, Ethernet 10G, NoCX

Kalray MPPA ®-256 Processor with CMOS 28nm TSMC

Available since November 2012

256 VLIW processing engine cores + 32 VLIW resource  management cores
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MPPA MANYCORE Processor Roadmap
Architecture scalability for high performances and low power

MPPA®-256 V2

MPPA®-1024

Very Low Power
1.8W / 0.6W

Idle 75mW

MPPA®-64

Low Power
12W

MPPA®-256 V1

Low Power
5W / 2.6W

1st core generation
50 GFLOPS/W

2nd core generation
80 GFLOPS/W

3rd core generation
100 GFLOPS/W

2012
28nm

2014
28nm ���� 20nm

2015
16nm
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MPPA®-256 Processor Hierarchical Architecture

Manycore ProcessorCompute ClusterVLIW Core

Instruction Level 
Parallelism

Thread Level
Parallelism

Process Level
Parallelism
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� Data processing code
� Byte memory alignment
� Standard & effective FPU
� Configurable bitwise logic
� Hardware looping

� System & control code
� MMU � single memory port � no 

function unit clustering

� Execution predictability
� Fully timing compositional core
� LRU caches, low miss penalty

� Energy and area efficiency
� 7-stage instruction pipeline, 400MHz
� Idle modes and wake-up on interrupt

MPPA®-256 VLIW Core Architecture

� 5-issue VLIW architecture
� Predictability & energy efficiency
� 32-bit/64-bit IEEE 754 FPU
� MMU for rich OS support
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� Multi-banked parallel memory
� 38,4GB/s of bandwidth @400MHz

� Reliability
� ECC in the shared memory
� Parity check in the caches
� Faulty cores can be switched off

� Predictability
� Multi-banked shared memory with 

interleaved or blocked address map

� Low power
� Memory banks with low power mode
� Voltage scaling

MPPA®-256 Compute Cluster

� 16 PE cores + 1 RM core
� NoC Tx and Rx interfaces
� Debug Support Unit (DSU)
� 2 MB of shared memory
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� 20 memory address spaces
� 16 compute clusters
� 4 I/O subsystems with direct access 

to external DDR memory

� Dual Network-on-Chip (NoC)
� Data NoC & Control NoC
� Full duplex links, 4B/cycle
� 2D torus topology + extension links
� Unicast and multicast transfers

� Data NoC QoS
� Flow control and routing at source
� Guaranteed services by application 

of network calculus
� Oblivious synchronization

MPPA®-256 Clustered Memory Architecture
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� Source traffic regulation using (σ, ρ)
� A packet flow obeys (σ, ρ) if for any time interval τ the number of packets 

is not greater than σ + ρτ
� The initial (σ, ρ) is set at the Tx Data NoC interface

MPPA®-256 Data NoC Guaranteed Services

Packets

Time

σ+ρ t

σ

σ
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MPPA®-256 Processor I/O Interfaces

� DDR3 Memory interfaces

� PCIe Gen3 interface

� 1G/10G/40G Ethernet interfaces

� SPI/I2C/UART interfaces

� Universal Static Memory Controller 
(NAND/NOR/SRAM)

� GPIOs with Direct NoC Access 
(DNA) mode

� NoC extension through Interlaken 
interface (NoC Express)
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� NVIDIA, ATI, ARM generalize the GPU architecture into GP-GPU
� Streaming multiprocessors that share a cache and DDR memory
� Each stream multiprocessor operates multi-threaded cores in SIMT
� CUDA or OpenCL data parallel kernel programming models

� Cavium, Tilera TILE Gx, Intel MIC support shared coherent memory
� Thread-based parallel programming (POSIX threads, OpenMP)
� Non uniform memory access (NUMA) times, challenging cache design

� Kalray MPPA® extends the supercomputer clustered architecture
� Clustered memory architecture scales to > 1M cores (BlueGene/Q)
� Low energy per operation, high execution predictability
� Stand-alone operation with I/O, low-latency processing

MPPA® Architecture Compared to other Manycores
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Kalray Software Development Kit
MPPA ACCESSCORE – MPPA ACCESSLIB

Standard C/C++
Programming 
Environment

Dataflow
Programming

FPGA Style

POSIX-Level 
Programming 

DSP Style

Streaming
Programming 

GPU Style

Simulators,
Profilers, Debuggers

& System Trace

Operating Systems & 
Device Drivers

Today Q4 2013
This talk
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� Kahn Process Networks (KPN) [Kahn 1974]
� Sequential “processes” connected through FIFO “channels”
� Blocking “read”, non blocking “write” on channels
� Processes are also called “actors” or “agents”
� Determinacy of results, independent of firing sequence

Dataflow Models of Computation

A1 A4A2

A3

A5

A6

processes channels
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� Dataflow Process Networks (DPN) [Lee & Parks 1995]
� KPN with functional actor firing (no persistent agent state)
� KPN with sequential firing rules (can be tested in a pre-defined 

order using only blocking reads)

� Synchronous Dataflow [Benveniste et al. 1994]
� Clocks are associated with tokens carried by the channels

� Static Dataflow (SDF) [Lee & Messerschmitt 1987]
� Agents producing and consuming a constant number of tokens 
� Single-rate SDF is known as Homogenous SDF (HSDF)

� Cyclo-Static Dataflow (CSDF) [Lauwereins 1994]
� A cyclic state machine unconditionally advances at each firing
� Known number of tokens produced and consumed for each state

Dataflow Models of Computation
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Dataflow Programming
Environment

� Computation blocks and communication graph written in C 
� Cyclostatic data production & consumption
� Firing thresholds of Karp & Miller
� Dynamic dataflow extensions
� Language called Sigma-C

Automatic mapping on 
MPPA® memory, computing,
& communication resources
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Sigma-C Agent Example

agent Inverter()
{

interface
{

in<unsigned char> input; /*< input byte stream */
out<unsigned char> output; /*< output byte stream */

spec{input; output};
}

void invert (void) exchange (input pel_in, output pel_out)
{

pel_out = 255 - pel_in;
}

void start ()
{

invert();
}

}

interface section for input/
output channels

exchange keyword flags
direct operations on input
/ output channels

standard C code within the agent

start function is an infinite loop

agent keyword followed
by the name of the agent

state machine specification for
data production & consumption
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Example of Cyclostatic Specs

spec{(5){input}; {input; output}};

void fn1 (void) exchange (input i)
{

/* Function code */
}

void fn2 (void) exchange (input i, output o)
{

/* Function code */
}

void start ()
{

int i,
for (i=0; i<5; i++) {

fn1();
}
fn2();

}

5 input transitions before processing
another input and firing output

input outputA1
[0,1][5,1]
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Example of Cyclostatic Specs

spec{{input; output1}; {input; output2}};

void fn1 (void) exchange (input i, output1 o)
{

/* Function code */
}

void fn2 (void) exchange (input i, output2 o)
{

/* Function code */
}

void start ()
{

fn1();
fn2();

}

Two exchange functions, 
one for each spec state

input

output2

output1
Send every
other input
to a different
output (split)

Consume one input at a time

A1
[1,1]

[1,0]

[0,1]
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� At program startup, some channels may be non-empty
� Required for the liveness of some dataflow graphs
void preload(input_channel, int token_nbr, int data_size, void *input_data);

Pre-Loaded Tokens in Channels
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Generalization of Karp & Miller Thresholds
agent Filter()
{

interface
{

in<unsigned char> input;
out<unsigned char> output;

spec{ {input[1:5]; output} };
}

void
start (void) exchange (input i[1:5], output o)
{

o = (i[0] + i[1] + i[2] + i[3] + i[4] + i[5])/3;
}

}

Agent can access 6 tokens for 
reading but only 1 token is
consumed at each transition

1 2 3 4 5 6 7 8 9 10

Accessible in 1st transition

Accessible in 2nd transition

Consumed in 
1st transition

Consumed in 
2nd transition

input stream
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� The « map » section of « subgraphs »

Instanciating and Connecting Agents

subgraph Subgraph1 ()
{

interface
{

in<unsigned char> input;
out<unsigned char> output;

spec{input; output};
}

map {
int N = 1024;
agent a1 = new Agent1();
agent a2 = new Agent2(N);
connect(input, a1.input);
connect(a1.output, a2.input);
connect(a2.output, output);

}
}

Agents are instanciated via the « new » keyword

Agent interfaces are connected using « connect »

« N » is an instance parameter for the agent

inputinput output input output output
Agent1 Agent2

Subgraph1
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Split: uniform scatter to N consumers

ComplexSplit: cyclic scatter to N consumers

Split and ComplexSplit System Agents

Agent1 Split

Agent2

Agent2

Agent2

r

r/3

r/3

r/3

agent Split<elt_type>(int N, int k) {
interface {

in<elt_type> input;
out<elt_type> output[N];
spec {{input[k]; output[0][k]}; ...;

{input[k]; output[N-1][k]}};
}

}

agent ComplexSplit<elt_type>(int N, unsigned int p, const unsigned int coefs[p]) {
interface {

in<elt_type> input;
out<elt_type> output[N];
spec {{input[coefs[0]]; output[0][coefs[0]]}; ...;

{input[coefs[p-1]]; output[p -1][coefs[p-1]]};
{input[coefs[0]]; output[p][coefs[0]]}; ... };

}
}
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Join: uniform gather from N producers

ComplexJoin: cyclic gather from N producers

Join and ComplexJoin System Agents

agent Join<elt_type>(int N, int k) {
interface {

in<elt_type> input[N];
out<elt_type> output;
spec {{input[0][k]; output[k]}; ...;

{input[N-1][k]; output[k]}};
}

}

agent ComplexJoin<elt_type>(int N, unsigned int p, const unsigned int coefs[p]) {
interface {
in<elt_type> input[N];
out<elt_type> output;
spec {{input[0][coefs[0]]; output[coefs[0]]}; ...;

{input[p-1][coefs[p-1]]; output[coefs[p-1]]};
{input[p][coefs[0]]; output[coefs[0]]}; ... };

}
}

Agent2

Agent2

Agent2

JoinAgent3

r/3

r/3

r/3

r
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Dup: broadcast to N consumers

Sink: throw away tokens

Dup and Sink System Agents

Agent1 Dup

Agent2

Agent3

Agent4

r

r

r

r

agent Dup<elt_type>(unsigned N, unsigned k) {
interface {

in<elt_type> input;
out<elt_type> output[N];
spec {{input[k]; output[][k]}};

}
}

agent Sink<elt_type>(unsigned int k) {
interface {

in<elt_type> input;
spec {input[k]};

}
}

Agent1 Sink
r
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� Inlining saves buffer memory space and runtime copies
� Requires that read and writes occur in middle of buffer
� Data communication primitives are not FIFO operations

� Inlining constrainted by the ‘pointer equivalence’ principle
� User code inside agents use regular pointers to access tokens

System Agent Inlining

Agent1 Dup

Agent2

Agent3

Agent1

Agent2

Agent3N-sized N/2-sized

N/2-sized

N/2-sized

N/2-sized
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� Balance equations
� 2 N(A) - N(B) = 0
� N(B) - N(C) = 0
� 2 N(A) - N(C) = 0
� 2 N(A) - N(C) = 0

� Graph incidence matrix

� Must be non-full rank
� Any multiple of the repetition 

vector N = |1   2   2|T satisfies the 
balance equations

� Solution to balance equations
ensures bounded execution

Static Dataflow Graph Boundedness

B C

A
2

1

1

1

2

2

1
1

2 -1 0

0 1 -1

2 0 -1

2 0 -1

M =
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� Symbolic execution of the dataflow graph
� Execute one agent firing at a time
� Find an ‘hyperperiod’, where each agent executes its number of 

times in the repetition vector and where the channel token count 
returns to the same values

� Preloaded tokens in channels and firing thresholds may delay the 
first occurrence of the hyperperiod

� Symbolic execution of a balanced static dataflow graph 
always succeeds, unless the graph is not alive
� Take advantage of choice over ready agent firing to heuristically

optimize objectives such as maximum buffer use

Sequencing Static Dataflow Graphs
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� Static Dataflow graph execution can be interpreted

� Efficient parallel execution is achieved by unfolding a 
dependence graph that ensures correct buffer accesses
� True data dependence arcs and buffer size feedback arcs

Dataflow Graph and Dependence Graph

A

B

C

A B C3 3
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Dataflow Compilation and Execution Overview

Source 
Files

P1

P2

P3

P4

Generated C source files

Dataflow graph and data files

Buffer sizes, Sequence, 
Mappings, NoC configuration

Native 
Simulator

Runtime
Monitor

Simulated
Execution

MPPA®

Execution
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� Parse Sigma-C source files
� Flex / Bison lexer-parser

� Accept C99 + GNU C extensions
� Resolve templating of agents

� C code generation
� Generate code for instanciation of dataflow graph
� Generate code for agents local data and functions

� Leverage nested functions of GNU C
� Insert buffer access macros in agent code

� Allow late changes to buffer implementation

Phase 1
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� Dataflow graph construction
� Compile and execute map sections on toolchain host

� Dataflow graph coherency checks
� Ensure there are no dangling ports
� Check token structure compatibility between execution targets

� Produce intermediate representation
� Flatten the dataflow graph
� Compute channel initial tokens values
� Resolve agent instance parameters to constants

Phase 2
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� Balance equations
� Find agent periods Ni (hyperperiod)
� Replicate graph to consume initial tokens (k1-hyperperiod)

� System agent inlining analysis
� Check that pointer equivalence is maintained
� Compute minimum sizes of inlined buffers

� First symbolic execution
� Compute minimum buffer sizes for liveness of dataflow graph
� Build the generic data precedence graph

� (Advanced cyclostatic dataflow sizing and sequencing)

Phase 3
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� Second symbolic execution
� Compute k2-hyperperiod that activates the buffer feedback arcs

� Inlining of system agents
� Resize the inlined buffers

� Pad buffers and insert shadow copy code
� Maintain pointer equivalence with preloads and thresholds

� Mapping of tasks to platform resources
� Use simulated annealing with placement constraints
� Check effects on buffer sizes and inlining decisions

� Routing over NoC, PCIe and Ethernet
� Compute routes and source flow restrictions

Phase 3
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� Runtime generation
� Compute buffer pointer increments
� Generate dependency descriptors for runtime engine
� Generate NoC configuration bit-stream
� Compute FIFO sizes for inter-cluster dependency descriptors

� Dataflow graph rewriting
� Map non-inlined system agents to DMA tasks
� Coalesce inter-cluster transfers
� Combine system agents

� Any dataflow graph rewriting restarts P3

Phase 3
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� Native simulator
� Self scheduled

� Synchronised by channel read/write
� Sequential

� Only one agent active at a time for debug purposes
� Sequenced

� Synchronisation via a pre-computed partial order of P3

� Mixed simulator
� Native simulation engine running on host
� Agents compiled to VLIW core instruction set and run on ISS

� Multicores and manycore
� X86_32, x86_64, MPPA platforms

Sigma-C Toolchain Targets
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Ptolemy II (Berkeley)Hierarchical component

modal model

dataflow controller

example Ptolemy II model: hybrid control system

Framework for experimentation 
with actor-oriented design, 
concurrent semantics, visual 
syntaxes, and hierarchical, 
heterogeneous design.

http://ptolemy.eecs.berkeley.edu
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� Filters are autonomous unit of 
computation
� No global resources
� FIFO channels

pop() /peek(index) /push(value)

� Peek / pop / push rates must be 
constant

� Graph optimizations
� Horizontal/vertical filter 

fusion/fission
� Time/frequency domains

� Teleport messaging
� Program morphing
� RAW machine code generation

parallel computation

may be any 
StreamIt language 
construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter
http://cag.lcs.mit.edu/streamit
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MPPA®-256 PCIe Application Board AB01

� Connect to the 4 I/O subsystems
� 2 PCIe GEN3 x8 interfaces through a x16 PCIe switch
� 2 DDR3 interfaces
� 4 Ethernet interfaces (2x10G + 2x1G)
� 4 Interlaken interfaces
� NOR flash, GPIOs, leds, buttons, extensions & debug connectors



2013 – Kalray SA All Rights Reserved MuCoCoS 2013 44

� High definition H264 encoder on one MPPA®-256 processor 
� System integration, lower power and cost
� Intel CPU + MPPA® implementation 
� Flexibility & scalability

Video Broadcasting Demonstrator

H264 encoder running on MPPA®-256 at less than 6W
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� Better quality (SSIM and PSNR criteria) than C reference
� Additional motion vectors and intra predictors tested (in 

parallel) without throughput impact.
� Intra I-frame: 110 fps.
� Inter P-frame: 40 fps.
� Inter B-frame: 55 fps.

Dataflow H264 Encoder on the MPPA ®-256 processor
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Signal Processing Examples

� Radar applications: STAP, …
� Beam forming: Sonar, Echography
� Software Defined Radio (SDR)
� Dedicated libraries  (FFT, FTFR, … )

Well suited to massively parallel architectures
Alternative of embedded DSP + FPGA platforms
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� Panoramic surveillance with a linear antenna
� 3 very low frequency antennas sampled at 3840 Hz

� [640 , 1280 Hz]  : 144 hydrophons
� [320 , 640 Hz]    : 144 hydrophons
� [160 , 320 Hz]    : 144 hydrophons

� Compute 180 beams per antenna

Sonar Beam Forming

Preprocess
TBF1

beamform FFT

Preprocess
TBF2

beamform FFT

Preprocess
TBF3

beamform FFT

JoinDispatch
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� Subgraph for one antenna

Beamform Dataflow Graph
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� Sc-viewer

Application Performance Analysis Agent execution
waveform

Agent effective
parallelism
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� Sc-viewer

Application Mapping Analysis
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� Kalray Dataflow well suited to key MPPA® applications
� Cyclostatic dataflow especially effective on signal processing and 

video encoding (AVC/H264, HEVC/H265)
� Other applications that deploy data-dependent computation 

graphs (such as LTE base station) are more difficult to express

� Static Dataflow allows to automate parallel execution on 
clustered manycore processors such as the MPPA®-256
� Code and data distribution, communication over NoC
� No need for specific architectural support in NoC and DMA

� Kalray Dataflow toolchain also enables parallel execution
of single applications on hybrid target systems
� Demonstrated Intel CPU + 2 MPPA® AB01 boards

Lessons Learned
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� Extended Cyclostatic Dataflow Techniques
� Based on work by A. Munier et O. Marchetti (U. Paris VI / LIP6) 

on Marked Weighted Timed Event Graphs (MTWEG)
� K-Periodic schedules for evaluating the maximum throughput of a 

Synchronous Dataflow graph
B. Bodin, A. Munier-Kordon, B. Dupont de Dinechin
Embedded Computer Systems (SAMOS), 2012

� Liveness evaluation of a cyclo-static DataFlow graph
M. Benazouz, A. Munier-Kordon, T. Hujsa, B. Bodin
Proceedings of the 50th Annual Design Automation Conference

� Periodic Schedules for Cyclo-Static Dataflow
Accepted at ESTIMedia 2013

� Time-Triggered source and sink nodes, RT extensions

Future Developments


