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THE HYPE
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How Good are GPUs?
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Real World Software

Press release 10 Nov 2011:

— “NVIDIA today announced that four leading applications...
have added support for multiple GPU acceleration, enabling
them to cut simulation times from days to hours.”

GROMACS
— 2-3x overall

— Impilicit solvers 10x, PME simulations 1x
LAMPS '
— 2-8x for double precision -7
— Up to 15x for mixed
QMCPACK

— 3Xx

2x is AWESOME! Most research claims 5-10%.
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GPUs for Linear Algebra
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StarPU for MAGMA
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GPUs by the Numbers
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Efficiency
.7(DP, peak)

But how close to peak GPUs are enormously
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Efficiency in Perspective
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Intel’s Response

* Larabee
— Manycore x86-“light” to compete with Nvidia/AMD in graphics and compute
— Didn’t work out so well (despite huge fab advantages — graphics is hard)

* Repositioned it as an HPC co-processor
— Knight’s Corner

— 1TF double precision in expensive) single 22na chip

— At 300W this would beat Nvidia’s peak efficiency today (40nm)
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WHAT MAKES A GPU A GPU?
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GPU Characteristics

e Architecture * Programming/Interface

Data parallel processing —
Hardware thread scheduling —
High memory bandwidth —
Graphics rasterization units —

Limited caches
(with texture filtering hardware)

Data parallel kernels
Throughput-focused
Limited synchronization
Limited OS interaction
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GPU Innovations

SMT (for latency hiding)
— Massive numbers of threads
— Programming SMT is far easier than SIMD
SIMT (thread groups)
— Amortize scheduling/control/data access
— Warps, wavefronts, work-groups, gangs
 Memory systems optimized for graphics
— Special storage formats
— Texture filtering in the memory system
— Bank optimizations across threads
* Limited synchronization
— Improves hardware scalability

(They didn’t invent any of these, but they made them successful.)
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WHY ARE GPUS SCALING SO WELL?
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Lots of Room to Grow the Hardware

Trading off simplicity
for features and
programmability.
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“Nice” Programming Model

* All GPU programs have:
— Explicit parallelism
— Hierarchical structure
— Restricted synchronization

— Data locality
* Inherent in graphics

* Enforced in compute by performance ul

— Latency tolerance

e Easy to scale!

void kernel calcSin(global float *data) ({
int id = get _global id(0);
data[id] = sin(data[id]);

}

| Synchronization OK. [

:
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Why are GPUs Scaling So Well?

* Room in the hardware design
e Scalable software

They’re not burdened with 30 years of cruft and
legacy code...

...lucky them.
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WHERE ARE THE PROBLEMS?
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Amdahl’s Law

* Always have serial code

— GPU single threaded performance is terrible

* Solution: Heterogeneity
— A few fat latency-optimized cores
— Many thin throughput-optimized cores
— Plus hard-coded accelerators

* Nvidia Project Denver
* ARM for latency
* GPU for throughput
* AMD Fusion
e x86 for latency
* GPU for throughput
* Intel MIC
» x86 for latency
e X86-“light” for throughput

Maximum Speedup
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Limits of Amdahl’s Law
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99% Parallel (91x)

90% Parallel (10x)
75% Parallel (4x)
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It’s an Accelerator...

* Moving data to the GPU is slow...
* Moving data from the GPU is slow...

* Moving data to/from the GPU is really slow.

* Limited data storage
* Limited interaction with OS

19265,

J 5 GB/s

PCle 3.0
10GB/s
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Legacy Code

* Code lives forever
— Amdahl: Even optimizing the 90% of hot code limits speedup to 10x
— Many won’t invest in proprietary technology

* Programming models are immature

— CUDA mature low-level Nvidia, PGl

— OpenCL immature low-level Nvidia, AMD, Intel, ARM, Altera, Apple
— OpenHMPP mature high-level CAPS

— OpenACC immature high-level CAPS, Nvidia, Cray, PGI

$EL

SNVIDIA. s e open
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Code that Doesn’t Look Like Graphics

If it’s not painfully data-parallel you have to redesign your algorithm
— Example: scan-based techniques for zero counting in JPEG

— Why? It’s only 64 entries!
* Single-threaded performance is terrible. Need to parallelize.
* Overhead of transferring data to CPU is too high.

If it’s not accessing memory well you have to re-order your algorithm

— Example: DCT in JPEG

* Need to make sure your access to local memory has no bank conflicts across
threads.

Libraries starting to help

— Lack of composability

— Example: Combining linear algebra operations to keep data on the device
Most code is not purely data-parallel

— Very expensive to synchronize with the CPU (data transfer)

— No effective support for task-based parallelism

— No ability to launch kernels from within kernels
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Corollary: What are GPUs Good For?

Data parallel code
— Lots of threads
— Easy to express parallelism (no SIMD nastiness)
* High arithmetic intensity and simple control flow
— Lots of FPUs
— No branch predictors

* High reuse of limited data sets
— Very high bandwidth to memory (1-6GB)
— Extremely high bandwidth to local memory (16-64kB)

Code with predictable access patterns
— Small (or no) caches
— User-controlled local memories
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WHAT’S THE FUTURE OF GPUS?
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No way around it in sight

* Specialize to get better efficiency o . o
— This is why GPUs are more efficient today ¢ Atthesamidm ™ St A7
* Heterogeneous mixes ﬁwlﬁiﬁ .| cp | s
— Throughput-oriented “thin” cores Peﬁormance

= — \/\S\O
SNAY

— Latency-focused “fat” cores

* Fixed-function accelerators
— Video, audio, network, etc.
— Already in OpenCL 1.2

— 0OS/runtime/app will have to adapt -
— Energy will be a shared resource

4 fast cores + 1 slow core
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The Future is Not in Accelerators

* Memory

— Unified memory address space
— Low performance coherency
— High performance scratchpads

OS interaction between all cores

* Nvidia Project Denver
* ARM for latency
* GPU for throughput
* AMD Fusion
e x86 for latency
* GPU for throughput
* Intel MIC
» x86 for latency
e X86-“light” for throughput
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Focus on Data Locality

== Single-precision performance
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Memory bandwidth (Gbytes/sec.)
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Focus on Data Locality

* Not just on-chip/off-chip but within a chip
e Software controllable memories

— Configure for cache/scratch pad

— Enable/disable coherency

— Programmable DMA/prefetch engines

* Program must expose data movement/locality

— Explicit information to the runtime/compiler
— Auto-tuning, data-flow, optimization

* But we will have global coherency to get code correct

(See the Micro paper “GPUs and the Future of Parallel Computing” from Nvidia about their
Echelon project and design.)
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Graphics will (still) be a Priority
* |t’s where the money is

* Fixed-function graphics units

* Memory-system hardware for texture interpolation will
live forever...

* Half-precision floating point will live forever...
(And others else might actually use it. Hint hint.)
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CONCLUSIONS
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Breaking Through The Hype

Real efficiency advantage
— Intel is pushing hard to minimize it
— Much larger for single precision

Real performance advantage

— About 2-5x
— But you have to re-write your code

The market for GPUs is tiny compared to CPUs

Everyone believes that specialization is
necessary to tackle energy efficiency
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The Good, The Bad, and The Future

e The Good:

— Limited domain allows more efficient implementation
— Good choice of domain allows good scaling

 The Bad:
— Limited domain focus makes some algorithms hard

— They are not x86/linux (legacy code)

* The Future:
— Throughput-cores + latency-cores + fixed accelerators
— Code that runs well on GPUs today will port well

— We may share hardware with the graphics subsystem,
but we won’t “program GPUs”
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