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Abstract. Mobile robots intended to perform high-level tasks have
to recognize objects in their workspace. In order to increase the suc-
cess of the recognition process, recent works have studied the use of
contextual information. Probabilistic Graphical Models (PGMs) and
Semantic Knowledge (SK) are two well-known approaches for deal-
ing with contextual information, although they exhibit some draw-
backs: the PGMs complexity exponentially increases with the num-
ber of objects in the scene, while SK are unable to handle uncer-
tainty. In this work we combine both approaches to address the object
recognition problem. We propose the exploitation of SK to reduce the
complexity of the probabilistic inference, while we rely on PGMs to
enhance SK with a mechanism to manage uncertainty. The suitabil-
ity of our method is validated through a set of experiments, in which
a mobile robot endowed with a Kinect-like sensor captured 3D data
from 25 real environments, achieving a promising result of∼94% of
success.

1 INTRODUCTION

A mobile robot intended to perform high-level tasks has to be aware
of its surrounding. Recent works have studied the use of the objects’
contexts in order to exploit their spatial relations [1, 2, 3, 4]. This kind
of information is crucial to disambiguate recognition results where
appearance and geometric features are not discriminative enough [5].
For example, an object recognition system could not properly iden-
tify a cylindrical object as a lamp or a trash bin, but if it is found on
the floor and near a wall, the trash bin option should stand out as the
most likely one.

Probabilistic Graphical Models (PGMs) [6] exploit contextual re-
lations, and have been recently used for object recognition with ac-
ceptable success [1, 2, 3, 7]. However, the complexity of the prob-
abilistic inference process, which consists in finding the most prob-
able class assignation to a set of objects, becomes intractable when
the number of objects and classes augments. For example, a scene
with 10 objects, which can belong to 9 different classes, e.g. table,
chair, computer screen, etc., entails 910 possible assignations, and
although approximated inference methods can be used to reduce the
search space [8, 9, 10], the overall performance is compromised.

An alternative to PGMs is the utilization of semantic knowl-
edge, which can be naturally codified in the form of object classes
(e.g. Table, Chair, etc.), relations between classes (e.g. Table
isNear Chair) and instances of them (e.g. table-1). One of
the advantages of these definitions is that they are common-sense and
human-readable, facilitating in this way the information exchange
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between robots and humans. However, although this methodology
has been used to recognize objects through logical reasoners [11, 12],
they are unable to handle uncertainty, and it is difficult to leverage all
the potential of the contextual relations.

In this paper we present an approach that combines semantic
knowledge and probabilistic graphical models to address the object
recognition problem in mobile robot applications. Concretely, we
propose the use of ontologies [13] to codify SK by mean of expert
elicitation, and its exploitation for object recognition through Con-
ditional Random Fields (CRF) [6], which are trained using synthetic
samples as described in [14]. In this combination, CRFs provide the
ontology with a probabilistic reasoning mechanism that handles un-
certainty and contextual relations, while the semantics contributes
with:

• A significant reduction in the complexity of the probabilistic in-
ference. The ontology is used to generate hypotheses about the
most probable class assignations for a given object according to
its features, reducing thus the number of assignations. For exam-
ple, the hypotheses yielded by the semantics for a vertical planar
surface over the floor could be a Wall, a Computer screen or
a Chair back rest, but not a Chair seat.

• Prior information about the occurrence of objects. Ontologies are
a natural source of prior information when encoding the frequency
of occurrence of the objects in a scene. For example, an ontology
can encode common sense knowledge stating that a typical of-
fice should contain a computer, less probably a coach, but never a
bathtub. We propose the use of this knowledge as prior informa-
tion and present a modification of the usual CRF formulation to
cope with it.

In this work, we consider planar patches extracted from RGB-D
point clouds of the scene as the constituent parts of the objects to be
recognized. The suitability of our method has been validated through
a number of tests with real data gathered by a mobile robot from 25
office scenarios. An additional advantage of our approach is that the
recognized objects are anchored to classes defined into the ontology,
and this is useful for robotic high-level processes like reasoning or
task planing [12, 15, 16].

Next we revise Conditional Random Fields as a tool for object
recognition. Section 3 describes how semantic knowledge is applied
to assist and improve the recognition process of a mobile robot. In
section 4, the results of the method evaluation are shown. Finally,
section 5 presents some conclusions of this work.



x1 

x2 

x3 x4 

x5 

x6 x7 

y1 
y4 

y3 

y6 

y2 

fx2u 

fx3u 

fx1u fx4u fx6u 

Chair 
seat 

Floor 

y5 y7 

fx7u fx5u 

Chair 
back 

Table 
side 

Computer 
screen 

Table 
top 

0 Computer 
screen 

Figure 1. Left, planar patches x extracted from a scene, delimited by yellow lines. Middle, CRF built for that scene, where each yi is associated with its
respective xi, and conditioned by its extracted features fxiu. Blue shapes represent an example of the scope of an unary factor, while green ones the scope for

a pairwise factor. Right, recognition result obtained through probabilistic reasoning over the CRF.

2 BACKGROUND ON SCENE OBJECT
RECOGNITION THROUGH CONDITIONAL
RANDOM FIELDS

From a probabilistic stance, the object recognition process can be for-
mulated as follows. Let’s have a scene with x = [x1, .., xn] observed
objects (see figure 1-left), each one characterized by a vector of fea-
tures fxiu = [fxiu1 , .., fxium ] (e.g. height, area, etc.), and L =
{l1, .., lk} the set of considered classes. Let y = [y1, y2, .., yn] |
yi : L

k → {0, 1}k be a vector of discrete random variables corre-
sponding to the class assignment to x. Thus, the recognition process
consists in maximizing the joint probability distribution P (y, x), i.e.,
to find the most probable classes assignation to y, also maximizing a
number of probability distributions over the features extracted from
x. Such a joint distribution has a high dimensionality, so its exhaus-
tive definition is prohibitive. Probabilistic Graphical Models (PGMs)
permits to break down such a definition into smaller pieces exploiting
the concept of independence [6]. To simplify more the problem, we
employ a particular type of PGM called Conditional Random Field
(CRF) [6], which factorizes the distribution P (y|x), instead of en-
coding the probability distribution P (y,x). This avoids the defini-
tion of the probability distributions over the object features extracted
from x, which usually exhibits complex dependencies.

In general, a CRF is represented through a graph H = {V,E},
built upon two elements: a set of nodes V , and a set of edges E.
Nodes V represent random variables, and edges E link nodes that
keep some kind of relation, i.e., they are dependent. Typically, in vi-
sual object recognition, the nodes correspond to the random variables
y, and two nodes yi and yj are connected if their associated objects
xi and xj are close in the scene (see figure 1-middle). The rationale
of this is that the recognition of an object condition the recognition
of nearby objects, but not those far away.

According to the Hammersley-Clifford theorem [6], the distribu-
tion P (y|x) can be factorized overH as a product of factors, being a
factor a function that represents a probability distribution over a part
of H . In this work we use two kinds of factors: local and pairwise.
Local factors refer to nodes, and express how probable is that an ob-
served object xi belongs to a certain class from L according to its
extracted features. On the other hand, pairwise factors are associated
to pairs of nodes, and codify the compatibility of the classes assigned
to a given pair.

Concretely, we define an unary factor, denoted by U(·), as a linear
classification model:

U(yi, xi,ω) =
∑
l∈L

δ(yi = l)ωlf(xi) (1)

where f(xi) is the function in charge of computing the features fxiu
for the object xi,ωl = [ω1,l, .., ωfm,l] is a vector of weights for each
class l ∈ L obtained during the training phase, and δ(yi = l) is the
Kronecker delta function, which takes value 1 when yi = l and 0
otherwise. Table 1-left shows the unary features used in this work.

On the other hand, a pairwise factor I(·) is defined as:

I(yi, yj , xi, xj ,θ)

=
∑
l1∈L

∑
l2∈L

δ(yi = l1)δ(yj = l2)θl1,l2g(xi, xj) (2)

where the function g(xi, xj) computes a set pairwise features
fxixjp = [fxixjp1 , .., fxixjpq ] for the relation between objects xi
and xj , and θl1,l2 = [θ1,l1,l2 , ...θq,l1,l2 ] is a vector of weights for
each pair of classes in L. In this work the CRF training, i.e., the esti-
mation of the vectors of weights ω and θ, is performed through the
optimization of the pseudo-likelihood function [6].

For convenience, the factorization of P (y|x) over the graph H is
expressed by means of log-linear models as:

P (y|x,ω,θ) = 1

Z(x,ω,θ)
e−ε(y,x,ω,θ) (3)

where Z(·) is the normalizing partition function so∑
ξ(y) p(y|x,ω,θ) = 1, being ξ(y) an assignation to the

variables in y, and ε(·) the so-called energy function defined as:

ε(y,x,ω,θ) =
∑
i∈V

U(yi, xi,ω) +
∑

(i,j)∈E

I(yi, yj , xi, xj ,θ) (4)

Given an observation of the scene, the CRF graph H = {V,E}
is built according to the observed objects x and their proximity (ob-
jects at a distance below a given threshold are linked together), which
set the conditional dependencies between the random variables in y.
Thus, the object recognition problem is that of finding the assignation
to y that maximizes the posterior, that is:

ŷ = argmax
y

P (y|x,ω,θ)

= argmax
y

1

Z(x,ω,θ)
e−ε(y, x,ω,θ)



Table 1. Unary and pairwise features used to characterize a planar patch
and its relations.

id Unary features
fxiu1

Centroid height from the floor.
fxiu2

Orientation w.r.t. the horizontal.
fxiu3 Area of its bounding box.
fxiu4

Elongation.
id Pairwise features
fxixjp1

Perpendicularity.
fxixjp2

on/under relation.
fxixjp3

Vertical distance of centroids.
fxixjp4

Ratio between areas.
fxixjp5

Ratio between elongations.
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Figure 2. Overview of the proposed method for object recognition. Boxes
are processes, while ovals represent generated/consumed data by the

processes. The shadowed area encapsulates the components that directly
make use of semantic knowledge.

Given that the partition function does not depend on the assign-
ments to y, such expression can be simplified by:

ŷ = argmax
y

e−ε(y, x,ω,θ) (5)

This equation is known as the Maximum a Posteriori (MAP) or
Most Probable Explanation (MPE) problem. Despite of the avoided
computation of the partition function, its calculus is still unfeasi-
ble given that the number of possible assignations grows exponen-
tially with the number of nodes in V , i.e., the number of objects to
be recognized. Approximated inference methods can mitigate this
problem, although their performance can be also compromised if the
number of objects and classes is high. Particularly, during the eval-
uation of the proposed method we have relied on the Iterated Con-
ditional Modes (ICM) [8] algorithm, which maximizes local con-
ditional probabilities instead of the whole P (y|x). Figure 1-right
shows, for the scene objects in figure 1-left, the most probable classes
assignation computed by such a method.

3 EXPLOITATION OF SEMANTIC
KNOWLEDGE

The recognition framework proposed in this work follows a bottom-
up methodology (see figure 2). During the robot operation, 3D ob-
servations gathered from a Kinect-like sensor are registered [17], and
planar patches are extracted and characterized through the set of fea-
tures showed in table 1. This information is exploited by the ontology

to hypothesize the most probable class assignments for each patch
by means of logical inference2. These hypotheses dramatically re-
duce the number of potential classes to be considered by the CRF.
Additionally, a modification to the usual CRF formulation has been
carried out in order to also take advantage of prior information about
the frequency of occurrence of the different object classes. In sum-
mary, the result of the recognition process is provided by probabilis-
tic reasoning over a CRF, managing (i) a number of characterized
planar patches from the scene, (ii) hypothesis about the most proba-
ble classes of each patch, and (iii) prior information about the occur-
rence of classes.

Next, section 3.1 describes the codification of semantic informa-
tion through ontologies. Section 3.2 presents the use of an ontology
to provide hypothesis, and section 3.3 introduces the utilization of
prior information in a CRF.

3.1 Ontology Codification
An ontology is commonly defined as a representation of a conceptu-
alization related to a knowledge domain, which accounts for a num-
ber of classes arranged hierarchically, relations among them, and
instances of such classes, also called individuals [13]. One way to
define ontologies is through expert elicitation, where experts in a
certain knowledge domain codify their elements and relations. For
example, an expert could model an office environment by defin-
ing the type of objects that usually appears in it (classes), e.g.
Table, Chair, Computer screen, etc., and establishing their
contextual properties (relations), e.g. Table hasOrientation
Horizontal. Relations can also set associations between classes,
e.g. Chair isNear Table, which expresses that chairs are nor-
mally placed near tables. Knowledge about the objects from a
particular scenario and their properties can be stated in the on-
tology through instances, e.g. table-1, chair-1, and instan-
tiations of relations, “table-1 isNear chair-1”. Figure 3-
bottom shows part of the ontology used in this work, while figure 3-
top depicts, as an illustrative example, the definition of the class
Table top through a number of relations using the Protégè soft-
ware [19]. This software codifies the resultant ontology into the OWL
language [20].

The relations that characterize a class can be seen as properties,
which are useful to describe the typical shape, size or relative posi-
tion of its instances. For example, the relation “Object has area
MetricMeasurement” is used to codify the instances of the class
Object that have an area ofMetricMeasurment. The subclasses
of MetricMeasurement discretizes real values into intervals,
and have the form MM AroudXX, which means that the measure
is in the interval of the value XX. However, not all the instances
of a class have the same appearance in the real world. To quan-
tify that variability, properties describing the geometry of a class
are annotated into the ontology with a discrete value from the set
RA = {null, veryLow, low,medium, high, veryHigh}. For ex-
ample, the definition of the class Table top in figure 3-top given
by an expert, encodes that tables often share a common height around
0.70m, although their area can largely vary around their averaged
value, 1m2.

3.2 Hypotheses Generation
One of the drawbacks of PGMs is that their complexity considerably
augments when the number of objects in the scene and the candidate

2 In this work we use Pellet [18] as logical reasoner.
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Figure 4. Example of hypotheses generation for a given planar patch. The instance is inserted into the ontology using the OWL language.
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Figure 3. Top, definition of the class Table top. Bottom, part of the
used ontology defined by expert elicitation.

classes are large, which can produce a degradation in the quality of
the recognition results. Semantic information is used in this work to
mitigate this effect by hypothesizing about the potential classes of the
observed objects. The hypotheses generation process is as follows.

Given the set L = {l1, . . . , lk} of the considered k classes of
the domain, and a planar patch xi to be recognized, a new individ-
ual derived from the Object class is created into the ontology, e.g.
object-1, annotating its unary features f(xi) = fxiui

through
the same relations shown in figure 3-top. For example, if a patch
has a centroid height of 0.73 meters from the floor, the relation
“object-1 hasCentroidHeight MM Around07” is added
to the ontology. Once the instance is properly characterized, a logi-
cal reasoner, Pellet [18] in our implementation, infers a set of classes,
Hxi ⊆ L, which include such a relation in their definitions.

This process is performed for all the n observed objects, obtain-
ing a set of hypothetical classes H = {Hx1 , Hx2 , ..., Hxn} that, as
it is shown in the evaluation section, is drastically smaller than the
initial one. Figure 4 shows an example of hypotheses generation for
a Chair backRest.

During the hypotheses generation process and in order to cope
with the variability that objects may exhibit in the scene, we
rely on the annotations over the relations defined in the ontol-
ogy3. For example, consider the Table top definition in fig-
ure 3-top that encodes a “low” height variation from the aver-
age value, i.e. 70cm. This semantic information is used to spread
out the definition widening the interval from 60cm to 80cm, cod-
ified as: “has centroidHeight some MM Around06 or
MM Around07 or MM Around08”. Such a range expansion
takes into account the average relation value of the different classes,
i.e., the has centroidHeight relation of an object class with
an average of 3.6m suffers a higher spreading in comparison with
a class with height 0.3m, supposing that both classes are annotated
with the same value from the set RA. Note that the selection of the
interval widths and the measurement discretization are provided by
expert elicitation according to the particular domain at hand.

It is worth to mention that an additional advantage of using such
hypotheses as class candidates is that the recognition results provided
by the probabilistic reasoning over the CRF will be coherent with
the information in the ontology, and consequently, with the semantic
knowledge that experts encode about the domain.

3.3 Frequency of occurrence prior
Unary factors U(·) in a CRF give information about the compatibil-
ity of a certain object xi w.r.t a set of classes Hi according to its
appearance and geometry. This can be viewed as a way to model the
probability distribution P (yi|xi). On the other hand, pairwise factors
codifyP (yi, yj |xi, xj), i.e., how probable a class assignation for two
objects becomes given their relational (contextual) features. Thus, by
combining both factors, the CRF can exploit appearance, geometric
and contextual features. In this section we propose the addition of
prior information about the frequency of occurrence of objects to the
CRF formulation, which can help to disambiguate some recognition
results. Prior information is added to the unary factors, which now
encode the product of two probabilities, i.e:

U(yi, xi,ω) ≈ P (yi|xi,ω)P (yi) (6)

Prior information is codified into the ontology through the
relation has frequencyOfOccurrence, which takes values
from the set RA. In order to adapt the probability distribution

3 Notice that these annotations could have been introduced as additional re-
lations, e.g., has area variability. However, given that the logic
reasoner is not going to take advantage of them, and aiming to have a rep-
resentation as clear as possible, we decided to use annotations.



Figure 5. Mobile robot Rhodon gathering 3D data from an office.

P (yi) to the linear classification model shown in equation 1,
it is replaced by the function fo(yi) : RA → [0..1], which
can be considered as a non-normalized version of the former
probability. For example, if the class Chair back is de-
fined in the office domain with the relation “Chair back
has frequencyOfOccurrence veryHigh”, and
Computer screen with “Computer screen
has frequencyOfOccurrence medium”, the fo func-
tion can be defined to produce fo(Chair back) = 0.9 and
fo(Computer screen) = 0.5. Thus, we define an unary factor as
follows:

U(yi, xi,ω) =
∑
l∈L

δ(yi = l)ωlf(xi)fo(yi) (7)

Conversely to the hypotheses generation case, here the function
fo(·) is independent of the scene, so it can be computed once and
stored in a look-up table, so speeding up the recognition process.

4 METHOD EVALUATION

In order to evaluate our object recognition method, we have col-
lected a dataset compounds of 25 office scenes using the mobile robot
Rhodon, which is endowed with a Kinect-like sensor mounted on a
Pan-Tilt unit (see figure 5).

The planar patches extracted from the scene fed a CRF, which
is trained using synthetic data as explained in [14], and are
also employed to generate hypotheses about their most proba-
ble classes, as described in section 3.2. In our experiments we
have considered a total of 7 object classes: L={Floor, Wall,
Table top, Table side, Chair bakRest, Chair seat,
Computer screen}.

The performance of our approach has been measured using the
micro/macro precision/recall metrics [2]. Table 2 shows the results
obtained using 4 different recognition variants on the 25 considered
scenarios. The first variant only uses appearance and geometric ob-
ject features, achieving a micro p./r. of∼ 79%, while the second one
exploits contextual relations and increases that percentage by ∼ 5%.
The third variant incorporates the generation of hypotheses, reaching
a micro p./r. of ∼ 93.5%, and the last one also uses prior informa-

Table 2. Results of the tests conducted

Variant used micro p./r. macro p. macro r.
(1) No context 79.23 78.35 77.52
(2) Context 84.07 86.11 87.68
(3) Context + Hypotheses 93.45 92.52 92.45
(4) Context + Hypotheses + Prior 94.31 93.69 93.28
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Figure 6. Confusion matrix of the actual object classes and the recognition
results.

tion, obtaining ∼ 94.3% of success. These results proves that con-
textual information improves the recognition of objects in a scene,
and that the use of semantic information prevents the CRF from pro-
viding non-coherent results, increasing thus the recognition success.
Prior information also adds a sense of coherence to the method by
yielding the frequency of occurrence of the different object classes
in an office environment, which is reflected as an improvement in the
results.

Figure 6 shows the confusion matrix obtained using the last vari-
ant, where rows represent the actual class of the objects, and columns
the class which they are recognized as. We can see how erroneous
recognitions correspond to the classes Wall, Table side and
Chair back, given that, with the considered features, it is some-
times difficult to differentiate them.

Part of the achieved improvement in the performance using the
generation of hypotheses is due to the fact that it enables proba-
bilistic exact inference, i.e., the checking of all the possible classes
assignations for the scene objects. To illustrate that, let’s consider
the scenario shown in figure 7-top, entailing 11 objects. Given that
we have considered 7 object classes, probabilistic reasoning by exact
inference consists in computing equation 3 a total of 711 times. Such
a computation takes several hours, which is unfeasible for a mobile
robot that requires quick results in order to operate within real en-
vironments. However, relying on the generated hypotheses as candi-
date classes, the number of combinations is reduced, in this example,
to 1536, which can be computed in a few milliseconds. Figure 7-
bottom shows the objects from 7-top recognized through an exact
inference process.

In addition, the robot can use the probability associated to the
recognition results as a measure of uncertainty. Thus, results with
high uncertainty could motivate the execution of further actions by
the robot, like gathering additional data from the scene, in order to
obtain more plausible results.
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Figure 7. Recognition result in one of the studied scenarios. Top, 3D data
from an office environment. Bottom, planar patches detected and recognized

using our approach.

5 CONCLUSIONS

In this work we have addressed a key problem that mobile robots
intended to operate in human environments have to solve: the recog-
nition of objects within the scene. For that, we have proposed an ap-
proach that makes a combined use of Probabilistic Graphical Models
(PGMs) and Semantic Knowledge (SK). PGMs, which can handle
uncertainty, are used to recognize objects using a probabilistic rea-
soning, while SK is used to: hypothesize about the most promised
class candidates for objects (reducing in this way the complexity of
the PGMs), provide prior information about the frequency of occur-
rence of the different object classes (gaining in robustness and ac-
curacy in the recognition results), and maintain a representation of
the environment that enables high level robotic tasks. We have con-
ducted a number of experiments that validate our approach, yielding
a recognition success of ∼ 94%.

In the future, we plan to study how to deal with objects showing
unusual properties. Let’s suppose a scene with a computer screen
placed on the floor. In that situation the logical reasoner does not
yield the class Computer screen as a hypothesis, given that its
height largely differs from the expected one. An option could be to
consider the result of the logical inference as a score in the CRF
formulation, at the cost of removing the exact inference option.
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