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Abstract. Robots operating in the presence of humans should adapt
their plans and behavior accordingly. The recent area of human-
aware planning (HAP) addresses this problem. In this paper, we
propose a method for extending HAP to so-called Socially Aware
planning. We build on known principles for human context recog-
nition, extending them to support different social situations. In this
new paradigm, we are able to define social norms and rules which
are taken into account by the planning mechanism to obtain plans
consisting of socially adjusted behaviors.

1 INTRODUCTION

Imagine the following scenario. There is a hospital with children,
sometimes they are with a doctor, sometimes they play, sometimes
they learn new things in combination with playing. One of the chil-
dren, Tom, somehow has forgotten about school classes, and while
the other children are in the classroom, Tom is playing in his room.
The hospital in this story is very advanced, and it has robots. One
of the robots notices that Tom is absent from the school room. It
notifies the teacher, who confirms that the robot should inform Tom
that school is in. Specifically, the robot’s task is to navigate to the
room where Tom is located, inform him verbally about the classes,
and escort him to the school room. Imagine now a slightly different
scenario, where Tom’s roommate John is sleeping in the same room
where Tom is playing. It would not be appropriate for our robot to
use its voice to interact with Tom in this social situation, since this
could wake up John. It would be much more (socially) acceptable
to interact with Tom in a silent way, perhaps by beeping to capture
Tom’s attention and then showing a message on its display.

The above hospital is real and the story is part of a set of scenarios
that is being realized in the European project MOnarCH [15]. The
project focuses on developing robots to help children and staff in the
hospital with various tasks, such as playing and learning. The project
brings many specific scientific challenges, one of which is addressed
in this paper.

Recently, planning was extended to support human activities, so
that robots could adapt their own behaviors according to human
needs. This is known as Human Aware Planning (HAP). There are
different approaches to HAP, e.g., based on forward search [5]], on
constraint based planning [[18], and on hierarchical tasks networks
(HTN) [16]. We are interested in the problem of using the right be-
havior in the right social context. Pure HAP wouldn’t suffice in this
case, rather, it must be extended to the level where it is able to rea-
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son about the social context in which humans operate. Social norms,
which relate social context with robot behavior, must be used by
the planner to achieve appropriate human aware plans. We call this
problem Social Aware Planning. In the above story, the robot should
(1) recognize (infer) the social context in the room where Tom is
playing; and (2) create plans depending on social norms defined by
the recognized social context.

Since HAP has not, so far, addressed the issue of accommodat-
ing social norms, our work consists of developing a planner that is
able to use social norms in order to support planning on a social
level. We can differentiate between several problems that need to be
solved. Beyond the necessary planning capability and dispatching
mechanism for execution, we also need a human-aware component
that is able to recognize human behavior and plan/act upon it. It is
also necessary to put in place a mechanism for handling the social
aspects required by the social environment. To do so, we introduce
social norms and rules, which should be applied in appropriate so-
cial contexts. Taking into account that we are dealing with children,
who can be characterized as having highly stochastic proprieties, we
also need to be able to react as unexpected events occur on-line, and
update plans or re-plan as soon as possible.

In this paper we propose a preliminary formalization of the Social
Aware Planing problem, and we study how well a particular HAP
solution lends itself to the social aware context. This solution is used
to realize an example scenario inspired by the story above with a real
robot.

2 CONSTRAINT BASED PLANNING

Our approach builds upon existing Constraint Based Planning (CBP)
techniques (see [18, I8]). CBP retains many of the properties nec-
essary for Social Aware Planning. First, CBP approaches generate
temporally flexible plans and explicitly account for action timings.
CBP approaches are appropriate for representing both qualitative
and quantitative temporal requirements through temporal constraints.
This type of planning also supports human awareness, by defining
context variables which can represent states of the human. The val-
ues of context variable (e.g., human states) are inferred from the
values of sensors in the environment. Interestingly, CBP allows to
cast context inference and planning as by-products of the same al-
gorithm [18]]. Regarding fast reactions and on-line plan-based robot
control, CBP supports constant feedback on relevant states in the sys-
tem during execution to make sure that the system is converging to-
wards the desired goals. Depending on actual development of events
during execution, it may update the current plan or re-plan and up-
date the execution queue. This is known as “closed-loop” planning
and execution [7].



2.1 Representation

Variables. The domain representation is grounded on the notion of
state variable. State variables have a symbolic and a temporal com-
ponent, and represent elements in the environment which can be in
one of several states. These can represent objects, like a door, which
can be open or closed; people, who can be in certain position; or ac-
tions, like navigation actions of particular robot. The set of possible
values that variables can have, is called a domain.

In our planning system, every element of a variable’s domain is
a pair (v, I), where v represents the state of the particular element
the variable refers to (e.g., open in the case of a door), and [ is
a temporal interval representing when the particular state is assumed
to be valid. For example, (open, [2, 13]) states that the value open is
assumed to be true starting at time 2 and until time 13E]The interval
lends a temporal extent to variables, and allows us to use them for
representing a current state, e.g., robot-1 is at the charging station; a
past state, e.g., John was in his bed one minute ago; a predicted state,
e.g., John will be at the entrance within two minutes; or a desired
(goal) state, e.g., robot-1 should be at the entrance at 13:45.

Temporal Constraints. State variables can be correlated by
means of temporal constraints. In our work, we represent temporal
constraints in Allen’s Interval Algebra (AIA) [3]. We use an extended
version of AIA [13], in which relations can be both qualitative, like
before, after, meets and so on; and quantitative, where relations come
with bounded temporal intervals.

Constraint Network. The evolution of the world is described by
a constraint network whose nodes represent actions, environmental
states, etc., while edges are temporal relations holding between pairs
of variables. An example is shown in Figure[T}
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Figure 1. Example of constraint network: Robot have to move to the bedroom,

before it can say: "Let’s go to school’. Also, robot can say this only during the child is

in the bedroom.

In the constraint network, state variables and temporal constraints
together provide the means to express states of relevant parts of the
environment and how they change over time. The evolution of states
is affected by other state variables representing actions performed
by robots. The representation also allows to model non-predicted
changes of state (e.g., due to human intervention, like the user turn-
ing on the light).

2.2 Reasoning

The planning process used in the CBP approach is incremental in na-
ture, and yields a refined constraint network, which itself represents
a plan which achieves the given goals.
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The resulting constraint network represents one or more tempo-
ral evolutions of the state variables that guarantee the achievement
of the goals under nominal conditions. Feasible and goal-achieving
plans are obtained by means of one or more solvers, operating on
the same constraint network. In this paper, we will describe some of
them relevant to our research.

Temporal solver. The temporal consistency of the constraint net-
work is checked through temporal constraint propagation by means
of a Simple Temporal Problem (STP) [6] solver. The solver prop-
agates temporal constraints to refine the bounds of the variables in
the network, and returns failure if and only if temporally consistent
bounds cannot be found.

State variable scheduler. State variable scheduling ensures that
state variables do not take on conflicting states in overlapping in-
tervals. This solver posts temporal constraints which impose a tem-
poral separation between conflicting variables. For example, the
constraint network may contain a variable encoding the robot’s
interaction behavior with the values (askToFollowMe,I') and
(sayWelcome, I"'). The state variable scheduler will take care that
those two values do not occur at the same time, which it achieves by
imposing the temporal constraint I’ before I" (or vice-versa).

Planning Module. The task of this solver is to modify the con-
straint network by adding appropriate variables (usually robot ac-
tions) and constraints in order to achieve goals. Operators in the do-
main describe the causal dependencies between variables —e.g., that
an operator achieves a certain effect. The solver instantiates (into the
constraint network) relevant operators in the form of state variables
and temporal constraints in order to enforce the causal dependencies
of the plan. For example, if we have a constraint network with state
variables indicating that the robot is in the kitchen, but also another
variable representing current location of the robot which is not the
kitchen, then planner may add a state variable representing the fact
that the robot should move from its current location to the kitchen
(with appropriate constraints).

3 ENCODING SOCIAL BEHAVIOR
3.1 Enter the Human’s Context

In addition to representing the state of the environment and/or the
robot’s actions, state variables can be used to represent (known or
predicted) states of humans. For instance, a variable can be used
to represent particular states of the user, e.g., being asleep, playing,
reading, and so on. Since variables include a temporal interval, a set
of variables asserting the state of a human can be used to represent
behavior. Temporal constraints can then be used to model the tem-
poral relations between human behavior and other variables. Sets of
such temporal constraints can thus be used to model the criteria for
recognizing human behavior from sensor traces. Planning and be-
havior recognition can be integrated loosely, by allowing a context
recognition system to determine the initial state of the planner, as
done by Cirillo et al. [5]. In loosely coupled behavior inference and
planning, the connection between robot actions and recognized be-
havior is not modeled. Ideally, we would like our planner to infer
human behavior and plan for it contextually — that is, achieve a
human-aware form of planning in which goals appear as a conse-
quence of (1) external imposition (e.g., a nurse instructing a robot to
“go and fetch the kids for class™); and (2) contextual inference (e.g.,



the system realizing that class has started, but a child is still playing
in the playroom).

Proactive Planning. Our domain is encoded in a so-called “proac-
tive” planning paradigm, which builds on the CBP principles de-
scribed above [18]. The term “proactive” refers to its ability to post
goals proactively, as a consequence of context inference (due to its
tightly coupled inference and planning, as mentioned above). It de-
fines different types of state variables: context, sensors and behav-
iors. A sensor is a variable whose value derives from a real or simu-
lated sensor. Behavior variables represent robot behaviors. The val-
ues of context variables are inferred from the states of other vari-
ables in the network. For example, the value “SkippingSchool” of
context variable “ChildState” is inferred through the following set
of constraints, collectively called an operator (we use the format
variable: :value):
(Sensor ChildLocation)
(ContextVariable ChildState)
(Operator

(Head ChildState::SkippingSchool)

(RequiredState reqgl ChildLocation::Bedroom)

(Constraint Finishes (Head, reql))

)

Specifying an operator consists in listing all the conditions that
must be present in the network for the Head of the rule
to be asserted. These are either RequiredStates (i.e., sym-
bolic values of state variables) or Constraints modeling the
temporal relations among these values. For SkippingSchool,
for instance, the first requirement (reql) is that the child is
in the bedroom (ChildLocation: :Bedroom). We also want
SkippingSchool to be true until the ChildLocation sensor
reports a different value (AIA constraint finishes).

Proactiveness and goal posting follow the same principle: a re-
quired state, or the head of a rule, may refer to a state variable
modeling an active behavior rather than a context variable. If we
added, for instance, the requirement (RequiredState reqg2
Robot: :ReachChild) to the above rule, this would produce a
subgoal to appear in the constraint network representing this desired
behavior of the robot. As usual, temporal constraints can be used to
model the necessary temporal relation between this requirement and
the head or other requirements in the rule. Furthermore, other oper-
ators may be used to describe other necessary actions that must be
taken for the robot to actually carry out the ReachChild action
(e.g., turning on its camera).

3.2 Adding a Social Context

In this paper, we leverage heavily the concepts introduced by proac-
tive planning, in particular the notion of context variables. They are
good candidates for representing a social context, which is required
to solve our initial problem. By modeling social aspects in the en-
vironment as context variables, we extended proactive planning only
on its semantic level, gaining the ability to plan in various social situ-
ations. More concretely, to encode social context in the initial exam-
ple, we might model another context variable that defines the social
context of the situation we are interested in. For example, if John is
sleeping in the same room as Tom, then the SocialContext vari-
able will have a value Silent, indicating that any behavior carried
out by the robot should be as silent as possible. Social context is thus
inferred from the sensors in the environment. The following example
shows how we can model the SocialContext context variable’s
value Silent.

(ContextVariable SocialContext)
(Operator
(Head SocialContext::Silent)

(RequiredState regl OtherChild::Sleeping)
(Constraint Finishes (Head, reql))

As in the previous example, this means that the SocialContext
with value Silent will be true only when the sensor value of other
child has the value Sleeping. Also, Silent will be true un-
til the sensor ceases to indicate this reading, as modeled with the
Finishes temporal constraint.

Social norms are represented as constraints between particular val-
ues of the social context variable and concrete robot actions. Hence,
we can model constraints so that while the social context is silent,
the robot is able to execute only silent robot actions — for example,
that the robot can inform Tom only silently with a beep and message
on its screen.

For a clearer view and better understanding of the mechanisms de-
scribed above, we describe how we encoded our story into the plan-
ner’s domain description language. We list all the concepts that are
discussed previously in the text, e.g., variables representing robot be-
haviors, sensors, context variables, etc.

3.2.1 Domain Description

Sensors.
Sensors:

In the domain language of the planner, we specify two

e ChildLocation: the location of the child of interest; it can be
Bedroom, Corridor or School.

e OtherChild: modeling whether the other child is sleeping or
not; its possible values are Sleeping and None.

Context Variables. In the domain, we also define two context
variables. Their values describe the context that is inferred from the
Sensors:

e ChildState represents the state of the child from the per-
spective which the planner is interested in (the child’s attending
school). It is defined so that if the child is in the bedroom (infor-
mation coming from the ChildLocation sensor), it will have
value SkippingSchool;if the child is in the corridor, the vari-
able assumes value Engaged, describing that the child is avail-
able for the escort behavior; if the child is in school, this context
variable will have value InTheSchool. Based on these values,
goals (defined in the domain) are posted in the constraint network,
which the planner satisfies by applying the appropriate operators
for robot action modeled in the domain (described below).

e SocialContext models the current social context. The
value of this variable is also inferred from the sensor value
OtherChild: when the OtherChild is Sleeping the
SocialContext variable will be Silent, it will be None (see
definition of SocialContext: :Silent in Section[3.2).

Behaviors. The domain defines three state variables modeling the
robot’s capabilities:

e RobotInteraction: a state variable whose values represent
the different behaviors of the robot. These are:

— FollowMe: the robot informs the child that school has started,
asking him/her if escorting help is needed. In our domain lan-
guage this behavior is defined as follows:



(Operator
(Head RobotInteraction::FollowMe)
(RequiredState regl RobotMoveTo::Bedroom)
(RequiredState reg2 ChildState::SkippingSchool)
(RequiredState reg3 SocialContext::NoContext)
(Constraint After (Head, reql))

)(Constraint Duration([1500, INF] (reql)

Note that the robot’s interaction behavior FollowMe is ap-
plicable only when SocialContext has value NoContext
and ChildState is SkippingSchool. Additionally, the
operator requires an action by another robot (described later).
There are two constraints in the definition, indicating that
FollowMe must be after robot movement to the bedroom, and
that movement must have some duration.

— DisplayFollowMe: a variant of the above, requiring the

robot to display the request it on its screen.

(Operator
(Head RobotInteraction::DisplayFollowMe)
(RequiredState reqgl RobotMoveTo::Bedroom)
(RequiredState reg2 ChildState::SkippingSchool)
(RequiredState reg3 SocialContext::Silent)
(Constraint After (Head, reql))
(

) Constraint Duration[1500, INF] (reqgl)

Note that DisplayFollowMe is applicable only when con-
text variable SocialContext is Silent.

— Welcome: the robot verbally welcomes the child to school
once escorting has completed.

e RobotMovesTo, whose values are:
— School: the robot moves to schoolroom.
— Bedroom: the robot moves to bedroom.

e EscortTo, modeling escorting capabilities and whose domain
contains only one location: School

4 ILLUSTRATIVE EXPERIMENT

The purpose of this section is to demonstrate how things work to-
gether in practice as well as to further clarify the underlying con-
cepts. The key-point that we want to stress is that in different social
situations our planner will find different solutions to achieve the same
goal, if such a solution exists. Thus, we created two similar scenarios
where the only difference is the social context. The goal remains the
same in both scenarios.

4.1 Description and Methods of the Experiment

Trials. The domain described above was employed to run a trial
of the system with a TurtleBot robotic platform [1]. Sensors values
are controlled by the experimenter with the keyboard, and behav-
iors are simplified as explained further down. The middleware used
was ROS [20], and the planner was wrapped by a ROS node. The
experiment consisted of two trials. Upon starting the system and run-
ning the planner node, there was no input from the sensors. Then, the
experimenter simulated values Bedroom and None for the sensors
ChildLocationand ChildState respectively. The value of the
sensor OtherChild was set to None throughout the first trial, re-
flecting that there was no other child in the bedroom. Upon activation
of the sensor readings, the planner inferred two values for its con-
text variables: the value of ChildState: :SkippingSchool
and the value for SocialContext::NoContex. At that
point, in order to support the SkippingSchool value, as de-
scribed in the domain description, the planner posted the goal
RobotInteraction: :FollowMe, reflecting that the robot

should verbalize the request to follow it. The goal was satisfied by
requiring the robot to move to the bedroom before verbalizing the
request. The first action in the plan was dispatched, and the Turtle-
Bot moved to the bedroom where a human participant was located.
Upon finishing the action, the TurtleBot executive published the
status message as SUCCEEDED on a feedback topic. The planner
node, which subscribes to this topic, dispatched the next behavior,
RobotInteraction: :FollowMe. Instead of actually verbaliz-
ing the request, the behavior was implemented in such a way as
to make a predefined sound for simplicity. Also for simplicity, the
planner assumed that the child agreed to go to school. The experi-
menter then simulated the value ChildLocation: :corridor.
The context variable ChildState became Engaged, mean-
ing that the child was ready to be escorted to the school. Since
one of requirements of this inference was the escorting behav-
ior, this was posted as a goal, leading the planner to enrich
the plan using the escorting behavior. This behavior was imple-
mented by means of the built-in “Follower” TurtleBot demo node,
which resulted in the robot following the experimenter down the
corridor. Once the robot and experimenter were in the school-
room, the latter hit the keyboard button to set the value of the
ChildLocation sensor to Schoolroom. At this point, the con-
text variable ChildState became InTheSchool, and the plan-
ner posted the goal RobotInteraction: :Welcome. This be-
havior was dispatched to the robot, and consisted in playing another
predefined sound.

The second trial followed the same procedure, with the only differ-
ence that that sensor value for the OtherChild was Sleeping,
indicating that there was another child sleeping in the bedroom. Thus
the context variable SocialContext assumed value Silent.
Also, the same goal to inform the child was posted, and the plan-
ner synthesized a plan to inform him and escort him to the school
room. Under the new social context, the planner could not use the
same behavior as in the first trial, rather selecting the behavior
RobotInteraction: :DisplayFollowMe, which led beep-
ing and the message being showed on screen. The trial proceeded
similarly to the previous case, with the robot dispatching behaviors
and informing it of successful completions of behaviors.

4.2 Hardware and Software Framework

Environment. The experiment was carried out in the PEIS Home

environment [21]] at Orebro university (see fig. . The environment
has 3 rooms, two of which were used to represent schoolroom and
the bedroom. The room between those two rooms was used as a cor-
ridor. We used a Turtlebot 2 robot [1] to execute the planner’s com-
mands, and an adult human male participant acted as the child skip-
ping school. The robot was equipped with a laptop (Intel Celeron(R)
CPU 1.10Ghz x2 and 3.8GB RAM) with Ubuntu 12.04.1 LTS (32-
bit) and ROS Hydro.

Software Architecture.
ize the experiment:

Two ROS nodes were developed to real-

e A node encapsulating the planner. The planner is based on the
Meta-CSP Framework (see metacsp.org) and is implemented
in Java. As a consequence, the ROS note was written in ROSJava.
The node publishes custom ROS message that contain information
about the current dispatched action, coordinates of the location for
navigation behaviors, and the upper bound of the behavior’s dura-
tion, which is used as a timeout by the robot executive. Messages
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Figure 2. The PEIS environment and the Turtlebot 2. In the experiment, one room
represented the bedroom, another the schoolroom, and the room between them was

used as a corridor.

are published only when the planner dispatches a behavior. This
node subscribes to a feedback topic that informs it of behavior ter-
mination. The node runs from a remote location (not locally on
the Turtlebot), publishing ROS massages over the network to the
ROS master running on the Turtlebot’s laptop.

e A node responsible for receiving planned behaviors, setting up
their execution and generating feedback messages. It subscribes to
the topic published by the planner. This node prepares and sends
all messages to lower-level Turtlebot nodes for behavior execu-
tion. It also subscribes to the Turtlebot’s topics in order to monitor
the status of execution, reflecting it in its own feedback messages
for the planner. This node is written in c++, and it is executed
locally on the turtlebot’s laptop.

4.3 Results
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Figure 3. Time-lines of trial 1. The time-lines of each variable represent the evo-
lution of its values over time. As shown, the OtherChild sensor variable has
a value None, which implies SocialContext::NoContext, indicating that
there is no social context of importance. Consequently, the executed behavior is
RobotInteraction::FollowMe, indicating that robot is speaking (possibly
loudly) to the child.

A video of the experiment is available online [10]. Figures [3]
and [] show the time-lines for the two scenarios. The only dif-
ference in the time-lines is robot’s interaction behavior: in Fig-
ure [3] there is no child sleeping in the room, so the robot
can execute the RobotInteraction::FollowMe behavior;
in the second scenario (Figure [) this is not possible since the
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Figure 4. Time-lines trial 2. In this case, the value of the OtherChild sensor is
Sleeping. Thus the planner infers that the SocialContext is Silent, and the

robot executes behavior Robot Interaction: :DisplayFollowMe.

other child is sleeping in the bedroom, prompting the robot
to execute RobotInteraction::DisplayFollowMe as a
result of the social constraint between SocialContext and
RobotInteraction variables. This illustrates the main point dis-
cussed in this paper, namely the feasibility of using social constraints
to model conditions on the robot’s behavior.

5 DISCUSSION

Norms in our domain are still at the basic level. They are related to
concrete variables, and they should be more general. They are fixed,
meaning that cannot be changed online. They are also built as hard
constraints, meaning that the robot must always follow them. In this
section we discuss related work and other issue connected to gener-
alizing the approach.

Kockemann et al. have developed a planner that uses so-
called interaction constraints to model relations between robot ac-
tions and human activities and preferences. A casual planner is com-
bined with a constraint-based representation for modeling interaction
constraints between humans and robot actions. Separating the casual
planner from the interaction constraints leads to computational ad-
vantages in large-scale scenarios. In contrast, Pecora et al. [18] use
context recognition techniques to infer the state of humans, which
is further used to generate human aware plans. Our research can be
seen as a combination of these two approaches: context inference is
heavily leveraged, as in the latter, but extended to the social level;
however the relation between human activities and the robot’s action
are not modeled by hand-coded “interaction constraints”, rather as
more general relations between social context and robot actions.

Boella [4]] noted that the roots of social norms come from differ-
ent scientific fields. In sociology from Gibbs and Therborn [24]],
in philosophy from Alchourron and Bulygin [2]. In computer sci-
ence, influential work underscoring the importance of using deon-
tic logic to model relations between agents comes from Meyer and
Wieringa [14]]. These works have not been applied to a robotic con-
text so far, but we plan to use them for inspiration to extend our
approach to model more complex social norms and behaviors.

Regarding human environments, adding social norms into the
robots’ plans should lead to more acceptable behaviors of robots and
better joint cooperation in human-robot interactions. But the con-
cept of (social) norms is also central to multi-agent systems [4]]. By
introducing social norms into multi-agent systems, it is possible to
model more complex relations between agents, to control the dy-
namics of agents interactions, to employ agent hierarchies, roles, etc.



Some or all of these concepts may be applicable to our research in
social aware planning, and future work will investigate this avenue.

One of the important questions in research regarding norms is the
impact norms have on agent autonomy. One way to address this prob-
lem is to have soft norms [4]. Dignum has divided social norms into
three levels: the private level, the contract level, and the conventional
level [9]. On the private level, an agent could decide not to carry
out an obligation, thus paying a price for breaking it. He also uses a
deontic logic to model relations between agents.

As Therborn notes [24], social rules and norms are usually not
fixed in a given environment. In our future work we plan to use notion
of institutions [23} [19] to model social dynamics and the relations
between different sets of social norms and rules.

Generally speaking, there are two main reasons to use norms for
regulating interaction between agents (robots or humans). One is hu-
man robot interaction. Humans are used to using different social
norms in different social contexts. Artificial agents should also ad-
here to these or similar norms in order to behave naturally. Another,
perhaps more interesting reason to use social norms, is for robot-
robot/multi-agent interaction, e.g., to facilitate developing these in-
teraction skills. If biological systems evolved to use them (see, e.g.,
social insects), can they be helpful in Al and robotics, and how?
Norms are particularly useful for reducing the need to communi-
cate explicitly among agents. Shoham and Tennenholtz explain how
norms are useful in regulating the traffic of small mobile robots [22].
Following norms like “drive on the right side of the street” allows to
avoid both constant negotiation between robots and centralized coor-
dination. This view of norms was first explicitly stated by Moses and
Tennenholtz [[17]. The authors also argued that there is a trade-off in
using norms: on one hand, norms limiting the degree of freedom of
the agent; on the other, the same agent can expect certain behavior
from other agents.

Both social norms and institutional frameworks may be considered
as an additional level of complexity for the computational system re-
sponsible for an agent’s behavior. However, their use may lead to
simplified social dynamics and more coherent group behavior, sig-
nificantly lowering the computational effort for the agent. This is an-
other trade-off that will be more closely addressed in our future work.
By measuring processing effort, we may be able to define quantita-
tive means to measure the efficiency of adding norms in the interac-
tion system.

With the introduction of social constraints into human-aware plan-
ning, we place our research at the intersection of at least two disci-
plines, namely human-aware planning and multi-agent systems. The
advantage of our approach, for now, is its simplicity. We also see
significant possibilities of extension in different directions.

6 CONCLUSIONS

In this paper we have argued that awareness of social rules and norms
should be included in robotic systems that operate in human environ-
ments. We have defined a social aware planning approach by intro-
ducing constraints between human social context and robot actions.
Our approach is based on the Constraint-Based Planning paradigm,
which has already been employed in multi-robot planning [7] and
HAP [12,[18]]. A particular implementation of this approach was ex-
tended to support our idea.

The presented planning solution is illustrated on a simple example,
which is meant to serve only as a proof of concept and as a starting
point in this research. The planning methodology used is more gen-
eral than the example suggests, and future work will include develop-

ing a general theoretical framework for Social Aware Planning. This
will include a more general integration of norms, the study of dy-
namic norms using an institutional framework, and norms that could
be broken in certain conditions.
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