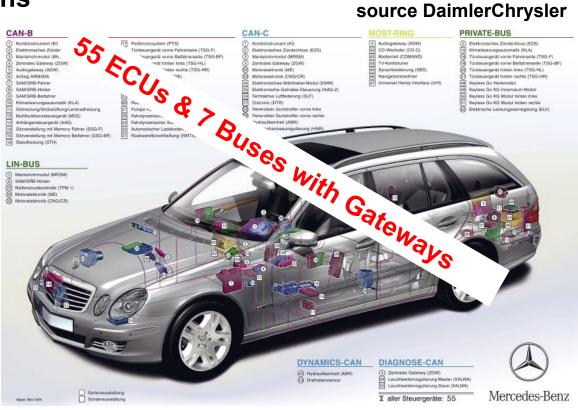
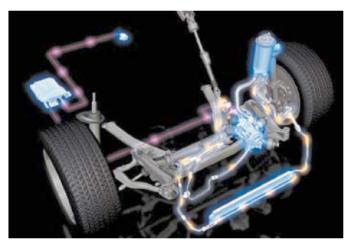
Automotive Networks – Are New Busses and Gateways the Answer or Just Another Challenge?



ESWEEK Panel

Oct. 3, 2007

Automotive Networks


- complex networks
 - hundreds of functions
 - 50+ ECUs (Electronic Control Unit)
 - networked functions
 - many suppliers
 - heterogeneous
- why is this so complicated?

Network is subject to diverging requirements

communication

- periodic communication (control engineering)
- event triggered communication
- data rates from few kbit/s to > 10Mbit/s (entertainment)
- real-time
 - guaranteed throughput
 - max. end-to-end latencies
- safety
 - different safety levels
 - entertainment → comfort function
 → active front steering → x-by-wire

source BMW

defined by SIL levels - IEC 61508 (automotive ISO26262)

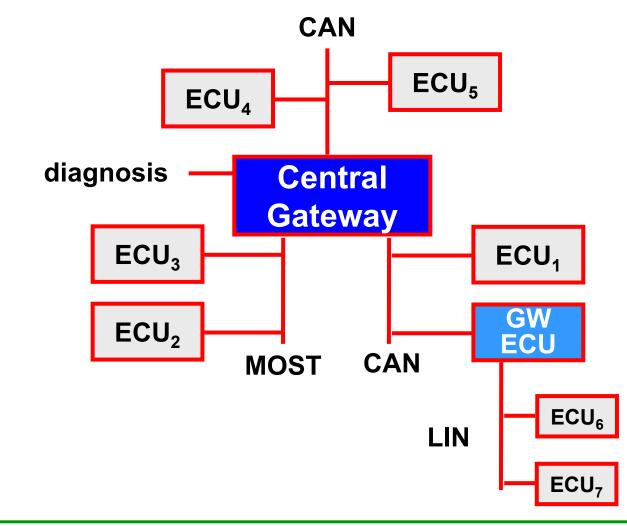
R. Ernst, TU Braunschweig

Network is subject to different cost targets

cost

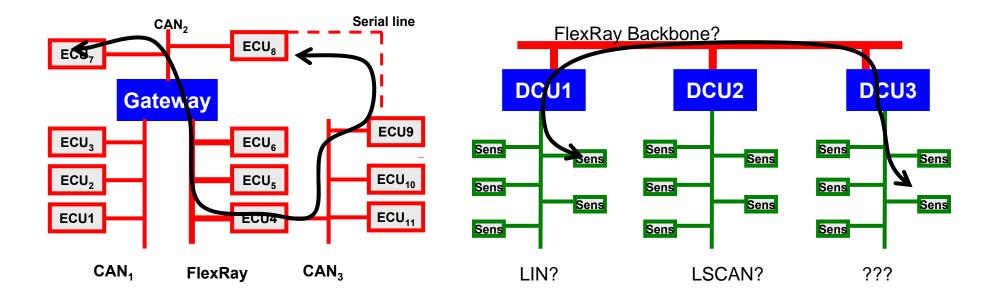
- different volumes few thousand to several million cars
- cost of model updates and special model editions
- different cost budgets
 - feature dependent engine controller ↔ interior light
 - safety level dependent
 - different price/performance
 - high end feature (luxury) ↔ commodity feature (low end)

Wide scope of technical solutions in one network


- CAN
 - the "traditional" bus, defined in 1983, still dominant today
 - packet based, variable frame length
 - CSMA/CD, static priority arbitration
 - ranges from 125kbit/s up to 1Mbit/s (ISO 11898-2)
- FlexRay
 - covers wide range of communication requirements, upcoming
 - two parts:
 - static segment using TDMA based protocol, fixed slot assignment
 - dynamic segment with prioritization
 - 10 Mbit/s, higher cost than CAN, used in first cars (BMW)
- LIN low cost, single wire, single master, up to 20kbit/s, round-robin, power ctrl.
- MOST optical ring bus, 24Mbit/s

R. Ernst, TU Braunschweig

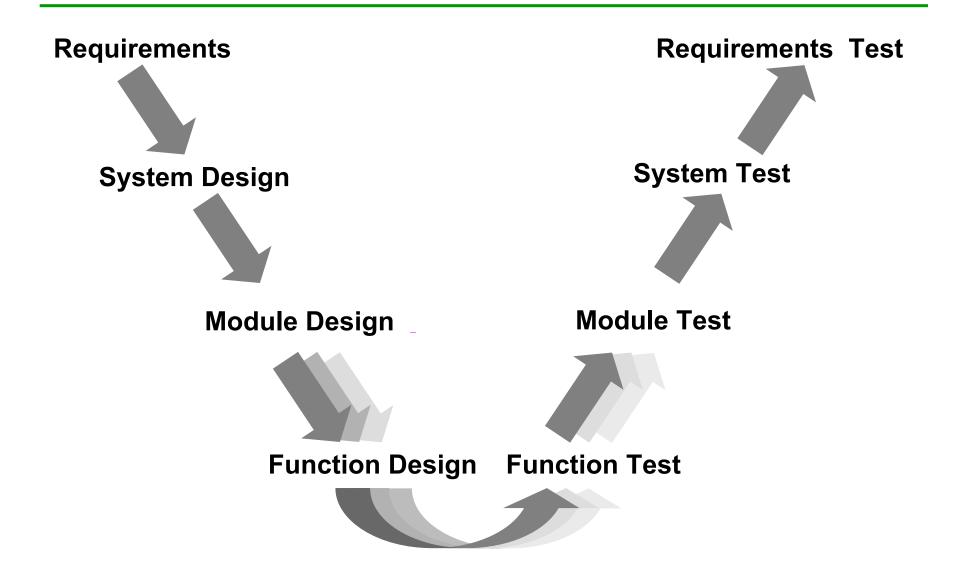
Bus applications


- CAN
 - low-speed: typically body electronics high-speed: typically powertrain, chassis
- LIN:
 - typically for simpler peripheral ECUs, e.g. door (central locking, power window ...)
- MOST:
 - for multimedia applications in high-end cars (in mid-priced cars, CAN is used also for media traffic)
- FlexRay:
 - to replace high-speed CAN when 500kBit/s not enough + for safety-critical applications + as backbone

- component and function sharing needs bus coupling
 - example: wheel rotation sensor

Network topology evolution

- timing, cost, function increasingly difficult
- alternative topologies investigated

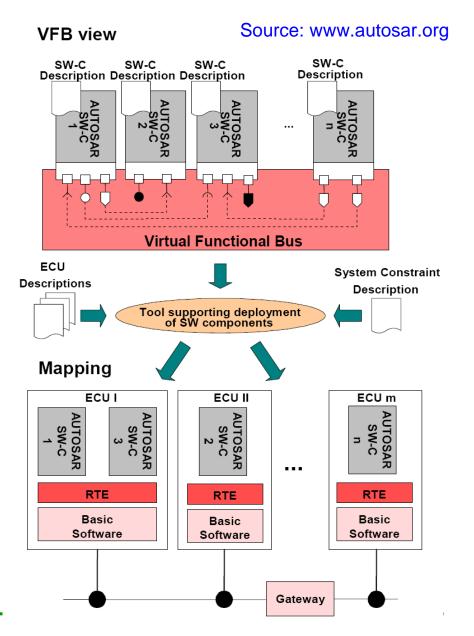


Network influenced by design process

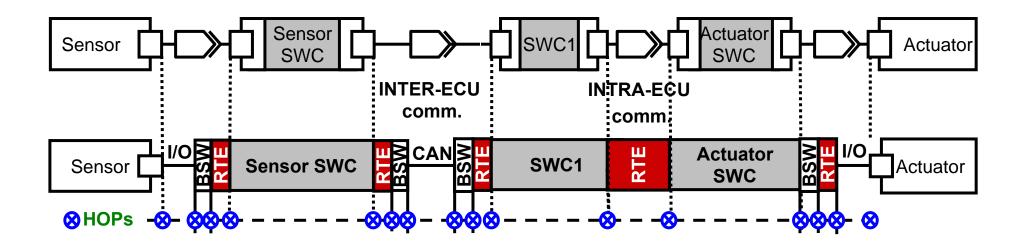
organizational structure

- OEM defines bus topology and physical constraints
- supplier defines ECUs (clients) and subnets
- protocol parameters "by contract"
- design process
 - network is defined early in the design process
 - network planning cannot be based on executable code
 - must consider tradeoff *individual car* ↔ *product line* (platform)
 - must consider *legacy functions*
 - function integration and network verification need
 - verifiable specifications
 - efficient methods and tools

The V process model



Software


- different application models
 - periodic execution
 - automata based, event driven models
 - diagnosis software (C programs)
 - no coherent model on the application language level
- commercial tools e.g. Matlab/Simulink
- manually optimized combined with generated code
- code from multiple sources (OEM, supplier, 3rd party)
- growing efforts to find common run-time environment
 - AUTOSAR

AUTOSAR Methodology

- SW-Components (SW-C)
 - encapsulate the applications
- Virtual Functional Bus (VFB)
 - communication mechanisms
 - interface to Basic SW
- Runtime Environment (RTE)
 - VFB implementation on a specific ECU
- Basic Software (BSW)
 - infrastructural functionality on an ECU

Communication and timing chains in AUTOSAR

- AUTOSAR has an important influence on the network
- what will be the impact on network design?
 - Currently, AUTOSAR has no coherent timing model
 - ongoing projects (e.g. TIMMO)
 - will AUTOSAR entail a corresponding network initiative?

The panel

Industry

- Bernd Hedenetz, DaimlerChrysler AG, Germany
- Gernot Spiegelberg, Siemens VDO Automotive AG, Germany
- Marek Jersak, Symtavision GmbH, Germany

Academia

- Hermann Kopetz, TU Wien, Austria
- Alberto Sangiovanni-Vincentelli, UC Berkeley, USA

Introduction & Moderation

Rolf Ernst, TU Braunschweig, Germany

Some questions

- are the current protocols, architectures, design methods, and tools appropriate? What innovations are most urgently needed?
- who shall develop the networks in the future, the OEM or a 1st tier supplier? What would be the consequence for the design process?
- Do we need interoperable network service standards, e.g. as a complement to AUTOSAR? Will there be a unified automotive "internet protocol" that eventually dominates all communication in a car?
- How will future car-to-car communication be included in the automotive network strategy if it shall be used for real-time applications, such as in driver assistance systems?