
Discrete Structures II

Ulf Nilsson
TCSLAB, IDA, LiU

1

Fixed points

5

Fixed points

Definition Consider an operation f : A → A. An element
a ∈ A is called a fixed point of f iff f(a) = a.

Some questions

When does f have a fixed point?

Which are the preferable fixed point(s), when more than
one?

How can we compute fixed points?

6

Properties of functions

Definition Let (A,≤) be a poset. A function f : A → A is
said to be

monotone (order-preserving) iff f(x) ≤ f(y) whenever
x ≤ y.

antimonotone iff f(x) ≥ f(y) whenever x ≤ y.

inflationary iff x ≤ f(x) for all x ∈ A.

idempotent iff f(f(x)) = f(x) for all x ∈ A.

7

Continuous maps

Definition A function f : A → A is continuous if it preserves
existing least upper bounds; i.e. if B ⊆ A and

∨
B exists,

then
∨

{f(x) | x ∈ B} exists and equals f(
∨

B).

Definition Let (A,≤) be a cpo. A function f : A → A is
called (chain-) continuous if

f(
∨
{x0, x1, x2, . . .}) =

∨
{f(x0), f(x1), f(x2), . . .}

for every ascending chain x0 < x1 < x2 < . . . in A.

8

Continuous maps II

Definition Let (A,≤) be a complete lattice. A function
f : A → A is continuous if

f(
∨

B) =
∨
{f(x) | x ∈ B}

for every B ⊆ A.

Theorem Every continuous map is monotonic.

Theorem If f : A → A is monotone and A is finite, then f

must be continuous.

9

Pre- and post-fixed points

Definition Let (A,≤) be a poset and consider a map
f : A → A. An x ∈ A such that f(x) ≤ x is called a pre-fixed
point of f . Similarly x ∈ A is called a post-fixed point of f iff
x ≤ f(x).

10

Knaster-Tarski’s theorem

Theorem Let (A,≤) be a complete lattice and f : A → A

monotone. Then
∧
{x ∈ A | f(x) ≤ x} is the least fixed point

of f , and
∨
{x ∈ A | x ≤ f(x)} is the greatest fixed point of f .

Theorem Let (A,≤) be a cpo and f : A → A monotone.
Then f has a least fixed point.

11

Notation

The least fixed point of f is denoted LFP(f). Alternatively

µx.f(x)

with reading: the least x such that f(x) = x.

The greatest fixed point of f is denoted GFP(f), alternatively

νx.f(x).

12

Kleene’s fixed point theorem

Theorem Let (A,≤) be a cpo (or a complete lattice) and
assume that f : A → A is continuous. Then fω(⊥) is the
least fixed point of f .

Note that
fω(⊥) =

∨

n<ω

fn(⊥).

That is, LFP(f) is the least upper bound of the Kleene
sequence,

⊥, f(⊥), f2(⊥), . . . , fn(⊥), . . .

13

Finite automata on infinite words

14

Automata based verification

Input:

A set of all possible system behaviors, modeled by a set
of ω-words (typically encoded as a Büchi automaton);

A set of allowed behaviors, expressed in a temporal
logic (typically LTL, Linear time logic) which translates
into a Büchi automaton;

15

Automata based verification II

Aim:

To check if allowed behaviors contain system behavior;
i.e. if L(System) ⊆ L(Spec)

Alternatively:

Check (non-)emptiness of L(System) ∩ L(Spec)

16

Finite languages

A a finite alphabet

A∗ the set of finite strings over A

Notation: u, v, w ∈ A∗ and U, V,W ⊆ A∗

Concatenation: U.V

Union: U + V

Finite iteration: U∗

17

Infinite languages

A a finite alphabet

Aω the set of (countably) infinite words over A (so called
ω-words)

Notation: α, β, γ ∈ Aω and L ⊆ Aω

Infinite iteration:

Uω = {α ∈ Aω | ∃w1w2 . . . ∈ U,α = w1w2 . . . }.

18

Büchi automata

Definition A Büchi automaton B over an alphabet A is a
tuple (Q, q0,∆, F) where Q is a finite set of states, q0 ∈ Q an
initial state, ∆ ⊆ Q×A×Q a transition relation and F ⊆ Q a
set of accepting, or final, states.

Definition A run of a Büchi automaton B = (Q, q0,∆, F) on
an ω-word α is an infinite word of states σ ∈ Qω such that
σ(0) = q0 and (σ(i), α(i), σ(i + 1)) ∈ ∆ for all i ≥ 0.

19

Büchi automata (cont)

Let inf(σ) be the set of all states that occur infinitely
often in the ω-word σ.

An ω-word α is accepted by a Büchi automaton B iff
there is a run σ on α such that F ∩ inf(σ) 	= ∅.

The ω-language of a Büchi automaton B,

L(B) = {α | B accepts α}.

An ω-language definable by some Büchi automaton is
said to be Büchi recognizable.

20

Closure properties

Theorem If L1, L2 ⊆ Aω are Büchi recognizable languages,
then so are L1 ∪ L2 and L1 ∩ L2.

Proposition If U ⊆ A∗ is regular, then Uω is Büchi
recognizable.

Proposition If U ⊆ A∗ is regular and L ⊆ Aω is Büchi
recognizable then so is U.L.

21

ω-regular languages

Theorem An ω-language L is Büchi recognizable iff there
is some n ≥ 0 and regular languages of finite words, Ui and
Vi where 1 ≤ i ≤ n, such that

L =

n⋃

i=1

Ui.(Vi)
ω.

Such languages are called ω-regular languages.

22

Emptiness and containment

Theorem The nonemptiness problem for Büchi automata
is decidable and solvable in O(m+n) time, where m is the
number of states, and n the number of transitions.

Note that
L1 ⊆ L2 iff L1 ∩ L2 = ∅.

23

Complementation of Büchi automata

Büchi automata are closed under complementation.

Theorem If L is Büchi recognizable, then so is Aω \ L.

Relatively easy to complement deterministic Büchi (but
the result is non-deterministic Büchi).

Complementing non-deterministic Büchi is very
complicated!

24

More on complementation

Let W ⊆ A∗ be a regular language and let

lim W = {α ∈ Aω | ∀m ≥ 0 ∃n > m s.t. α(0) . . . α(n) ∈ W}.

Then

Theorem An ω-language L is deterministically Büchi
recognizable iff there is some regular language W ⊆ A∗

such that L = lim W .

Theorem The language (a + b)∗bω is not deterministically
Büchi recognizable.

25

Muller automata

Definition A Muller automaton B over an alphabet A is a
tuple (Q, q0,∆, F) where Q is a finite set of states, q0 ∈ Q an
initial state, ∆ ⊆ Q × A × Q a transition relation and F ⊆ 2Q

a set of sets of accepting states.

Definition An ω-word α is accepted by a Muller automaton
B iff there exists a run σ on α such that inf(σ) ∈ F .

26

McNaughton’s theorem

Theorem If L is deterministically Muller recognizable, then
L is (non-deterministically) Büchi recognizable.

General idea:

“Guess” when we enter a set Fj of accepting states,

Make sure that we never leave Fj,

Make sure that all states in Fj are visited infinitely often.

27

McNaughton’s theorem (Part 2)

Theorem If L is (nondeterministically) Büchi recognizable,
then L is deterministically Muller recognizable.

A Safra tree over Q is a finite, ordered tree with nodes from
the set {1, 2, . . . , 2 · |Q|} where

Each node is labeled by some R ⊆ Q,

Siblings have disjoint labels,

The union of all siblings is a proper subset of the parent.

Some nodes may be marked as final.

28

Safra’s construction

Let B = (Q, q0,∆, F) be a Büchi automaton, and let
M = (Q′, q′

0
,∆′, F ′) be a Muller automaton where

Q′ is the set of Safra trees over Q

q′
0

is the Safra tree consisting of a node labeled {q0}
(marked as final if q0 ∈ F),

A set S of Safra trees is in F ′ iff some node name
appears in each t ∈ S, and in some t ∈ S this node
name is marked as final,

and ∆′(q, a) = . . .

29

Safra’s construction (cont.)

. . . and ∆′(q, a) = . . .

1. For each node n (labeled Sn) in q, apply the powerset
construction on input a. Mark n as non-final.

2. For each node in this tree whose label contains a final
state, branch off a new son containing the final states
(pick a free name in {1, 2, . . . , 2 · |Q|}). Mark the new
node as final.

3. Remove a state q from a node (and all its descendants)
if q appears in a left sibling. Remove all nodes labeled
by empty set (apart from the root).

4. For each node n, remove all descendants if their union
equals the label of n. If so, mark n as final.

30

Complementation of Muller automata

Theorem If (Q, q0,∆, F) is a deterministic Muller
automaton accepting L ⊆ Aω, then (Q, q0,∆, 2Q \ F) accepts
Aω \ L, i.e. the complement of L.

Problem is subject to active research. . .

31

