Discrete Structures II

Ulf Nilsson TCSLAB, IDA, LiU

Fixed points

101. FN1

-+ 107- FN+-

Fixed points

Definition Consider an operation $f: A \rightarrow A$. An element $a \in A$ is called a *fixed point* of f iff f(a) = a.

Some questions

- When does f have a fixed point?
- Which are the preferable fixed point(s), when more than one?
- How can we compute fixed points?

Properties of functions

- PAYE

14+0-404-441

Definition Let (A, \leq) be a poset. A function $f: A \to A$ is said to be

- monotone (order-preserving) iff $f(x) \le f(y)$ whenever $x \le y$.
- **•** antimonotone iff $f(x) \ge f(y)$ whenever $x \le y$.
- inflationary iff $x \leq f(x)$ for all $x \in A$.
- *idempotent* iff f(f(x)) = f(x) for all $x \in A$.

Continuous maps

Definition A function $f: A \to A$ is *continuous* if it preserves existing least upper bounds; i.e. if $B \subseteq A$ and $\bigvee B$ exists, then $\bigvee \{f(x) \mid x \in B\}$ exists and equals $f(\bigvee B)$.

Definition Let (A, \leq) be a cpo. A function $f: A \rightarrow A$ is called (chain-) *continuous* if

 $f(\bigvee\{x_0, x_1, x_2, \ldots\}) = \bigvee\{f(x_0), f(x_1), f(x_2), \ldots\}$

for every ascending chain $x_0 < x_1 < x_2 < \dots$ in A.

Continuous maps II

- 44-744-

1110.141.041.041.0

Definition Let (A, \leq) be a complete lattice. A function $f: A \rightarrow A$ is *continuous* if

$$f(\bigvee B) = \bigvee \{ f(x) \mid x \in B \}$$

for every $B \subseteq A$.

Theorem Every continuous map is monotonic.

Theorem If $f: A \rightarrow A$ is monotone and A is finite, then f must be continuous.

Pre- and post-fixed points

Definition Let (A, \leq) be a poset and consider a map $f: A \to A$. An $x \in A$ such that $f(x) \leq x$ is called a *pre-fixed point* of f. Similarly $x \in A$ is called a *post-fixed point* of f iff $x \leq f(x)$.

Knaster-Tarski's theorem

Theorem Let (A, \leq) be a complete lattice and $f: A \to A$ monotone. Then $\bigwedge \{x \in A \mid f(x) \leq x\}$ is the least fixed point of f, and $\bigvee \{x \in A \mid x \leq f(x)\}$ is the greatest fixed point of f.

101-FN

Theorem Let (A, \leq) be a cpo and $f: A \rightarrow A$ monotone. Then f has a least fixed point.

Notation

The least fixed point of f is denoted LFP(f). Alternatively

 $\mu x.f(x)$

with reading: the least x such that f(x) = x.

The greatest fixed point of f is denoted GFP(f), alternatively

 $\nu x.f(x).$

Kleene's fixed point theorem

Theorem Let (A, \leq) be a cpo (or a complete lattice) and assume that $f: A \to A$ is continuous. Then $f^{\omega}(\perp)$ is the least fixed point of f.

Note that

$$f^{\omega}(\perp) = \bigvee_{n < \omega} f^n(\perp).$$

That is, $\mathsf{LFP}(f)$ is the least upper bound of the Kleene sequence,

 $\perp, f(\perp), f^2(\perp), \dots, f^n(\perp), \dots$

104-101

Finite automata on infinite words

Automata based verification

Input:

- A set of all possible system behaviors, modeled by a set of ω-words (typically encoded as a Büchi automaton);
- A set of allowed behaviors, expressed in a temporal logic (typically LTL, Linear time logic) which translates into a Büchi automaton;

10-104-101

Automata based verification II

Aim:

• To check if allowed behaviors contain system behavior; i.e. if $\mathcal{L}(System) \subseteq \mathcal{L}(Spec)$

Alternatively:

• Check (non-)emptiness of $\mathcal{L}(System) \cap \overline{\mathcal{L}(Spec)}$

Finite languages

0-1041-01

107. FN1

- A a finite alphabet
- A^* the set of finite strings over A
- Notation: $u, v, w \in A^*$ and $U, V, W \subseteq A^*$
- Concatenation: U.V
- **J** Union: U + V
- **•** Finite iteration: U^*

Infinite languages

- A a finite alphabet
- A^{ω} the set of (countably) infinite words over A (so called ω -words)
- **•** Notation: $\alpha, \beta, \gamma \in A^{\omega}$ and $L \subseteq A^{\omega}$
- Infinite iteration:

$$U^{\omega} = \{ \alpha \in A^{\omega} \mid \exists w_1 w_2 \ldots \in U, \alpha = w_1 w_2 \ldots \}.$$

Büchi automata

- PAYE

101-646

Definition A Büchi automaton \mathcal{B} over an alphabet A is a tuple (Q, q_0, Δ, F) where Q is a finite set of *states*, $q_0 \in Q$ an *initial state*, $\Delta \subseteq Q \times A \times Q$ a *transition relation* and $F \subseteq Q$ a set of *accepting*, or *final*, states.

Definition A *run* of a Büchi automaton $\mathcal{B} = (Q, q_0, \Delta, F)$ on an ω -word α is an infinite word of states $\sigma \in Q^{\omega}$ such that $\sigma(0) = q_0$ and $(\sigma(i), \alpha(i), \sigma(i+1)) \in \Delta$ for all $i \ge 0$.

Büchi automata (cont)

- Let $inf(\sigma)$ be the set of all states that occur infinitely often in the ω -word σ .
- An *ω*-word *α* is *accepted* by a Büchi automaton *B* iff there is a run *σ* on *α* such that $F \cap inf(\sigma) \neq \emptyset$.
- The ω -language of a Büchi automaton \mathcal{B} ,

 $\mathcal{L}(\mathcal{B}) = \{ \alpha \mid \mathcal{B} \text{ accepts } \alpha \}.$

An ω-language definable by some Büchi automaton is said to be Büchi recognizable.

Closure properties

- PAYE

14+0+144+04+01

Theorem If $L_1, L_2 \subseteq A^{\omega}$ are Büchi recognizable languages, then so are $L_1 \cup L_2$ and $L_1 \cap L_2$.

Proposition If $U \subseteq A^*$ is regular, then U^{ω} is Büchi recognizable.

Proposition If $U \subseteq A^*$ is regular and $L \subseteq A^{\omega}$ is Büchi recognizable then so is U.L.

ω -regular languages

Theorem An ω -language L is Büchi recognizable iff there is some $n \ge 0$ and regular languages of finite words, U_i and V_i where $1 \le i \le n$, such that

$$L = \bigcup_{i=1}^{n} U_i \cdot (V_i)^{\omega}.$$

Such languages are called ω -regular languages.

Emptiness and containment

Theorem The nonemptiness problem for Büchi automata is decidable and solvable in O(m+n) time, where *m* is the number of states, and *n* the number of transitions.

Note that

$$L_1 \subseteq L_2 \text{ iff } L_1 \cap \overline{L_2} = \emptyset.$$

101-141

Complementation of Büchi automata

Büchi automata are closed under complementation.

Theorem If *L* is Büchi recognizable, then so is $A^{\omega} \setminus L$.

- Relatively easy to complement deterministic Büchi (but the result is non-deterministic Büchi).
- Complementing non-deterministic Büchi is very complicated!

More on complementation

. . . .

14-14-101-01-01-0

Let $W \subseteq A^*$ be a regular language and let

 $\lim W = \{ \alpha \in A^{\omega} \mid \forall m \ge 0 \ \exists n > m \ \mathbf{s.t.} \ \alpha(0) \dots \alpha(n) \in W \}.$

Then

Theorem An ω -language L is deterministically Büchi recognizable iff there is some regular language $W \subseteq A^*$ such that $L = \lim W$.

Theorem The language $(a + b)^* b^{\omega}$ is not deterministically Büchi recognizable.

Muller automata

Definition A Muller automaton \mathcal{B} over an alphabet A is a tuple (Q, q_0, Δ, F) where Q is a finite set of *states*, $q_0 \in Q$ an *initial state*, $\Delta \subseteq Q \times A \times Q$ a *transition relation* and $F \subseteq 2^Q$ a set of sets of *accepting states*.

Definition An ω -word α is accepted by a Muller automaton \mathcal{B} iff there exists a run σ on α such that $\inf(\sigma) \in F$.

McNaughton's theorem

Theorem If L is deterministically Muller recognizable, then L is (non-deterministically) Büchi recognizable.

General idea:

- **•** "Guess" when we enter a set F_j of accepting states,
- Make sure that we never leave F_j ,
- **•** Make sure that all states in F_j are visited infinitely often.

101-10-101-101-101-101-

McNaughton's theorem (Part 2)

Theorem If L is (nondeterministically) Büchi recognizable, then L is deterministically Muller recognizable.

A Safra tree over Q is a finite, ordered tree with nodes from the set $\{1,2,\ldots,2\cdot |Q|\}$ where

- **•** Each node is labeled by some $R \subseteq Q$,
- Siblings have disjoint labels,
- The union of all siblings is a proper subset of the parent.

Some nodes may be marked as final.

Safra's construction

· + N + · + N + ·

+ N4 - 701

Let $B = (Q, q_0, \Delta, F)$ be a Büchi automaton, and let $M = (Q', q'_0, \Delta', F')$ be a Muller automaton where

- \blacksquare Q' is the set of Safra trees over Q
- q'_0 is the Safra tree consisting of a node labeled $\{q_0\}$ (marked as final if $q_0 \in F$),
- A set *S* of Safra trees is in F' iff some node name appears in each $t \in S$, and in some $t \in S$ this node name is marked as final,
- and $\Delta'(q,a) = \dots$

Safra's construction (cont.)

- ... and $\Delta'(q, a) = \dots$
 - 1. For each node n (labeled S_n) in q, apply the powerset construction on input a. Mark n as non-final.
 - 2. For each node in this tree whose label contains a final state, branch off a new son containing the final states (pick a free name in $\{1, 2, \ldots, 2 \cdot |Q|\}$). Mark the new node as final.
 - 3. Remove a state *q* from a node (and all its descendants) if *q* appears in a left sibling. Remove all nodes labeled by empty set (apart from the root).
 - 4. For each node n, remove all descendants if their union equals the label of n. If so, mark n as final.

Complementation of Muller automata

Theorem If (Q, q_0, Δ, F) is a deterministic Muller automaton accepting $L \subseteq A^{\omega}$, then $(Q, q_0, \Delta, 2^Q \setminus F)$ accepts $A^{\omega} \setminus L$, i.e. the complement of L.

101- FN

Problem is subject to active research...