Discrete Structures II

Ulf Nilsson TCSLAB, IDA, LiU

FNF

- 4040

1 N 7 - 101

Overview

Topics covered

- Ordered sets
- Lattices and complete partial orders
- Ordinal numbers
- Well-founded and transfinite induction
- Fixed points
- Finite automata for infinite words

Some areas of application

11+0+141-6410

- Semantics of programming languages
- Concurrency theory
- Type systems
- Inheritance
- Taxonomical reasoning
- Proof- and model-theory of logics
- Computability theory
- Formal verification

Preliminaries

Cartesian product

101.4N1

101-0-101-6N+

Definition...

 $A \times B := \{(a, b) \mid a \in A \land b \in B\}$

Generalized to finite products...

$$A_1 \times \dots \times A_n := \{(x_1, \dots, x_n) \mid x_i \in A_i\}$$

Or simply...

 A^n

(Set of *n*-tuples.)

Strings

An element $w \in \Sigma^n$ is also called a *string* of length $n \ge 0$. The set of all strings over a (finite) alphabet Σ is denoted Σ^* , and

$$\Sigma^* := \bigcup_{i \ge 0} \Sigma^i$$

A set of strings is called a *language*.

Relations

- PAYE

149.404 = 14.1441.041

A relation R on A and B:

 $R\subseteq A\times B$

Alternative notations

 $(a,b) \in R \text{ or } R(a,b) \text{ or } a R b$

Properties of relations

A binary relation $R \subseteq A \times A$ is

- reflexive iff R(x, x) for every $x \in A$.
- *irreflexive* iff R(x, x) for no $x \in A$.
- **antisymmetric** iff x = y whenever R(x, y) and R(y, x).
- symmetric iff R(x, y) whenever R(y, x).
- *transitive* iff R(x, z) whenever R(x, y) and R(y, z).

More relations

D-PAYI

14-141-041-041-0

Identity relation on A, denoted ID_A: R(x, y) iff x = y and $x \in A$

Composition $R_1 \circ R_2$ of $R_1 \subseteq A \times B$ and $R_2 \subseteq B \times C$:

 $R_1 \circ R_2 := \{ (a, c) \in A \times C \mid \exists b \in B \ (R_1(a, b) \land R_2(b, c)) \}.$

Note: if $R \subseteq A \times B$ then $ID_A \circ R = R \circ ID_B = R$.

More on composition

Iterated Composition of $R \subseteq A \times A$

 $\begin{aligned} R^0 &:= \mathsf{ID}_A, \\ R^{n+1} &:= R^n \circ R \quad (n \in \mathbf{N}), \\ R^+ &:= \bigcup_{n \in \mathbf{Z}^+} R^n, \\ R^* &:= \bigcup_{n \in \mathbf{N}} R^n. \end{aligned}$

 R^+ : the *transitive closure* of R, R^* : the *reflexive and transitive closure* of R.

Example: Transition system

A transition system is a pair (C, \Rightarrow) where

- \bullet C is a set of configurations;
- $\Rightarrow \subseteq (C \times C)$ is a transition relation.

- PDYR- 4

Functions

Space of all *functions* from *A* to *B* denoted $A \rightarrow B$ $f: A \rightarrow B$ is a relation on $A \times B$ where each $a \in A$ is related to exactly one element in *B*.

Notation

$$(a,b) \in f \text{ or } (a \mapsto b) \in f \text{ or } f(a) = b$$

Graph of a function f

$$\{0 \mapsto 1, 1 \mapsto 1, 2 \mapsto 2, 3 \mapsto 6, 4 \mapsto 24 \ldots\}.$$

Closedness

A set $B \subseteq A$ is *closed* under $f \colon A \to A$ iff $f(x) \in B$ for all $x \in B$, that is if $f(B) \subseteq B$.

14-141-040

Extends to *n*-ary functions $f: A^n \to A$.

Example: Regular Languages

Consider subsets of Σ^* , i.e. languages. The set of regular languages is closed under

- complementation (if L is regular, then so is $\Sigma^* \setminus L$);
- union (if L_1, L_2 are regular, then so is $L_1 \cup L_2$);
- intersection (dito).

Digression

- FDYD

Note: A^n may be seen as the space of all functions from $\{0, \ldots, n-1\}$ to A.

Example: $(5,4,2) \in \mathbb{N}^3$ is isomorphic to $\{0 \mapsto 5, 1 \mapsto 4, 2 \mapsto 2\}.$

 $\mathbf{N} \to A$ can be thought of as an infinite product " A^{∞} ", but usually written A^{ω} .

Powersets

Powerset of A: the set of all subsets of a set A

Denoted: 2^A .

Note: 2^A may be viewed as $A \rightarrow \{0, 1\}$.

Note: The space $A \rightarrow B$ is sometimes written B^A .

Example: Boolean interpretation

A boolean interpretation of a set of parameters *Var* is a mapping in (*Var* \rightarrow {0,1}). For instance, if *Var* = {x, y, z}

11+0-4046-40 =

$$\bullet \ \sigma_1 = \{ x \mapsto 1, y \mapsto 0, z \mapsto 0 \}$$

$$\ \, \bullet \ \, \sigma_3 = \{x \mapsto 1, y \mapsto 1, z \mapsto 0\}$$

$$\bullet \ \sigma_4 = \{x \mapsto 0, y \mapsto 0, z \mapsto 1\}$$

$$\sigma_5 = \{ x \mapsto 1, y \mapsto 0, z \mapsto 1 \}$$

Example (cont)

...or they can be seen as elements of 2^{Var}

•
$$\sigma_0 = \emptyset$$

• $\sigma_1 = \{x\}$
• $\sigma_2 = \{y\}$
• $\sigma_3 = \{x, y\}$
• $\sigma_4 = \{z\}$
• $\sigma_5 = \{x, z\}$
• $\sigma_6 = \{y, z\}$
• $\sigma_7 = \{x, y, z\}$

Basic orderings

. KUAL

1+0-144-041

Preorder/quasi ordering

Definition A relation $R \subseteq A \times A$ is called a *preorder* (or *quasi ordering*) if it is reflexive and transitive.

Partial order

- 1 1 41

1110.4046.40

Definition A preorder $R \subseteq A \times A$ is called a *partial order* if it is also antisymmetric.

Definition If $\leq \subseteq A \times A$ is a partial order then the pair (A, \leq) is called a *partially ordered set*, or *poset*.

Every preorder induces a (unique) poset where \leq is lifted to the equivalence classes of the relation

 $x \equiv y$ iff $x \leq y$ and $y \leq x$

Example: Prefix order

Consider an alphabet Σ and its finite words Σ^* . Let $u, v \in \Sigma^*$ and denote by uv the concatenation of u and v. Define the relation $\trianglelefteq \subseteq \Sigma^* \times \Sigma^*$ as follows

 $u \leq v$ iff there is a $w \in \Sigma^*$ such that uw = v.

Example: Information order

Consider the following partial functions from ${\bf N}$ to ${\bf N}$

• $f_0 = \{0 \mapsto 1\}$

$$f_1 = \{ 0 \mapsto 1, 1 \mapsto 1 \}$$

$$f_2 = \{ 0 \mapsto 1, 1 \mapsto 1, 2 \mapsto 2 \}$$

$$f_3 = \{ 0 \mapsto 1, 1 \mapsto 1, 2 \mapsto 2, 3 \mapsto 6 \}$$

 $g_2 = \{ 0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 1 \}$

We say that e.g. f_3 is more defined than f_2 since $f_2 \subseteq f_3$, while e.g. f_3 and g_2 are unrelated. The ordering

$$f \leq g \text{ iff } f \subseteq g$$

1+0-1046.1

is called the information ordering.

Strict order

Definition A relation $R \subseteq A \times A$ which is transitive and irreflexive is called a (*strict*) *partial order*.

Total orders/chains and anti-chains

Definition A poset (A, \leq) is called a *total order* (or *chain*, or *linear order*) if either $a \leq b$ or $b \leq a$ for all $a, b \in A$.

Definition A poset (A, \leq) is called an *anti-chain* if $x \leq y$ implies x = y, for all $x, y \in A$.

194.1441.0411

Used also in the context of strict orders.

Induced order

Let $\mathcal{A} := (A, \leq)$ be a poset and $B \subseteq A$. Then $\mathcal{B} := (B, \preceq)$ is called the *poset induced by* \mathcal{A} if

 $x \leq y$ iff $x \leq y$ for all $x, y \in B$.

Componentwise and pointwise order

Theorem Let (A, \leq) be a poset, and consider a relation \leq on $A \times A$ defined as follows

 $(x_1, y_1) \preceq (x_2, y_2)$ iff $x_1 \le x_2 \land y_1 \le y_2$.

Then $(A \times A, \preceq)$ is a poset.

Theorem Let (A, \leq) be a poset, and consider a relation \preceq on $B \rightarrow A$ defined as follows

 $\sigma_1 \preceq \sigma_2$ iff $\sigma_1(x) \leq \sigma_2(x)$ for all $x \in B$.

Then $(B \rightarrow A, \preceq)$ is a poset.

Example: Pointwise order

Consider the function space ($Var \rightarrow \{0,1\}$) of boolean interpretations of *Var*, given the poset ($\{0,1\},\leq$):

Lexicographical order

Theorem Let $\Sigma = \{a_1, \ldots, a_n\}$ be a finite alphabet totally ordered $a_1 < \ldots < a_n$. Let Σ^* be the set of all (possibly empty) strings from Σ and define $x_1 \ldots x_i \sqsubset y_1 \ldots y_j$ iff

11+0-PAYE-1

- i < j and $x_1 \dots x_i = y_1 \dots y_i$, or
- there is some k < i such that $x_{k+1} < y_{k+1}$ and $x_1 \dots x_k = y_1 \dots y_k$.

Then (Σ^*, \Box) is a (strict) total order.

Well-founded relations and well-orders

Extremal elements

Definition Consider a relation $R \subseteq A \times A$. An element $a \in A$ is called *R*-*minimal* (or simply minimal) if there is no $b \in A$ such that b R a. Similary, $a \in A$ is called *maximal* if there is no $b \in A$ such

Definition An element $a \in A$ is called *least* if $a \ R \ b$ for all

1+0-1041.4

 $b \in A$; it is called *greatest* if b R a for all $b \in A$.

that a R b.

Well-founded and well-ordered sets

Definition A relation $R \subseteq A \times A$ is said to be *well-founded* if every non-empty subset of A has an R-minimal element.

Definition A strict total order (A, <) which is well-founded is called a well-order.

More on well-founded sets

Theorem Any subset (B, <) of a well-order (A, <) is a well-order.

Definition Let (A, \leq) be a poset. A well-order $x_0 < x_1 < ...$ where $\{x_0, x_1, ...\} \subseteq A$ is called an *ascending chain in* A. Descending chain is defined dually.

Theorem A relation $< \subseteq A \times A$ is well-founded iff (A, <) contains no infinite descending chain $\ldots < x_2 < x_1 < x_0$.

11+0-144-641

Order ideals

Definition Let (A, \leq) be a poset. A set $B \subseteq A$ is called a *down-set* (or an *order ideal*) iff

 $y \in B$ whenever $x \in B$ and $y \leq x$.

A set $B \subseteq A$ induces a down-set, denoted $B \downarrow$,

 $B \downarrow := \{ x \in A \mid \exists y \in B, x \le y \} .$

By $\mathcal{O}(A)$ we denote the set of all down-sets in A,

 $\left\{B \downarrow \mid B \subseteq A\right\}.$

A notion of up-set, also called order filter, is defined dually.

D-FDYF

1110-FDY-FN

Lattices

Upper and lower bounds

Definition Let (A, \leq) be a poset and $B \subseteq A$. Then $x \in A$ is called an *upper bound* of *B* iff $y \leq x$ for all $y \in B$ (often written $B \leq x$ by abuse of notation). The notion of *lower bound* is defined dually.

Definition Let (A, \leq) be a poset and $B \subseteq A$. Then $x \in A$ is called a *least upper bound* of *B* iff $B \leq x$ and $x \leq y$ whenever $B \leq y$. The notion of *greatest lower bound* is defined dually.

Lattice

Definition A *lattice* is a poset (A, \leq) where every pair of elements $x, y \in A$ has a least upper bound denoted $x \lor y$ and greatest lower bound denoted $x \land y$.

Synonyms:

Least upper bound/lub/join/supremum Greatest lower bound/glb/meet/infimum

1+0-1-046-1

Lattice terminology

Definition Let (A, \leq) be a lattice. An element $a \in A$ is said to *cover* an element $b \in A$ iff a > b and there is no $c \in A$ such that a > c > b.

Definition The *length* of a poset (A, \leq) (and hence lattice) is |C| - 1 where *C* is the longest chain in *A*.

D-1041-1

Complete lattice

Definition A *complete lattice* is a poset (A, \leq) where every subset $B \subseteq A$ (finite or infinite) has a least upper bound $\bigvee B$ and a greatest lower bound $\bigwedge B$.

 $\bigvee A$ is called the *top* element and is usually denoted \top .

 $\bigwedge A$ is called the *bottom* element and is denoted \bot .

Theorem Any finite lattice is a complete lattice.

Complemented lattice

Definition Let (A, \leq) be a lattice with \perp and \top . We say that $a \in A$ is the *complement* of $b \in A$ iff $a \lor b = \top$ and $a \land b = \perp$.

Definition We say that a lattice is *complemented* if every element has a complement.

1110.4141.041

Distributive and Boolean lattice

Definition A lattice (A, \leq) is said to be *distributive* iff $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ for all $a, b, c \in A$.

Definition A lattice (A, \leq) is said to be *Boolean* iff it is complemented and distributive.

More on lattices

0-104r

11+0-101-01-10

Definition Let *A* be a set and $B \subseteq 2^A$. If (B, \subseteq) is a (complete) lattice, then we refer to it as a (complete) *lattice* of sets.

Theorem We have the following results:

- 1. Any lattice of sets is distributive.
- 2. $(2^A, \subseteq)$ is distributive, and Boolean.
- 3. If (A, \leq) is Boolean then the complement of all $x \in A$ is unique.

Lattices as algebras

The algebraic structure (A,\otimes,\oplus) is a lattice if the operations satisfy

- (L₁) Idempotency: $a \otimes a = a \oplus a = a$
- (L₂) Commutativity: $a \otimes b = b \otimes a$ and $a \oplus b = b \oplus a$
- (L₃) Associativity: $a \otimes (b \otimes c) = (a \otimes b) \otimes c$ and $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
- (*L*₄) Absorption: $a \otimes (a \oplus b) = a$ and $a \oplus (a \otimes b) = a$

The algebra induces partial order: $x \le y$ iff $x \otimes y = x$ (iff $x \oplus y = y$).

- FDYD

101-101-64

Complete partial orders (cpo's)

Complete partial order

Definition A partial order (A, \leq) is said to be *complete* if it has a bottom element \perp and if each ascending chain

 $a_0 < a_1 < a_2 < \dots$

has a least upper bound $\bigvee \{a_0, a_1, a_2, ...\}$.

Ordinal numbers

0-1441-4

14-1701-04M

Cardinal numbers

Two sets *A* and *B* are isomorphic iff there exists a bijective map $f: A \rightarrow B$ (and hence a bijection $f^{-1}: B \rightarrow A$). Notation $A \sim B$.

 \sim is an equivalence relation.

A cardinal number is an equivalence class of all isomorphic sets.

(Order-) isomorphism

Definition A function f from (A, <) to (B, \prec) is called *monotonic (isotone, order-preserving)* iff x < y implies $f(x) \prec f(y)$ for all $x, y \in A$.

Definition A monotonic map f from (A, <) into (B, \prec) is called

- a monomorphism if f is injective;
- an *epimorphism* if f is onto (surjective);
- **•** an *isomorphism* if f is bijective (injective and onto).

Notation: $A \simeq B$ when A and B are isomorphic (the order is implicitly understood).

110-PDYD-1

Ordinal numbers

Definition An ordinal (number) is an equivalence class of all (order-)isomorphic well-orders.

Notation: The finite ordinals 0, 1, 2, 3, ...

Definition Ordinals containing well-orders with a maximal element are called *successor ordinals*. Otherwise they are called *limit ordinals*.

Convention: we often identify a well-order, e.g. 1 < 2 < 3, with its ordinal number, e.g. 3, and write that 3 = 1 < 2 < 3.

Finite von Neumann ordinals

|--|

0	d.
0	\emptyset
1	$\{\emptyset\}=0\cup\{0\}=\{0\}$
2	$\{\emptyset,\{\emptyset\}\}=1\cup\{1\}=\{0,1\}$
3	$\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}=2\cup\{2\}=\{0,1,2\}$
4	$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} =$
	${f 3}\cup \{{f 3}\}=\{{f 0},{f 1},{f 2},{f 3}\}$
-1-	

14-141-0411

etc.

More generally $\alpha + 1 = \alpha \cup \{\alpha\}$.

Infinite (countable) ordinals

Least infinite ordinal: 0, 1, 2, 3, ...Denoted: ω

Then follows: $0, 1, 2, 3, ..., \omega$ Denoted: $\omega + 1$

...and: 0, 1, 2, 3, ..., ω , ω + 1 Denoted: ω + 2

...up to: 0, 1, 2, 3, ..., ω , ω + 1, ω + 2, ... Denoted: $\omega + \omega$ (or $\omega \cdot 2$)

von Neumann ordinals

More generally

- \blacksquare Ø is a von Neumann ordinal,
- **•** if α is a von Neumann ordinal then so is $\alpha \cup \{\alpha\}$,
- if $\{\alpha_i\}_{i\in I}$ is a set of von Neumann ordinals, then so is

$$\bigcup_{i \in I} \alpha_i$$

11+0-141-64112

Addition of ordinals

Consider two ordinals α and β . Let $A \in \alpha$ and $B \in \beta$ be disjoint well-orders.

Then $\alpha + \beta$ is the equivalence class of all well-orders isomorphic to $A \cup B$ ordered as before and where in addition x < y for all $x \in A$ and $y \in B$.

Addition of finite ordinals reduces to ordinary addition of natural numbers, but ...

Ordinal addition isn't commutative

Consider

 $\omega = \{1, 2, 3, 4, ...\}$ and $\mathbf{1} = \{0\}$.

Then $\omega + 1$ is 1, 2, 3, 4, ..., 0 which is isomorphic to $0, 1, 2, ..., \omega$.

11+0.+141.91=

But $1 + \omega$ is $0, 1, 2, 3, 4, \dots$ which is the limit ordinal ω .

Hence, $1 + \omega \neq \omega + 1$.

Multiplication of ordinals

Consider two ordinals α and β . Let $A \in \alpha$ and $B \in \beta$.

Then $\alpha \cdot \beta$ is the equivalence class of all well-orders isomorphic to $\{(a, b) \mid a \in A \text{ and } b \in B\}$ where $(a_1, b_1) \prec (a_2, b_2)$ iff either $b_1 < b_2$, or $b_1 = b_2$ and $a_1 < a_2$.

Multiplication of finite ordinals reduces to ordinary multiplication of natural numbers, but...

Multiplication isn't commutative

 $\mathbf{2}\cdot\boldsymbol{\omega}$ is

 $(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), \dots$

which is isomorphic to ω .

 $\boldsymbol{\omega}\cdot\mathbf{2}$ is

 $(0,0), (1,0), (2,0), (3,0), \dots, (0,1), (1,1), (2,1), (3,1), \dots$

11+0-17++++

which is isomorpic to $\omega + \omega$.

Hence, $\omega \cdot \mathbf{2} = \omega + \omega \neq \mathbf{2} \cdot \omega = \omega$.

Properties of ordinal arithmetic

For all ordinals α, β, γ :

• $\alpha + 0 = 0 + \alpha = \alpha$ • $\omega + 1 \neq 1 + \omega$ • $\alpha \cdot 1 = 1 \cdot \alpha = \alpha$ • $\omega + \omega = \omega \cdot 2 \neq 2 \cdot \omega = \omega$ • If $\beta \neq 0$ then $\alpha < \alpha + \beta$ • If $\alpha < \beta$ then $\alpha + \gamma \leq \beta + \gamma$ • If $\alpha < \beta$ then $\gamma + \alpha < \gamma + \beta$ • $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ • $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$

Ascending ordinal powers

Consider a function $f: A \rightarrow A$ on a complete lattice (A, \leq) . The (ascending) ordinal powers of f are

 $\begin{array}{lll} f^0(x) & := & x \\ f^{\alpha+1}(x) & := & f(f^{\alpha}(x)) \text{ for successor ordinals } \alpha + 1 \\ f^{\alpha}(x) & := & \bigvee_{\beta < \alpha} f^{\beta}(x) \text{ for limit ordinals } \alpha \end{array}$

11110-1141-60-

When x equals \perp we write f^{α} instead of $f^{\alpha}(\perp)$.

Descending ordinal powers

$$\begin{array}{lll} f^0(x) & := & x \\ f^{\alpha+1}(x) & := & f(f^{\alpha}(x)) \text{ for successor ordinals } \alpha + 1 \\ f^{\alpha}(x) & := & \bigwedge_{\beta < \alpha} f^{\beta}(x) \text{ for limit ordinals } \alpha \end{array}$$

Principles of induction

PAY

Standard inductions

Standard induction derivation rule:

$$P(0) \qquad \forall n \in \mathbf{N} \ (P(n) \Rightarrow P(n+1))$$
$$\forall n \in \mathbf{N} \ P(n)$$

Applies to any well-ordered set isomorphic to ω .

Strong mathematical induction

$$P(0) \qquad \forall n \in \mathbf{N} \ (P(0) \land \dots \land P(n) \Rightarrow P(n+1))$$
$$\forall n \in \mathbf{N} \ P(n)$$

or more economically

$$\forall n \in \mathbf{N} \ (P(0) \land \dots \land P(n-1) \Rightarrow P(n))$$
$$\forall n \in \mathbf{N} \ P(n)$$

PD-KPAL

Well-founded induction

Inductive definition

D-PAYE

11+0.+141.+14

An inductive definition of A consists of three statements

- **•** one or more base cases, B, saying that $B \subseteq A$,
- one or more *inductive cases*, saying schematically that if $x \in A$ and R(x, y), then $y \in A$,
- an extremal condition stating that A is the least set closed under the previous two.

Let $\mathcal{R}(X) := \{y \mid \exists x \in X, R(x, y)\}$. Then A is the least set X such that

 $B \subseteq X$ and $\mathcal{R}(X) \subseteq X$, that is, $B \cup \mathcal{R}(X) \subseteq X$

(A, R) is typically well-founded (or can be made well-founded) with minimal elements B.

Well-founded induction principle

Let (A, \prec) be a well-founded set and *P* a property of *A*.

- 1. If P holds of all minimal elements of A, and
- 2. whenever *P* holds of all *x* such that $x \prec y$ then *P* holds of *y*,

then P holds of all $x \in A$.

Well-founded induction principle II

As a derivation rule:

$$\forall y \in A \ (\forall x \in A \ (x < y \Rightarrow P(x)) \Rightarrow P(y))$$
$$\forall x \in A \ P(x)$$

11+0-1741-041)

Transfinite induction

Transfinite induction principle

Let P be a property of ordinals, then P is true of every ordinal if

- \blacksquare P is true of 0,
- *P* is true of $\alpha + 1$ whenever *P* is true of α ,
- P is true of β whenever β is a limit ordinal and P is true of every α < β.

110-1041-01

Transfinite induction II

Theorem Let (A, \leq) be a complete lattice and assume that $f: A \to A$ is monotonic. We prove that $f^{\alpha} \leq f^{\alpha+1}$ for all ordinals α .

Lemma Let (A, \leq) be a complete lattice and assume that $f: A \to A$ is monotonic. If $B \subseteq A$ then $f(\bigvee B) \ge \bigvee \{f(x) \mid x \in B\}.$

101-101-- 14-141-0