Discrete Structures II

Ulf Nilsson TCSLAB, IDA, LiU

Overview

Topics covered

- Ordered sets
- Lattices and complete partial orders
- Ordinal numbers
- Well-founded and transfinite induction
- Fixed points
- Finite automata for infinite words

H15

Some areas of application

- Semantics of programming languages
- Concurrency theory
- Type systems
- Inheritance
- Taxonomical reasoning
- Proof- and model-theory of logics
- Computability theory
- Formal verification

Preliminaries

Cartesian product

Definition...

$$
A \times B:=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Generalized to finite products...

$$
A_{1} \times \ldots \times A_{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in A_{i}\right\}
$$

Or simply...
(Set of n-tuples.)

Strings

An element $w \in \Sigma^{n}$ is also called a string of length $n \geq 0$. The set of all strings over a (finite) alphabet Σ is denoted Σ^{*}, and

$$
\Sigma^{*}:=\bigcup_{i \geq 0} \Sigma^{i}
$$

A set of strings is called a language.

15

Relations

A relation R on A and B :

$$
R \subseteq A \times B
$$

Alternative notations

$$
(a, b) \in R \text { or } R(a, b) \text { or } a R b
$$

Properties of relations

A binary relation $R \subseteq A \times A$ is

- reflexive iff $R(x, x)$ for every $x \in A$.
- irreflexive iff $R(x, x)$ for no $x \in A$.
- antisymmetric iff $x=y$ whenever $R(x, y)$ and $R(y, x)$.
- symmetric iff $R(x, y)$ whenever $R(y, x)$.
- transitive iff $R(x, z)$ whenever $R(x, y)$ and $R(y, z)$.

More relations

Identity relation on A, denoted ID_{A} :

$$
R(x, y) \text { iff } x=y \text { and } x \in A
$$

Composition $R_{1} \circ R_{2}$ of $R_{1} \subseteq A \times B$ and $R_{2} \subseteq B \times C$:

$$
R_{1} \circ R_{2}:=\left\{(a, c) \in A \times C \mid \exists b \in B\left(R_{1}(a, b) \wedge R_{2}(b, c)\right)\right\} .
$$

Note: if $R \subseteq A \times B$ then $\mathrm{ID}_{A} \circ R=R \circ \mathrm{ID}_{B}=R$.

More on composition

Iterated Composition of $R \subseteq A \times A$

$$
\begin{array}{ll}
R^{0} & :=\mathrm{ID}_{A}, \\
R^{n+1} & :=R^{n} \circ R \quad(n \in \mathbf{N}), \\
R^{+} & :=\bigcup_{n \in \mathbf{Z}^{+}} R^{n}, \\
R^{*} & :=\bigcup_{n \in \mathbf{N}} R^{n} .
\end{array}
$$

R^{+}: the transitive closure of R,
R^{*} : the reflexive and transitive closure of R.

101 路

Example: Transition system

A transition system is a pair (C, \Rightarrow) where

- C is a set of configurations;
- $\Rightarrow \subseteq(C \times C)$ is a transition relation.

$$
\begin{gathered}
\Rightarrow=\{(a, b),(b, c),(c, d),(d, e),(e, b),(e, c)\} \\
\Rightarrow^{2}=\{(a, c),(b, d),(c, e),(d, b),(d, c),(e, c),(e, d)\}
\end{gathered}
$$

Functions

Space of all functions from A to B denoted $A \rightarrow B$ $f: A \rightarrow B$ is a relation on $A \times B$ where each $a \in A$ is related to exactly one element in B.

Notation

$$
(a, b) \in f \text { or }(a \mapsto b) \in f \text { or } f(a)=b
$$

Graph of a function f

$$
\{0 \mapsto 1,1 \mapsto 1,2 \mapsto 2,3 \mapsto 6,4 \mapsto 24 \ldots\} .
$$

Closedness

A set $B \subseteq A$ is closed under $f: A \rightarrow A$ iff $f(x) \in B$ for all $x \in B$, that is if $f(B) \subseteq B$.

Extends to n-ary functions $f: A^{n} \rightarrow A$.

Example: Regular Languages

Consider subsets of Σ^{*}, i.e. languages.
The set of regular languages is closed under

- complementation (if L is regular, then so is $\Sigma^{*} \backslash L$);
- union (if L_{1}, L_{2} are regular, then so is $L_{1} \cup L_{2}$);
- intersection (dito).

H1.

Digression

Note: A^{n} may be seen as the space of all functions from $\{0, \ldots, n-1\}$ to A.

Example: $(5,4,2) \in \mathbf{N}^{3}$ is isomorphic to $\{0 \mapsto 5,1 \mapsto 4,2 \mapsto 2\}$.
$\mathrm{N} \rightarrow A$ can be thought of as an infinite product " A^{∞} ", but usually written A^{ω}.

Powersets

Powerset of A : the set of all subsets of a set A
Denoted: 2^{A}.
Note: 2^{A} may be viewed as $A \rightarrow\{0,1\}$.
Note: The space $A \rightarrow B$ is sometimes written B^{A}.

Example: Boolean interpretation

A boolean interpretation of a set of parameters Var is a mapping in $(\operatorname{Var} \rightarrow\{0,1\})$. For instance, if $\operatorname{Var}=\{x, y, z\}$

- $\sigma_{0}=\{x \mapsto 0, y \mapsto 0, z \mapsto 0\}$
- $\sigma_{1}=\{x \mapsto 1, y \mapsto 0, z \mapsto 0\}$
- $\sigma_{2}=\{x \mapsto 0, y \mapsto 1, z \mapsto 0\}$
- $\sigma_{3}=\{x \mapsto 1, y \mapsto 1, z \mapsto 0\}$
- $\sigma_{4}=\{x \mapsto 0, y \mapsto 0, z \mapsto 1\}$
- $\sigma_{5}=\{x \mapsto 1, y \mapsto 0, z \mapsto 1\}$
- $\sigma_{6}=\{x \mapsto 0, y \mapsto 1, z \mapsto 1\}$
- $\sigma_{7}=\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}$

Example (cont)

...or they can be seen as elements of 2^{Var}

- $\sigma_{0}=\emptyset$
- $\sigma_{1}=\{x\}$
- $\sigma_{2}=\{y\}$
- $\sigma_{3}=\{x, y\}$
- $\sigma_{4}=\{z\}$
- $\sigma_{5}=\{x, z\}$
- $\sigma_{6}=\{y, z\}$
- $\sigma_{7}=\{x, y, z\}$

Basic orderings

Preorder/quasi ordering

Definition A relation $R \subseteq A \times A$ is called a preorder (or quasi ordering) if it is reflexive and transitive.

E.

Partial order

Definition A preorder $R \subseteq A \times A$ is called a partial order if it is also antisymmetric.

Definition If $\leq \subseteq A \times A$ is a partial order then the pair (A, \leq) is called a partially ordered set, or poset.

Every preorder induces a (unique) poset where \leq is lifted to the equivalence classes of the relation

$$
x \equiv y \text { iff } x \leq y \text { and } y \leq x
$$

Example: Prefix order

Consider an alphabet Σ and its finite words Σ^{*}. Let $u, v \in \Sigma^{*}$ and denote by $u v$ the concatenation of u and v. Define the relation $\unlhd \subseteq \Sigma^{*} \times \Sigma^{*}$ as follows
$u \unlhd v$ iff there is a $w \in \Sigma^{*}$ such that $u w=v$.

Example: Information order

Consider the following partial functions from \mathbf{N} to \mathbf{N}

- $f_{0}=\{0 \mapsto 1\}$
- $f_{1}=\{0 \mapsto 1,1 \mapsto 1\}$
- $f_{2}=\{0 \mapsto 1,1 \mapsto 1,2 \mapsto 2\}$
- $f_{3}=\{0 \mapsto 1,1 \mapsto 1,2 \mapsto 2,3 \mapsto 6\}$
- $g_{2}=\{0 \mapsto 1,1 \mapsto 2,2 \mapsto 1\}$

We say that e.g. f_{3} is more defined than f_{2} since $f_{2} \subseteq f_{3}$, while e.g. f_{3} and g_{2} are unrelated. The ordering

$$
f \leq g \text { iff } f \subseteq g
$$

is called the information ordering.

Strict order

Definition A relation $R \subseteq A \times A$ which is transitive and irreflexive is called a (strict) partial order.

Total orders/chains and anti-chains

Definition A poset (A, \leq) is called a total order (or chain, or linear order) if either $a \leq b$ or $b \leq a$ for all $a, b \in A$.

Definition A poset (A, \leq) is called an anti-chain if $x \leq y$ implies $x=y$, for all $x, y \in A$.

Used also in the context of strict orders.

Induced order

Let $\mathcal{A}:=(A, \leq)$ be a poset and $B \subseteq A$. Then $\mathcal{B}:=(B, \preceq)$ is called the poset induced by \mathcal{A} if
$x \preceq y$ iff $x \leq y$ for all $x, y \in B$.

Componentwise and pointwise order

Theorem Let (A, \leq) be a poset, and consider a relation \preceq on $A \times A$ defined as follows

$$
\left(x_{1}, y_{1}\right) \preceq\left(x_{2}, y_{2}\right) \text { iff } x_{1} \leq x_{2} \wedge y_{1} \leq y_{2} .
$$

Then $(A \times A, \preceq)$ is a poset.
Theorem Let (A, \leq) be a poset, and consider a relation \preceq on $B \rightarrow A$ defined as follows

$$
\sigma_{1} \preceq \sigma_{2} \text { iff } \sigma_{1}(x) \leq \sigma_{2}(x) \text { for all } x \in B .
$$

Then $(B \rightarrow A, \preceq)$ is a poset.

Example: Pointwise order

Consider the function space ($\operatorname{Var} \rightarrow\{0,1\}$) of boolean interpretations of Var, given the poset $(\{0,1\}, \leq)$:

ㄷ․․

Lexicographical order

Theorem Let $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ be a finite alphabet totally ordered $a_{1}<\ldots<a_{n}$. Let Σ^{*} be the set of all (possibly empty) strings from Σ and define $x_{1} \ldots x_{i} \sqsubset y_{1} \ldots y_{j}$ iff

- $i<j$ and $x_{1} \ldots x_{i}=y_{1} \ldots y_{i}$, or
- there is some $k<i$ such that $x_{k+1}<y_{k+1}$ and $x_{1} \ldots x_{k}=y_{1} \ldots y_{k}$.
Then $\left(\Sigma^{*}, \sqsubset\right)$ is a (strict) total order.

Well-founded relations and well-orders

Extremal elements

Definition Consider a relation $R \subseteq A \times A$. An element $a \in A$ is called R-minimal (or simply minimal) if there is no $b \in A$ such that $b R a$.
Similary, $a \in A$ is called maximal if there is no $b \in A$ such that $a R b$.

Definition An element $a \in A$ is called least if $a R b$ for all $b \in A$; it is called greatest if $b R$ for all $b \in A$.

Well-founded and well-ordered sets

Definition A relation $R \subseteq A \times A$ is said to be well-founded if every non-empty subset of A has an R-minimal element.

Definition A strict total order $(A,<)$ which is well-founded is called a well-order.

14.

More on well-founded sets

Theorem Any subset $(B,<)$ of a well-order $(A,<)$ is a well-order.

Definition Let (A, \leq) be a poset. A well-order $x_{0}<x_{1}<\ldots$ where $\left\{x_{0}, x_{1}, \ldots\right\} \subseteq A$ is called an ascending chain in A. Descending chain is defined dually.

Theorem A relation $<\subseteq A \times A$ is well-founded iff $(A,<)$ contains no infinite descending chain ... $<x_{2}<x_{1}<x_{0}$.

Order ideals

Definition Let (A, \leq) be a poset. A set $B \subseteq A$ is called a down-set (or an order ideal) iff

$$
y \in B \text { whenever } x \in B \text { and } y \leq x .
$$

A set $B \subseteq A$ induces a down-set, denoted $B \downarrow$,

$$
B \downarrow:=\{x \in A \mid \exists y \in B, x \leq y\} .
$$

By $\mathcal{O}(A)$ we denote the set of all down-sets in A,

$$
\{B \downarrow \mid B \subseteq A\} .
$$

A notion of up-set, also called order filter, is defined dually.

Lattices

Upper and lower bounds

Definition Let (A, \leq) be a poset and $B \subseteq A$. Then $x \in A$ is called an upper bound of B iff $y \leq x$ for all $y \in B$ (often written $B \leq x$ by abuse of notation). The notion of lower bound is defined dually.

Definition Let (A, \leq) be a poset and $B \subseteq A$. Then $x \in A$ is called a least upper bound of B iff $B \leq x$ and $x \leq y$ whenever $B \leq y$. The notion of greatest lower bound is defined dually.

Lattice

Definition A lattice is a poset (A, \leq) where every pair of elements $x, y \in A$ has a least upper bound denoted $x \vee y$ and greatest lower bound denoted $x \wedge y$.

Synonyms:
Least upper bound/lub/join/supremum
Greatest lower bound/glb/meet/infimum

Lattice

Lattice terminology

Definition Let (A, \leq) be a lattice. An element $a \in A$ is said to cover an element $b \in A$ iff $a>b$ and there is no $c \in A$ such that $a>c>b$.

Definition The length of a poset (A, \leq) (and hence lattice) is $|C|-1$ where C is the longest chain in A.

Complete lattice

Definition A complete lattice is a poset (A, \leq) where every subset $B \subseteq A$ (finite or infinite) has a least upper bound $\bigvee B$ and a greatest lower bound $\wedge B$.
$\bigvee A$ is called the top element and is usually denoted T.
$\bigwedge A$ is called the bottom element and is denoted \perp.
Theorem Any finite lattice is a complete lattice.

Complemented lattice

Definition Let (A, \leq) be a lattice with \perp and \top. We say that $a \in A$ is the complement of $b \in A$ iff $a \vee b=T$ and $a \wedge b=\perp$.

Definition We say that a lattice is complemented if every element has a complement.

Distributive and Boolean lattice

Definition A lattice (A, \leq) is said to be distributive iff $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$ for all $a, b, c \in A$.

Definition A lattice (A, \leq) is said to be Boolean iff it is complemented and distributive.

More on lattices

Definition Let A be a set and $B \subseteq 2^{A}$. If (B, \subseteq) is a (complete) lattice, then we refer to it as a (complete) lattice of sets.
Theorem We have the following results:

1. Any lattice of sets is distributive.
2. $\left(2^{A}, \subseteq\right)$ is distributive, and Boolean.
3. If (A, \leq) is Boolean then the complement of all $x \in A$ is unique.

Lattices as algebras

The algebraic structure (A, \otimes, \oplus) is a lattice if the operations satisfy
(L_{1}) Idempotency: $a \otimes a=a \oplus a=a$
(L_{2}) Commutativity: $a \otimes b=b \otimes a$ and $a \oplus b=b \oplus a$
(L_{3}) Associativity: $a \otimes(b \otimes c)=(a \otimes b) \otimes c$ and $a \oplus(b \oplus c)=(a \oplus b) \oplus c$
(L_{4}) Absorption: $a \otimes(a \oplus b)=a$ and $a \oplus(a \otimes b)=a$

The algebra induces partial order: $x \leq y$ iff $x \otimes y=x$ (iff $x \oplus y=y)$.

Complete partial orders (cpo's)

Complete partial order

Definition A partial order (A, \leq) is said to be complete if it has a bottom element \perp and if each ascending chain

$$
a_{0}<a_{1}<a_{2}<\ldots
$$

has a least upper bound $\bigvee\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$.

Ordinal numbers

Cardinal numbers

Two sets A and B are isomorphic iff there exists a bijective map $f: A \rightarrow B$ (and hence a bijection $f^{-1}: B \rightarrow A$). Notation $A \sim B$.
\sim is an equivalence relation.
A cardinal number is an equivalence class of all isomorphic sets.

H15 苞

(Order-) isomorphism

Definition A function f from $(A,<)$ to (B, \prec) is called monotonic (isotone, order-preserving) iff $x<y$ implies $f(x) \prec f(y)$ for all $x, y \in A$.

Definition A monotonic map f from $(A,<)$ into (B, \prec) is called

- a monomorphism if f is injective;
- an epimorphism if f is onto (surjective);
- an isomorphism if f is bijective (injective and onto).

Notation: $A \simeq B$ when A and B are isomorphic (the order is implicitly understood).

Ordinal numbers

Definition An ordinal (number) is an equivalence class of all (order-)isomorphic well-orders.

Notation: The finite ordinals $0,1,2,3, \ldots$
Definition Ordinals containing well-orders with a maximal element are called successor ordinals. Otherwise they are called limit ordinals.

Convention: we often identify a well-order, e.g. $1<2<3$, with its ordinal number, e.g. 3, and write that $\mathbf{3}=1<2<3$.

Finite von Neumann ordinals

NOTATION	CANONICAL REPRESENTATION
$\mathbf{0}$	\emptyset
$\mathbf{1}$	$\{\emptyset\}=\mathbf{0} \cup\{\mathbf{0}\}=\{\mathbf{0}\}$
$\mathbf{2}$	$\{\emptyset,\{\emptyset\}\}=\mathbf{1} \cup\{\mathbf{1}\}=\{\mathbf{0}, \mathbf{1}\}$
$\mathbf{3}$	$\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}=\mathbf{2} \cup\{\mathbf{2}\}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$
$\mathbf{4}$	$\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}=$
	$\mathbf{3} \cup\{\mathbf{3}\}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}$

etc.

More generally $\alpha+1=\alpha \cup\{\alpha\}$.

Infinite (countable) ordinals

Least infinite ordinal: $\mathbf{0 , 1 , 2 , 3}, \ldots$
Denoted: ω
Then follows: $\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \omega$
Denoted: $\omega+1$
...and: $0,1,2,3, \ldots, \omega, \omega+1$
Denoted: $\omega+2$
...up to: $\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \omega, \omega+\mathbf{1}, \omega+\mathbf{2}, \ldots$
Denoted: $\omega+\omega$ (or $\omega \cdot \mathbf{2}$)

von Neumann ordinals

More generally

- \emptyset is a von Neumann ordinal,
- if α is a von Neumann ordinal then so is $\alpha \cup\{\alpha\}$,
- if $\left\{\alpha_{i}\right\}_{i \in I}$ is a set of von Neumann ordinals, then so is

$$
\bigcup_{i \in I} \alpha_{i}
$$

Addition of ordinals

Consider two ordinals α and β. Let $A \in \alpha$ and $B \in \beta$ be disjoint well-orders.

Then $\alpha+\beta$ is the equivalence class of all well-orders isomorphic to $A \cup B$ ordered as before and where in addition $x<y$ for all $x \in A$ and $y \in B$.

Addition of finite ordinals reduces to ordinary addition of natural numbers, but ...

Ordinal addition isn't commutative

Consider

$$
\omega=\{1,2,3,4, \ldots\} \text { and } 1=\{0\} .
$$

Then $\omega+\mathbf{1}$ is $1,2,3,4, \ldots, 0$ which is isomorphic to $0,1,2, \ldots, \omega$.
But $1+\omega$ is $0,1,2,3,4, \ldots$ which is the limit ordinal ω.
Hence, $\mathbf{1}+\omega \neq \omega+\mathbf{1}$.

Multiplication of ordinals

Consider two ordinals α and β. Let $A \in \alpha$ and $B \in \beta$.
Then $\alpha \cdot \beta$ is the equivalence class of all well-orders isomorphic to $\{(a, b) \mid a \in A$ and $b \in B\}$ where
$\left(a_{1}, b_{1}\right) \prec\left(a_{2}, b_{2}\right)$ iff either $b_{1}<b_{2}$, or $b_{1}=b_{2}$ and $a_{1}<a_{2}$.
Multiplication of finite ordinals reduces to ordinary multiplication of natural numbers, but...

Multiplication isn't commutative

$2 \cdot \omega$ is

$$
(0,0),(1,0),(0,1),(1,1),(0,2),(1,2), \ldots
$$

which is isomorphic to ω.
$\omega \cdot 2$ is

$$
(0,0),(1,0),(2,0),(3,0), \ldots,(0,1),(1,1),(2,1),(3,1), \ldots
$$

which is isomorhic to $\omega+\omega$.
Hence, $\omega \cdot \mathbf{2}=\omega+\omega \neq \mathbf{2} \cdot \omega=\omega$.

Properties of ordinal arithmetic

For all ordinals α, β, γ :

- $\alpha+\mathbf{0}=\mathbf{0}+\alpha=\alpha$
- $\omega+1 \neq 1+\omega$
- $\alpha \cdot 1=1 \cdot \alpha=\alpha$
- $\omega+\omega=\omega \cdot \mathbf{2} \neq \mathbf{2} \cdot \omega=\omega$
- If $\beta \neq \mathbf{0}$ then $\alpha<\alpha+\beta$
- If $\alpha<\beta$ then $\alpha+\gamma \leq \beta+\gamma$
- If $\alpha<\beta$ then $\gamma+\alpha<\gamma+\beta$
- $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$
- $(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)$

10

Ascending ordinal powers

Consider a function $f: A \rightarrow A$ on a complete lattice (A, \leq). The (ascending) ordinal powers of f are

$$
\begin{array}{ll}
f^{0}(x) & :=x \\
f^{\alpha+1}(x) & :=f\left(f^{\alpha}(x)\right) \text { for successor ordinals } \alpha+1 \\
f^{\alpha}(x) & :=\bigvee_{\beta<\alpha} f^{\beta}(x) \text { for limit ordinals } \alpha
\end{array}
$$

When x equals \perp we write f^{α} instead of $f^{\alpha}(\perp)$.

Descending ordinal powers

$$
\begin{array}{ll}
f^{0}(x) & :=x \\
f^{\alpha+1}(x) & :=f\left(f^{\alpha}(x)\right) \text { for successor ordinals } \alpha+1 \\
f^{\alpha}(x) & :=\bigwedge_{\beta<\alpha} f^{\beta}(x) \text { for limit ordinals } \alpha
\end{array}
$$

Principles of induction

Standard inductions

Standard induction derivation rule:

$$
\frac{P(0) \quad \forall n \in \mathbf{N}(P(n) \Rightarrow P(n+1))}{\forall n \in \mathbf{N} P(n)} .
$$

Applies to any well-ordered set isomorphic to ω.

10

Strong mathematical induction

$\frac{P(0) \quad \forall n \in \mathbf{N}(P(0) \wedge \ldots \wedge P(n) \Rightarrow P(n+1))}{\forall n \in \mathbf{N} P(n)}$
or more economically

$$
\frac{\forall n \in \mathbf{N}(P(0) \wedge \ldots \wedge P(n-1) \Rightarrow P(n))}{\forall n \in \mathbf{N} P(n)}
$$

Well-founded induction

min

Inductive definition

An inductive definition of A consists of three statements

- one or more base cases, B, saying that $B \subseteq A$,
- one or more inductive cases, saying schematically that if $x \in A$ and $R(x, y)$, then $y \in A$,
- an extremal condition stating that A is the least set closed under the previous two.
Let $\mathcal{R}(X):=\{y \mid \exists x \in X, R(x, y)\}$. Then A is the least set X such that

$$
B \subseteq X \text { and } \mathcal{R}(X) \subseteq X, \text { that is, } B \cup \mathcal{R}(X) \subseteq X
$$

(A, R) is typically well-founded (or can be made wellfounded) with minimal elements B.

Well-founded induction principle

Let (A, \prec) be a well-founded set and P a property of A.

1. If P holds of all minimal elements of A, and
2. whenever P holds of all x such that $x \prec y$ then P holds of y, then P holds of all $x \in A$.

Well-founded induction principle II

As a derivation rule:

$$
\frac{\forall y \in A(\forall x \in A(x<y \Rightarrow P(x)) \Rightarrow P(y))}{\forall x \in A P(x)} .
$$

Transfinite induction

Transfinite induction principle

Let P be a property of ordinals, then P is true of every ordinal if

- P is true of 0 ,
- P is true of $\alpha+1$ whenever P is true of α,
- P is true of β whenever β is a limit ordinal and P is true of every $\alpha<\beta$.

Transfinite induction II

Theorem Let (A, \leq) be a complete lattice and assume that $f: A \rightarrow A$ is monotonic. We prove that $f^{\alpha} \leq f^{\alpha+1}$ for all ordinals α.

Lemma Let (A, \leq) be a complete lattice and assume that $f: A \rightarrow A$ is monotonic. If $B \subseteq A$ then $f(\bigvee B) \geq \bigvee\{f(x) \mid x \in B\}$.

