

Definition of self-stabilization

Definition A set $\mathcal{L} \subseteq C$ is called legitimate (relative some property *P*) if every execution starting from some $c \in \mathcal{L}$ has property *P*. (Alternatively, every $c \in \mathcal{L}$ has property *P*.)

Definition A system (C, \rightarrow) is self-stabilizing if every execution c_0, c_1, c_2, \ldots

- eventually reaches \mathcal{L} , i.e. there is some $i \ge 0$ such that $c_i \in \mathcal{L}$ (liveness property);
- the set \mathcal{L} is closed under \rightarrow , i.e. if $c_i \in \mathcal{L}$ and $c_i \rightarrow c_{i+1}$ then $c_{i+1} \in \mathcal{L}$ (safety property).

Definition of self-stabilization (cont)

Sometimes also:

- No deadlock: There is always some next configuration (all executions are infinite);
- Fairness: Each legitimate configuration is reached an infinite number of times in each execution;

Proving Self-stabilization

General idea: Exhibit a norm function $f: C \to W$ where W is a well-founded set (typically the natural numbers) such that for each transition $c_i \to c_{i+1}$ either $c_i \in \mathcal{L}$ or $f(c_i) > f(c_{i+1})$.

Theorem Let (C, \rightarrow) be a system. If all terminal configurations are in \mathcal{L} , \mathcal{L} is closed under \rightarrow and there is a norm function $f: C \rightarrow W$ then the system is self-stabilizing.

Note: C.f. proof of termination.

Dijkstra's algorithm I

Consider a ring of *n* processes P_0, \ldots, P_{n-1} .

- each process has a finite number (=K) states;
- each process communicates with its left neighbor (P_0 with P_{n-1});
- a process can only change its own state;

Objective:

 At most one process may use some critical resource (mutual exclusion).

Therefore:

Make sure that exactly one process can change its state.

Parametric systems

- Proving self-stabilization for a specific system is easy (finite state problem.)
- Want to prove stabilization for all instances.
- Modulo some topology.

Dijkstra's algorithm II

Examples

Assume *n* tasks P_0, \ldots, P_{n-1} in an undirected ring.

- P_0 : 1. do forever
- 2. if $x_0 = x_{n-1}$ then
- 3. $x_0 := (x_0 + 1) \mod K$ (where K > n)

 $\begin{array}{ll} P_i: \ (0 < i < n) \\ {\bf 1.} & \mbox{do forever} \\ {\bf 2.} & \mbox{if} \ x_i \neq x_{i-1} \ \mbox{then} \\ {\bf 3.} & \ x_i := x_{i-1} \end{array}$

Dijkstra's algorithm III

 $c \in \mathcal{L}$ iff exactly one process in c may change its state.

Lemma \mathcal{L} is closed under Dijkstra's algorithm.

Lemma Dijkstra's algorithm converges to L.

Corollary Dijkstra's algorithm converges to mutual exclusion.

Note: Non-stabilizing if K < n - 1

Ghosh's four state algorithm I

For P_0 :

1. do forever if $x_0 x_1 = 12$ then $x_0 := 3$ 2. 3. if $x_0 x_1 = 30$ then $x_0 := 1$ For P_{n-1} : 1. do forever 2. if $x_{n-2}x_{n-1} = 32$ then $x_{n-1} := 0$ 3. if $x_{n-2}x_{n-1} = 10$ then $x_{n-1} := 2$ For P_i : (0 < i < n - 1)1. do forever 2. if $x_i + 1 = x_{i-1}$ then $x_i := x_{i-1}$ if $x_i + 1 = x_{i+1}$ then $x_i := x_{i+1}$ 3. Note: Addition modulo 4.

Ghosh's four state algorithm II

Legitimate states $\mathcal{L} = \{1^+, 3^+\}\{0^+, 2^+\}$

Example run:

13230	\rightarrow	13330	\rightarrow	13300
	\rightarrow	13000	\rightarrow	10000
	\rightarrow	11000	\rightarrow	11100
	\rightarrow	11110	\rightarrow	11112
	\rightarrow	11122	\rightarrow	11222

Spanning tree I

Link-register model:

- Communication by registers R_{ij}
- \blacksquare P_i writes in R_{ij}
- \blacksquare P_j only reads from R_{ij}
- \blacksquare $R_{ij}.parent = 1$ if j is the parent of i
- **•** R_{ij} .dis: distance from P_i to root
- N(i) is the set of *i*'s neighbors

Each process P_j has a local copy lR_{ij} of R_{ij} .

Spanning tree II

The root process, Pi: 1. do forever for each $m \in N(i)$ do $R_{im} := (0,0)$ 2. Other processes, P_i : 1. do forever 2. for each $m \in N(i)$ do $lR_{mi} := R_{mi}$ FirstFound := false 3. 4. dist := $1 + min\{lR_{mi}.dis \mid m \in N(i)\}$ 5. for each $m \in N(i)$ do if not FirstFound and $lR_{mi}.dis = dist-1$ then 6. 7. $R_{im} := (1, dist)$ FirstFound := true 8. 9 else $R_{im} := (0, dist)$

Uniform systems

- Ideally all machines execute the same algorithm.
- Generally not possible.
- Algorithm(s) independent of *n* (number of machines).
- **D**ijkstra's algorithm requires that $K \ge n 1$.

Maximal matching I

- A matching in an (undirected) graph is a subset of edges such that no node is incident to more than one edge.
- A matching is maximal if it cannot be extended with more edges (NB: no need for maximal cardinality).
- Each node is a process P_i
- **Each** P_i has a variable $ptr_i \in N(i) \cup \{null\}$

Maximal matching II

1. do forever

8.

- 2. If $ptr_i = null \land (\exists P_j \in N(i) \mid ptr_j = i)$ then
- 3. $ptr_i = j$
- 4. if $ptr_i = null \land (\forall P_j \in N(i) \mid ptr_j \neq i) \land$ 5. $(\exists P_j \in N(i) \mid ptr_j = null)$ then
- 6. $ptr_i = j$

7. if
$$ptr_i = i \wedge ptr_i = k \wedge k \neq i$$
 then

$$ptr_i = null$$

Methodology

Fair composition of systems

Composition of AL_1 and AL_2 :

- Let AL₁ be an algorithm over a state space S₁ (the server process)
- Let \mathcal{AL}_2 be an algorithm over a state space $S_1 \times S_2$ (the client process).
- $\blacksquare \mathcal{AL}_2$ may read S_1 but write only in S_2 .
- Interleave the two algorithms (fairly).

If \mathcal{AL}_1 and \mathcal{AL}_2 are self-stabilizing then so is the composition of \mathcal{AL}_1 and \mathcal{AL}_2 .

Apply Dijkstra's algorithm to virtual ring

Further issues

- Pseudo-stabilization
- Converting non-stabilizing algorithms into stabilizing onces
- Randomized algorithms
- Conversion between models

Self-stabilization - p.27/27