
Self-stabilizing Systems
Ulf Nilsson

TCSLAB, IDA, LiU

Self-stabilization – p.1/27

Overview

Self-stabilization – p.2/27

General idea of
self-stabilization

A distributed system with the ability to automatically
recover to normal behavior in case of (transient)
faults.

We model systems optimistically, i.e. we describe the
correct behavior of the system. In case of deviations
from correct behavior the system is guaranteed to
return to its correct behavior in finite time.

Data and program counter may be corrupted at any
time, but program is non-corrupted.

No centralized control.

Self-stabilization – p.3/27

Pros and cons
Advantages:

+ Fault tolerance

+ Initialization

+ Adaptation to topological changes

Disadvantages:

– Initial inconsistencies

– High complexity

– Local unawareness of stabilization

Self-stabilization – p.4/27

Basic Notions

Self-stabilization – p.5/27

Computation model

Definition A system is a pair (C,→) where C is a set of
configurations and → ⊆ C × C a transition relation. An
execution is a maximal sequence c0, c1, c2, . . . such that
ci−1 → ci for each i > 0.

Note: Initial configuration is irrelevant.

Note: Interleaving model.

Self-stabilization – p.6/27

Definition of
self-stabilization

Definition A set L ⊆ C is called legitimate (relative
some property P ) if every execution starting from some
c ∈ L has property P . (Alternatively, every c ∈ L has
property P .)

Definition A system (C,→) is self-stabilizing if every
execution c0, c1, c2, . . .

eventually reaches L, i.e. there is some i ≥ 0 such
that ci ∈ L (liveness property);

the set L is closed under →, i.e. if ci ∈ L and
ci → ci+1 then ci+1 ∈ L (safety property).

Self-stabilization – p.7/27

Definition of
self-stabilization (cont)

Sometimes also:

No deadlock : There is always some next
configuration (all executions are infinite);

Fairness : Each legitimate configuration is reached
an infinite number of times in each execution;

Self-stabilization – p.8/27



Proving Self-stabilization

General idea: Exhibit a norm function f : C → W where
W is a well-founded set (typically the natural numbers)
such that for each transition ci → ci+1 either ci ∈ L or
f(ci) > f(ci+1).

Theorem Let (C,→) be a system. If all terminal
configurations are in L, L is closed under → and there is
a norm function f : C → W then the system is
self-stabilizing.

Note: C.f. proof of termination.

Self-stabilization – p.9/27

Examples

Self-stabilization – p.10/27

Dijkstra’s algorithm I

Consider a ring of n processes P0, . . . , Pn−1.

each process has a finite number (=K) states;

each process communicates with its left neighbor (P0

with Pn−1);

a process can only change its own state;

Objective:

At most one process may use some critical resource
(mutual exclusion).

Therefore:

Make sure that exactly one process can change its
state.

Self-stabilization – p.11/27

Dijkstra’s algorithm II

Assume n tasks P0, . . . , Pn−1 in an undirected ring.
P0:
1. do forever
2. if x0 = xn−1 then
3. x0 := (x0 + 1) mod K (where K > n)

Pi: (0 < i < n)
1. do forever
2. if xi 6= xi−1 then
3. xi := xi−1

Self-stabilization – p.12/27

Parametric systems

Proving self-stabilization for a specific system is easy
(finite state problem.)

Want to prove stabilization for all instances.

Modulo some topology.

Self-stabilization – p.13/27

Dijkstra’s algorithm III

c ∈ L iff exactly one process in c may change its state.

Lemma L is closed under Dijkstra’s algorithm.

Lemma Dijkstra’s algorithm converges to L.

Corollary Dijkstra’s algorithm converges to mutual
exclusion.

Note: Non-stabilizing if K < n − 1

Self-stabilization – p.14/27

Ghosh’s four state
algorithm I

For P0:
1. do forever
2. if x0x1 = 12 then x0 := 3
3. if x0x1 = 30 then x0 := 1
For Pn−1:
1. do forever
2. if xn−2xn−1 = 32 then xn−1 := 0
3. if xn−2xn−1 = 10 then xn−1 := 2
For Pi: (0 < i < n − 1)
1. do forever
2. if xi + 1 = xi−1 then xi := xi−1

3. if xi + 1 = xi+1 then xi := xi+1

Note: Addition modulo 4.

Self-stabilization – p.15/27

Ghosh’s four state
algorithm II

Legitimate states L = {1+, 3+}{0+, 2+}

Example run:

13230 → 13330 → 13300

→ 13000 → 10000

→ 11000 → 11100

→ 11110 → 11112

→ 11122 → 11222

Self-stabilization – p.16/27



Spanning tree I

Link-register model:

Communication by registers Rij

Pi writes in Rij

Pj only reads from Rij

Rij .parent = 1 if j is the parent of i

Rij .dis: distance from Pi to root

N(i) is the set of i’s neighbors

Each process Pj has a local copy lRij of Rij.

Self-stabilization – p.17/27

Spanning tree II

The root process, Pi:
1. do forever
2. for each m ∈ N(i) do Rim := (0, 0)
Other processes, Pi:
1. do forever
2. for each m ∈ N(i) do lRmi := Rmi

3. FirstFound := false
4. dist := 1 + min{lRmi.dis | m ∈ N(i)}
5. for each m ∈ N(i) do
6. if not FirstFound and lRmi.dis =dist−1 then
7. Rim := (1,dist)
8. FirstFound := true
9. else Rim := (0,dist)

Self-stabilization – p.18/27

Uniform systems

Ideally all machines execute the same algorithm.

Generally not possible.

Algorithm(s) independent of n (number of machines).

Dijkstra’s algorithm requires that K ≥ n − 1.

Self-stabilization – p.19/27

Maximal matching I

A matching in an (undirected) graph is a subset of
edges such that no node is incident to more than one
edge.

A matching is maximal if it cannot be extended with
more edges (NB: no need for maximal cardinality).

Each node is a process Pi

Each Pi has a variable ptri ∈ N(i) ∪ {null}

Self-stabilization – p.20/27

Maximal matching II

1. do forever
2. if ptri = null ∧ (∃Pj ∈ N(i) | ptrj = i) then
3. ptri = j

4. if ptri = null ∧ (∀Pj ∈ N(i) | ptrj 6= i)∧
5. (∃Pj ∈ N(i) | ptrj = null) then
6. ptri = j

7. if ptri = j ∧ ptrj = k ∧ k 6= i then
8. ptri = null

Self-stabilization – p.21/27

Methodology

Self-stabilization – p.22/27

Fair composition of
systems

Composition of AL1 and AL2:

Let AL1 be an algorithm over a state space S1 (the
server process)

Let AL2 be an algorithm over a state space S1 × S2

(the client process).

AL2 may read S1 but write only in S2.

Interleave the two algorithms (fairly).

If AL1 and AL2 are self-stabilizing then so is the
composition of AL1 and AL2.

Self-stabilization – p.23/27

Mutual exclusion
(revisited)

Mutual exclusion in a arbitrary (connected) topology

Special root processor

Construct a spanning tree

Depth-first traversal of the tree is a virtual ring

Apply Dijkstra’s algorithm to virtual ring

Self-stabilization – p.24/27



Mutual exclusion in tree I
Root process:
1. do forever
2. lr1,i := r1,i

3. if lrδ,i = ri,1 then
4. ri,2 := (lr1,i + 1) mod (4n − 5)

5. for m := 2 to δ do
6. lrm,i := rm,i

7. ri,m+1 := lrm,i

8. od

9. od

Self-stabilization – p.25/27

Mutual exclusion in tree II
Non-root processes:
1. do forever
2. lr1,i := r1,i

3. if lr1,i 6= ri,2 then
4. ri,2 := lr1,i

5. for m := 2 to δ do
6. lrm,i := rm,i

7. ri,m+1 := lrm,i

8. od
9. od

Self-stabilization – p.26/27

Further issues
Pseudo-stabilization

Converting non-stabilizing algorithms into stabilizing
onces

Randomized algorithms

Conversion between models

Self-stabilization – p.27/27


	Self-stabilizing Systems\ {large Ulf Nilsson}\ {large TCSLAB, IDA, LiU}
	Overview
	General idea of self-stabilization
	Pros and cons
	Basic Notions
	Computation model
	Definition of self-stabilization
	Definition of self-stabilization (cont)
	Proving Self-stabilization
	Examples
	Dijkstra's algorithm I
	Dijkstra's algorithm II
	Parametric systems
	Dijkstra's algorithm III
	Ghosh's four state algorithm I
	Ghosh's four state algorithm II
	Spanning tree I
	Spanning tree II
	Uniform systems
	Maximal matching I
	Maximal matching II
	Methodology
	Fair composition of systems
	Mutual exclusion (revisited)
	Mutual exclusion in tree I
	Mutual exclusion in tree II
	Further issues

