
1

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 1

Distributed algorithms for
fault-tolerance

Groups and virtual synchrony
Simin Nadjm-Tehrani

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 2

Last lecture

• How to deal with failure detection
for consensus?

• Another approach: push it down!

X

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 3

Why groups?

• To deal with networks that vary in
time

• All networks will have failing
nodes, need to model repairs too!

• Even if nodes are not replicas
some common state may be
needed (e.g. distributed search)

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 4

Groups

• A general notion used to model
– dynamic applications
– recovery from failures (by rejoining)

• Membership service a main
requirement

2

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 5

”Chicken and egg” again

• Implement membership service by a
central server

• What if the server crashes?
• Replicate the server that serves … that

serves…
Let them agree on group membership...

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 6

The ISIS system

• Only crash failures (no partitions)
• Distinguish between failed and

slow processes:
– special transport layer combining

reliable delivery with failure detection

• A slow process is ”forced to fail” by
exclusion from the group

• No recovery

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 7

View updates

• P = {p1, …, pn}
• processes are organised into sets of

groups: G = {g1, …, gm}
• view(g) recursively defined as a

sequence:
– view0(g) = ∅
– viewi(g) ⊆ P
– viewi(g) differs from viewi+1(g) by

addition/removal of one process

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 8

Event ordering

• Assume a causal ordering →
∃p e →p e´ ⇒ e → e´
∀m send(m) → rec(m)

The communication layer delivers
according to this order,
synchronising at view updates

3

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 9

Group-based delivery

send(m) → send(m´) ⇒
∀p ∈ dest(m) ∩ dest(m´)
deliver(m) →p deliver(ḿ)

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 10

ISIS implementations

• Check causal order algorithms in
Schiper 1.6.2 and compare with
section 5.1 in:
[Birman, Schiper, Stephenson 91]

• Causal order delivery twice as fast
as Atomic!

• Packet size dominant in
determining cost

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 11

What about?

• Synchronisation for changing
group views?

• Does the replication style matter?

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 12

Active replication

• A joining process needs to get the
current state - use a state transfer
mechanism

• Messages received prior to state
update are buffered

• Replica computations need to be
deterministic modulo causal order
(atomic order) of delivery

4

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 13

Primary-backup

• Need to identify the current
primary in the group

• Need to update the backups, both
for state and for group view

• On failure of primary, all or none!

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 14

Virtual synchrony

• The system treats one distributed
event at a time
– multicasts
– group membership changes
– failures

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 15

Application layer

VSCAST+GM

Transport

Join, Leave,
VSCAST

Send

Install,
Deliver

”Leave”?
Receive

View synchronous broadcast

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 16

Group change atomicity

• Let pj ∈ g execute VSCAST(m,g)
while in viewi(g)

• Either m is delivered in viewi(g)
• or a new viewi+1(g) is installed

– if p delivers m before installing
viewi+1(g), then

– ∀q ∈ viewi+1(g), q has delivered m
before installing viewi+1(g)

5

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 17

Flush algorithm

• After a view update message is received
every member in the new group sends
a flush message to all other members

• No new multicasts are started until
earlier messages delivered and the new
view is installed

• Check section 5.5 in Birman, Schiper
and Stephenson, 1991

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 18

Remarks

• What if Flush messages are not
received?

• When do we know that earlier
messages have been delivered?

• Is algorithm safe and live?

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 19

Reading material

• Birman’s CACM 1993 article
• Schiper chapter 1.6.1
• Birman, Schiper, Stephenson 1991

