
1

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 1

Distributed algorithms for 
fault tolerance

Consensus and related 
problems 

Simin Nadjm-Tehrani
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From last lecture

• Atomic broadcast can not be 
proved correct in an asynchronous 
network even in presence of a 
single crash failure!

• Why? What is the significance?
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The consensus problem

• Processes p1,…,pn take part in a 
decision

• Each pi proposes a value v i

• All correct processes decide on  a 
common value v that is equal to 
one of the proposed values
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Desired properties

• Every correct process eventually 
decides a value (Termination)

• No two correct processes decide 
differently (Agreement)

• If a process decides v then the 
value v was proposed by some 
process (Validity)
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Common denominator

• Appears in many distributed 
problems, e.g. the Non-Blocking 
Atomic Commit (NBAC)

• At the end of a computation 
processes have to commit local 
computations (if things went well) 
and abort (if things went wrong)
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NBAC problem

• At the end of a local computation 
the process votes YES or NO

• Then there is a decision procedure 
to commit or abort all local 
computations

• Commit: if all processes are 
correct and voted YES

• Abort: otherwise 
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NBAC properties

• Termination and Agreement as 
before

• Corresponding to validity:
– If a process decides Commit then all 

processes have voted YES
– If all processes have voted YES then 

the decision is Commit
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Reduction to Consensus
[Guerraoui et al 2000]

Every process p i executes
compute_locally()
∀ pj send(vote) to pj
await (delivery of a NO vote

or (∃ pj suspected to be not correct)
or delivery of a YES vote from each pj)

If a NO vote delivered 
or a pj suspected not correct

then vi := abort else v i := commit
propose(vi), decide()  /* execute consensus */
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Basic impossibility result

[Fischer, Lynch and Paterson 1985]
There is no deterministic algorithm 
solving the consensus problem in 
an asynchronous distributed 
system with a single crash failure
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Partial correctness

Consider a bi-value decision:
• No configuration reachable from 

initial configuration has more than 
one decision value

• For each value v (0 or 1) there is 
an accessible configuration that 
has value v
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Total Correctness

• Partial correctness
Together with:
• Every admissible1 run of the 

protocol is a deciding run

1)admissible run is a run in which only a single 
process is allowed to take finite number of 
steps, and messages are not lost
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Proof sketch

• Assume total correctness
• Derive contradiction: Show that there is 

always a possibility for the protocol to remain 
indecisive
– First, show there is some initial 

configuration from which deciding 
configurations with both values are possible 
(bi-valent)

– Second, show there is a run in which no 
commitments are ever made
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Part 1: initially bi-valent 

• Assume not true
• By partial correctness both a 1-valent and 

0-valent initial configuration must exist. 
Consider two such configurations differing only 
by the initial value for a process p

C1C0

D

A deciding run in which 
p does not take a step

σ

D´

σ
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Part 2: indecisiveness

• Let C be a bi-valent configuration and e=p m an 
event applicable in C, then there is a bi-valent 
Di reachable from some C i provided that e was 
not applied to reach C i

• Use commutativity of events!

C

C1 CnC2
...e

...D2
D1 e Dn

e ...

...
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Events commute

• Commutitativity: For any σ and any e not 
appearing in σ we have

C0

C3

C2
C1

σ

σ

e

e
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Part 2: Core of proof

Assume all configurations Di are 
not bi-valent, show contradiction!

• First, show that there exist both 
0-valent and 1-valent 
configurations among Di

• Finally show that there exists a          
bi-valent configuration A reachable 
from Ci

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 17

Di includes 0-valent and 
1-valent configurations

• Let Ei be an i-valent configuration reachable 
from C. 
Let Χ = {c| c= C i} and D = {c| c= D i}. 

• Either Ei ∈ Χ or not.
– If Ei ∈ Χ  then e(Ei) ∈ D, and is not bi-valent by 

assumption, so e(Ei) is i-valent.

– If Ei ∉ Χ  then e was applied in reaching Ei, i.e. there 
is a configuration Di from which Ei is reachable. Since 
elements of D are not bi-valent by assumption, then 
Di is i-valent.
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A bi-valent configuration A is 
reachable from some Ci

• Let C i be neighbours differing by one 
event, and e(C i) be i-valent.

Two cases:

• e and e´belong to                                     
different processes

• e and e´belong to the same process 

C0 C1
e

D1D0

e

e´

e´
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Case 2: Let σ be a sequence of deciding 
steps in which p is silent.

e

C0 C1
e

D1D0

e

A

σ

E0

σ
σ

E1

e´

e´

e

A is bi-valent!
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Reading material

• Chapter 14 in Tel’s book 
(specifically section 14.1)

• Article by Fischer et al., Journal of 
ACM, 1985

• Article by Guerraoui, Hurfin et al. 
LNCS 1752, 2000


