
1

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 1

Distributed algorithms for
fault tolerance

Consensus and related
problems

Simin Nadjm-Tehrani

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 2

From last lecture

• Atomic broadcast can not be
proved correct in an asynchronous
network even in presence of a
single crash failure!

• Why? What is the significance?

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 3

The consensus problem

• Processes p1,…,pn take part in a
decision

• Each pi proposes a value v i

• All correct processes decide on a
common value v that is equal to
one of the proposed values

2

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 4

Desired properties

• Every correct process eventually
decides a value (Termination)

• No two correct processes decide
differently (Agreement)

• If a process decides v then the
value v was proposed by some
process (Validity)

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 5

Common denominator

• Appears in many distributed
problems, e.g. the Non-Blocking
Atomic Commit (NBAC)

• At the end of a computation
processes have to commit local
computations (if things went well)
and abort (if things went wrong)

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 6

NBAC problem

• At the end of a local computation
the process votes YES or NO

• Then there is a decision procedure
to commit or abort all local
computations

• Commit: if all processes are
correct and voted YES

• Abort: otherwise

3

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 7

NBAC properties

• Termination and Agreement as
before

• Corresponding to validity:
– If a process decides Commit then all

processes have voted YES
– If all processes have voted YES then

the decision is Commit

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 8

Reduction to Consensus
[Guerraoui et al 2000]

Every process p i executes
compute_locally()
∀ pj send(vote) to pj
await (delivery of a NO vote

or (∃ pj suspected to be not correct)
or delivery of a YES vote from each pj)

If a NO vote delivered
or a pj suspected not correct

then vi := abort else v i := commit
propose(vi), decide() /* execute consensus */

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 9

Basic impossibility result

[Fischer, Lynch and Paterson 1985]
There is no deterministic algorithm
solving the consensus problem in
an asynchronous distributed
system with a single crash failure

4

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 10

Partial correctness

Consider a bi-value decision:
• No configuration reachable from

initial configuration has more than
one decision value

• For each value v (0 or 1) there is
an accessible configuration that
has value v

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 11

Total Correctness

• Partial correctness
Together with:
• Every admissible1 run of the

protocol is a deciding run

1)admissible run is a run in which only a single
process is allowed to take finite number of
steps, and messages are not lost

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 12

Proof sketch

• Assume total correctness
• Derive contradiction: Show that there is

always a possibility for the protocol to remain
indecisive
– First, show there is some initial

configuration from which deciding
configurations with both values are possible
(bi-valent)

– Second, show there is a run in which no
commitments are ever made

5

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 13

Part 1: initially bi-valent

• Assume not true
• By partial correctness both a 1-valent and

0-valent initial configuration must exist.
Consider two such configurations differing only
by the initial value for a process p

C1C0

D

A deciding run in which
p does not take a step

σ

D´

σ

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 14

Part 2: indecisiveness

• Let C be a bi-valent configuration and e=p m an
event applicable in C, then there is a bi-valent
Di reachable from some C i provided that e was
not applied to reach C i

• Use commutativity of events!

C

C1 CnC2
...e

...D2
D1 e Dn

e ...

...

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 15

Events commute

• Commutitativity: For any σ and any e not
appearing in σ we have

C0

C3

C2
C1

σ

σ

e

e

6

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 16

Part 2: Core of proof

Assume all configurations Di are
not bi-valent, show contradiction!

• First, show that there exist both
0-valent and 1-valent
configurations among Di

• Finally show that there exists a
bi-valent configuration A reachable
from Ci

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 17

Di includes 0-valent and
1-valent configurations

• Let Ei be an i-valent configuration reachable
from C.
Let Χ = {c| c= C i} and D = {c| c= D i}.

• Either Ei ∈ Χ or not.
– If Ei ∈ Χ then e(Ei) ∈ D, and is not bi-valent by

assumption, so e(Ei) is i-valent.

– If Ei ∉ Χ then e was applied in reaching Ei, i.e. there
is a configuration Di from which Ei is reachable. Since
elements of D are not bi-valent by assumption, then
Di is i-valent.

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 18

A bi-valent configuration A is
reachable from some Ci

• Let C i be neighbours differing by one
event, and e(C i) be i-valent.

Two cases:

• e and e´belong to
different processes

• e and e´belong to the same process

C0 C1
e

D1D0

e

e´

e´

7

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 19

Case 2: Let σ be a sequence of deciding
steps in which p is silent.

e

C0 C1
e

D1D0

e

A

σ

E0

σ
σ

E1

e´

e´

e

A is bi-valent!

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 20

Reading material

• Chapter 14 in Tel’s book
(specifically section 14.1)

• Article by Fischer et al., Journal of
ACM, 1985

• Article by Guerraoui, Hurfin et al.
LNCS 1752, 2000

