
1

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 1

Distributed algorithms for
fault tolerance

Basic notions in distributed
systems

Simin Nadjm-Tehrani

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 2

Basic replication models

• Primary
backup

• Active replication

X

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 3

”Chicken and egg” problem
• Replication is useful in presence of

failures if there is a consistent
common state among replicas

• To get consistency processes need
to communicate their state via
broadcast

• But broadcast algorithms are also
affected by failures...

2

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 4

A useful (weak) broadcast

• Reliable broadcast
– all correct processes agree on

messages delivered (agreement)
– no spurious messages (integrity)
– all messages broadcast by correct

processes delivered (validity)

All or none!

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 5

How to implement?

• The first step is to separate the
underlying network (transport) and
the broadcast mechanism

• Distinguish between receipt and
delivery of a message

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 6

Application layer

Broadcast mechanism

Transport

Send
(broadcast)

Send

Deliver

Receive

3

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 7

Reliable broadcast
Within every process p
• Execute broadcast(m) by:

– adding sender(m) and a unique ID as a
header to the message m (building m)

– send(m) to all neighbours including itself
• When receive(m):

– if previously notexecuted deliver(m) then
• if sender(m) /= p then send(m) to all
neighbours

•deliver(m)

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 8

What if p fails?

Directly after a
receipt?

While relaying?

After sending to some but
not all neighbours?

This is where failure models
come in...

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 9

Message ordering

• Is it enough that messages are
delivered at every correct node?

• To have consistent state in some
(replicated) applications we need
some constraints on ordering too

4

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 10

FIFO/Causal/Atomic

• FIFO: if m is sent before m´ then every
correct process delivers m before m´

• Causal: if m causally precedes m´ then
every correct process delivers m before
m´

• Atomic: correct process p delivers m
before m´ iff correct process q delivers
m before m´

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 11

Distributed algorithms for
broadcast

• Correctness: prove validity,
integrity, agreement, order

Typical assumptions:
– no link failures leading to partition
– send does not duplicate or change

messages
– receive does not ”invent” messages

Do not forget the failure model!

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 12

Example implementations

• Broadcast hierarchies: From the
weakest broadcast (Reliable) to
the strongest (Causal Atomic)
– Figure on page 114 Mullender

• Modular: Causal Atomic
implementation in Mullender (5.4)

• Causal delivery: 1.6.2 (a) Schiper

5

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 13

To define precedence

• Need a notion of time (clock) in
distributed systems

• A distributed system S is a set of
sequential processes p1, p2, …, pn
– S is Synchronous: whenever pi makes one

step p jmakes n (n ≥ 1) steps
– S is asynchronous if no such bounds exists ,

neither exists a bound on message delays

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 14

Asynchronous systems

• A process pi has a history hi defined as
a sequence of events since it started:
ei

1, ei
2, ei

3,…
• Let hi be set of events in a prefix of hi

• Then global history is defined
H = h1 ∪ h2 ∪ … ∪ hn

• Define → over H as a global order of
events

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 15

Logical order

[Lamport 78]:
• e → e´ iff

– e = ei
j, e´= ei

k , ei
j ei

k ∈ hi and j<k, or
– e = send(m) and e´ = receive(m), or
– ∃ e” such that e → e” and e”→ e´

• The poset (H, →) is a distributed
computation

6

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 16

Correctness

• Atomic broadcast can not be
proved correct in an asynchronous
network even in presence of a
single crash failure!

• We will come back to this!

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 17

Global state

• Is the global system state consistent in
presence of failures?

• What is a global system state?

• Let σi
k be the local state of pi after event

k
• The global state of a distributed

computation is Σ = 〈σ1, …, σn〉 with one
state σi for each process pi

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 18

Consistent Cut

• A cut C of a distributed
computation is a subset of the
global history H that includes an
prefix of each local history hi

• C is a consistent cut if for all
events e and e´

e´∈ C ∧ e → e´⇒ e ∈ C

7

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 19

Intuitively...

Not a consistent cut!

p1

p2

Send(m)

Receive(m)

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 20

Reading material

For this lecture
• Chapters 4 and 5.1-5.4, Mullender
• Chapter 1, Schiper

Overview for coming lectures:
• survey article: Nadjm-Tehrani &

Szentivanyi 2001

