
1

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 1

Distributed algorithms for
fault-tolerance

PhD Course, Fall 2003
Simin Nadjm-Tehrani

www.ida.liu.se/~snt

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 2

Course planning
• Course page under construction

www.ida.liu.se/~snt/teaching/Distalg/

– goals, literature & web resources

• Time plan: Intensive, November 3-
4th and 24-25th, 2003

• Examiner: Simin Nadjm-Tehrani
• 1-2 Guest lectures

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 3

Course idea

• A short introduction of basic
notions and models for distributed
systems

• Review of fundamentals for fault-
tolerance and replication in
distributed systems

• Your expectations and
background?

2

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 4

Organisation & Examination
• During day 1 there will time for group

discussions and individual questions
• After day 2 each participant formulates

three questions they will study in more
depth

• Day 3 will start with a 15 min.
presentation on studied material by
each participant

• Examination:
– term paper (topic to be agreed) or written

assignments

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 5

The relevant areas

Formal spec.
& analysis

Distributed
systems

Fault
management

This course

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 6

Distributed
systems

Nancy Lynch book

Formal
analysis

Fault
management

3

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 7

Fault
management

Distributed
systems

Part III of Tel´s book

Formal
analysis

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 8

Fault
management

Distributed
systems

Mullender book

Formal
analysis

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 9

Fault
management

Distributed
systems

Andre Schiper’s ”Compendium”

Formal
analysis

4

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 10

Errors, faults & Failures

• Fault: a defect within the system
or a situation that can lead to
failure

• Error: manifestation (symptom)
of the fault - an unexpected
behaviour

• Failure: system not perfoming its
intended function

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 11

Examples

• Year 2000 bug
• Bit flips in hardware due to cosmic

radiation in space
• Loose wire
• Air craft retracting its landing gear

while on ground

Effects in time:
Permanent/ transient/ intermittent

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 12

Fault ⇒ Error ⇒ Failure

• Goal of system verification and
validation is to ”remove” faults

• Goal of hazard analysis and FTA is
to focus on important faults, those
that lead to catastrophic failures

• Goal of fault-tolerance methods is
to reduce effects of errors if they
appear - eliminate or delay failures

5

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 13

On-line fault-management

• Fault-detection
– By program or its environment

• Fault-tolerance (containment)
using redundancy
– software
– hardware
– data

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 14

From article in Edinburgh Review, 1824:
D. Lardner
”The most certain and effectual check upon errors
which arise in the process of computation is to
cause the same computations to be made by
separate and independent computers*; and this
check is rendered still more decisive if their
computations are carried out by different
methods.”

* people who compute

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 15

Static Redundancy

To be used all the time (whether
errors showed up or not), just in
case...

– SW: Active replication of servers
– HW: Voting and masking
– Data: Parity bits, checksums

6

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 16

Limitations

• ”N-version” programming, a word of
caution:

• Main problem is to get the replicas to
do differently in test cases that may
lead to failures

• The Night/Leveson experiment:
– The erroneous behaviours were to be found

by pre-determined test cases. Some errors
missed by all the 28 partners in the
experiment!

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 17

Dynamic Redundancy

Used when error has occured and
must be contained

– SW: recovery methods
– HW: switch to back-up modules
– Data: self-correcting codes

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 18

Error recovery

Backward:
• roll back the system to a safe state

which was reached before the
error appeared (when did error
appear?)

• restart with alternative module
(how is the result affected by
earlier module´s side effects?)

7

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 19

Error recovery

Forward:
• ”fix the error” and continue as if

nothing happened
• redundancy lies where one fixes

the error

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 20

Distributed systems

• Introduce new complications
– no global clock
– richer failure models

• Software replication and group
mechanisms
– transparency in treatment of faults

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 21

Types of failures

• Node failures
– Crash
– Omission
– Byzantine

• Channel failures
– Crash (and potential partitions)
– Message loss
– Erroneous/arbitrary messages

8

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 22

Brake-by-wire

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 23

Adding tolerance

• How to represent a fault-intolerant
system?

• What it means to add tolerance,
for which type of fault, which type
of method?

[Arora & Kulkarni 98, Gärtner 99]

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 24

Simple model

• Distributed reactive programs: a
set of processes each with a set of
variables representing local state

• Each process: a set of actions,
specified as guarded commands

Guard → Command
• Program P: P1 || P2 ||…|| Pn

9

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 25

Guarded commands

• If the Boolean condition (the
guard) for an action is true, then
the action is enabled: it may take
place

• Fairness: if a guard is true
infinitely often the action will be
eventually taken

1:;0:10 ==→<∧¬ zxyready

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 26

Computations

• Each computation (run) in the
distributed system: a potentially infinite
sequence of the (distributed) states

• Based on interleaving of computations
of the individual processes

• A run is sometimes described in terms
of sequence of events leading to a
change of state

......: 21 ksssγ

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 27

Desired behaviours

• Behaviours: sets of computations
• Desired properties defined as sets

of computations S:
– Safety (what should not happen)
– Liveness (what should happen)

10

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 28

Correctness

• To show that P is correct wrt
safety property S

show that
set of computations for P ⊆ S

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 29

To add tolerance

• Must decide:
– What fault classes to tolerate
– How to detect them
– What action to take on detection

• Later: ensure that addition of
tolerance does not sacrifice
correctness

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 30

Chosen fault models

• Example: those leading to crash
failures

• Extend the program with fault
actions, and fault effects based on
the chosen fault model

11

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 31

Begin
var wait: boolean init false
var up: boolean init true {* to detect error *}
{* normal actions *}
up ∧ ¬ wait → send(m); wait := true
||
up ∧ wait ∧ rec(a) → wait:= false
||
{* fault action *}
up → up := false {* crash *}
end

Considering faults

Begin
var wait: boolean init false
var up: boolean init true {* to detect error *}
{* normal actions *}
up ∧ ¬ wait → send(m); wait := true
||
up ∧ wait ∧ rec(a) → wait:= false
||
{* fault action *}
up → up := false {* crash *}
end

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 32

Begin
var wait: boolean init false
var up: boolean init true {* to detect error *}
{* normal actions *}
up ∧ ¬ wait → send(m); wait := true
||
up ∧ wait ∧ rec(a) → wait:= false
||
{* fault action *}
up → up := false {* crash *}
||
{* protection mechanism *}
¬ up → up := true {* recovery *}
end

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 33

How does FT affect
computations?

• Can formalise the effects of fault-
tolerance on program behaviour

• Let predicates over state variables
denote the set of states in which
the predicate holds

10100:2 <∧< yxϕ110:1 <∧< yxϕ

12

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 34

Formalising fault-tolerance

A distributed program P tolerates
faults from a fault class F for an
invariant I iff there exists a
predicate T such that 3 conditions
apply:
- I ⇒ T
- T is closed in P and F
- P actions in T eventually lead to I

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 35

What does it mean?

– at any state where I holds, T holds
too

– starting from any state in T, if any P
or F actions are performed, the
resulting state is in T

– starting from any T state, every
sequence of P actions alone,
eventually reaches a state in I

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 36

Reachable system states

I

T

? ∈ P

? ∉ F ? ∈ F
? ∈ F

13

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 37

Two classes of algorithms

• Robust: Correct processes behave
correctly even if some processes
fail

• Stablising: The behavoius of a
correct process may be affected by
failures in other processes, but the
system is guaranteed to return to
a correct configuration

Dist. Algorithms for FT © Simin Nadjm-Tehrani, 2003 38

This course

• Treats formal correctness of robust
fault-tolerance algorithms

• Briefly covers stablising algorithms

• Mainly treats benign failures and
to very little extent malicious
failures

