Model-Based Requirements
Engineering

Tutorial 2010-02-09

by
Kristian Sandahl

LiU

expanding reality

Planned topics

= What are requirements?

= Modelling requirements in UML

= Requirement model traceability

= Non-functional software requirements

= Short introduction to requirements in SysML
= Short introduction to formal methods

Requirements

= “Software requirements express the needs and
constraints placed on a software product that contribute
to the solution of some real-world problem.”

(Kotonya and Sommerville 2000)

Process model:
= Elicitation
= Analysis
= Specification
= Validation

Elicitation

need

O

o

Carol
the customer the requirements engineer

Purpose:

Understand the true needs of the customer
Trace future implementation to needs

Sources: Techniques:
Goals . Interviews
Stakeholders

. Prototypes
. Facilitated meetings
. Observation

Environment

Analysis: Goal

= Detect and resolve conflicts btwn requirements
= Discover bounds of software
= Define interaction with the environment

= Elaborate high-level requirements to derive detailed
requirements

Analysis: Requirements classification

= Functional vs non-functional requirements
= Source

= Product or process requirements

= Priority

= Scope in terms of affected components

= Volatility vs stability

Analysis: Conceptual Modelling

= Representation in semi-formal notation
= Often diagrammatic representation
= Examples:
o Object-orientation, use-cases, state-machines
o Activity diagrams
o Data flow diagrams
o Entity-relationship models

Specification

ot

O

o

Carol i _
the customer the requirements engineer

SRS

= There is no perfect specification, but you can write a good one
= The RS, or SRS avoids many misunderstandings
= The RS is of special importance in outsourcing programming

“Ofewiliy
Adolcvete Tlad

0.l

SRTAT VA

SRS contents

1 Introduction
1.1 Purpose
1.2 Scope

1.3 Definitions, acronyms and
abbreviations

1.4 References
1.5 Overview

2 Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies
2.6 Lower ambition levels

3 Specific requirements

3.1 Interface requirements
3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communication interfaces

3.2 Functional requirements
3.3 Performance requirements
3.4 Design constraints

3.5 Software system attributes
3.6 Other requirements

4 Supporting information
4.1 Index
4.2 Appendices

Individual requirements

Requirerment #:

Description:

Rationale;

Source:
Fit Criterion:

Customer Satisfaction:

Dependencies:
Supporting Materials:
Histary:

Requirement Type: Event/use case #:

Customer Dissatisfaction:
Conflicts:

Volere

Copyright & Atantk Systems Guild

Requirements specification

Requirements are: = Traceable

= Numbered = Feasible

= Inspected = Modifiable

= Prioritised = Useful for:

= Unambiguous 0 operation
= Testable 2 maintenance
- Complete o customer
= Consistent Z developer

Validation of requirements

Before design and coding After (some) design and coding

= Inspections =
= Cross-referencing
= Interviews

m Checklists -
= Scenarios -
= Proofs -

= Model validation
= Simulation
= Prototyping

Prototyping
o Overcomittment
o Teach-back

Alfa test
Beta test
Acceptance test

fuzziness

tor (i PR /)
05" "" (@)

customer

elicitation

Requirement representation process

specification

modelling

formalisation

Introduction

= Models supplement natural language
= Models support both elicitation and design

= The boundaries between specification and design have
to be decided

= There are high transition costs from functional to object-
oriented models

= UML is becoming the standard notation

Develop complementary system models

Benefits: Drawbacks:

= Forces analysis from = Different readers make
different views different interpretation

= Different readers take = Normally weak exception

different views handling
SR = Hard to model non-
implementation; functional requirements

= The UML 4+1 model

= Combination of other
diagrams

UML 4+1 Model

Views:
= Logical view: which parts belong together?
= Process view: what threads of control are there?

= Development view: what is developed by whom? reuse
Issues

= Physical view: which part will execute where?

= Use-case model: required system from the user’s point of
view. static and dynamic

Use-case modelling

A use-case IS:

“... a particular form or pattern or exemplar of
usage, a scenario that begins with some
user of the system initiating some
transaction of sequence of interrelated
events.”

(Jacobson, m fl 1992)

/\

BookBorrower

Detail of use-case —

Borrow copy of book

Actor: a user of
the system in a
particular role.
Can be human
or system.

A BookBorrower presents a book.

The system checks that the potential
borrower is a member of the library,
and that he/she doesn’t already have
the maximum permitted book on loan.
This maximum is 6 unless the

member is a staff member, in which
case it is 12. If both checks succeed, the
system records that this library member
has this copy of the book on loan.
Otherwise it refuses the loan.

Use-case diagram for the library

BookBorrow

JournalBorrower

Borrow copy
of book
Return cop
of book
Extend loan

Borrow journa

Return journal

Library system

Browse

Update catalog

Browser

Librarian

Please, keep as
simple as possible.

Extend loan

---..<<include>>
Check for
A T~ T reservation
¢/ Borrow copy\ _.-----""
i BookBorrower PY™, - <<include>>

of book s ”Reuse"

<<extend>>._
Stereotype: extended / »
classification of meaning

”Separating scenarious”

Extension points

Condition: {customer selected HELP
extension point: Selection

=] Perform loan transaction

_ . F N~ on-line help
extension pom_ts. <<extend>>
Selection

ldentifying classes: noun analysis

" 1‘ A BookBorrower presents a book. *book —real noun handled
@ The system checks that the potential by the system

borrower is a member of the library,
and that he/she doesn’t already have
¥ the maximum permitted book on loan. eborrower — already actor

system — meta-language

B This maximum is six unless the
| member is a staff member, in which
W case it is 12. If both checks succeed, the

slibrary member — handled
by the system

B system records that this library member | estaff member — handled by
| has this copy of the book on loan. the system

= Otherwise it refuses the loan.
= echecks — event

scopy of book — handled by
the system

G- [- S U
42 GS® P,
" (A

The single class model

Book

title: String

copiesOnShelf() : Integer
borrow(c:Copy)

Name

attribute

operations

The library class model

Book
1
IS a copy of
1.*
. borrows/returns
LibraryMember 01 ik Copy
A\,
generalisation
borrows/returns
MemberOfStaff [g 1 0.* Journal

More relations between classes

L0100
Topic L Link
1 1.*
Encylopedia ’; Volume
row:{1,2,.8} |1
Board column:{l,2,..8)| Square
Is a copy of Book
Copy
Journal

IS a copy of

aggregation

composition

qualified
associlation

constraint

Where to go now?

=

Continue with a traditional specification
Writing a detailed use-case specification
Continue modelling

N

w

Writing a detailed use-case specification

= Name
= Brief Description

= Flow of Events: Write the description so that the
customer can understand it. The flows can include a
basic flow, alternative flows, and sub flows.

= (Key scenarios)

= Special Requirements
= Preconditions

= Post-conditions

= Extension points

Kt sweor.
-Atta gk
A

max 40 pages

Use-cases need System-wide
requirements

4.

Introduction

System-Wide Functional
Requirements

System Qualities
3.1 Usability

3.2 Reliability

3.3 Performance

3.4 Supportability

System Interfaces

4.1 User Interfaces

4.1.1 Look & Feel

4.1.2 Layout and Navigation
Requirements

4.1.3 Consistency

4.1.4 User Personalization &
Customization Requirements

4.2 Interfaces to External
Systems or Devices

4.2.1 Software Interfaces
4.2.2 Hardware Interfaces
4.2.3 Communications Interfaces

5. Business Rules
6. System Constraints

7. System Compliance
7.1 Licensing Requirements

7.2 Legal, Copyright, and Other
Notices

7.3 Applicable Standards
8. System Documentation

Continue modelling :Sequence diagram

theLibraryMember: _ _
LibraryMember theCopy: Copy| [theBook: BooKk
aMember:
BookBorrower i i |
A | [borrow(theCopy): i |
1: okToBorrow | |
. {borrowed’ -
> b . borrowed < 1s}
C-A<5s - LDOTTOV »—_ 2.1: borrowed

Combining fragments of sequence diagrams

it SD processOrder)

:Order :TicketDB :Account
create ‘ i
ref | .
Get existing customer data
loop |) loop

[get next item]
reserve(date,no) : ——— loop condition

_add(seats)

€rmm e S i answer i

destruction

More fragments of sequence diagrams

‘Order

‘TicketDB

loop |

[get next item]

reserve(date,no) :

guard condition

/ /
alt [available]/ < nested conditional
add(seats) | -
--- >alternate branches
reject [unavailable]]

Continue modelling: next level

Kt sweor.
-Atfen traH
A

Next level Use-case

State diagram

For class Copy: start marker

object message this object

SN

return()/book.returned(self)

on loan on the shelf
/- baorrow()/book.borrowed(self){

N

state €vent, causing action, reaction
transition to the event

State diagram with guards

Wiht OCL, Object Constraint

~

Languag
powerful

returned()

e, this becomes very

returned()

B |not borrowable

borrowable

J

~"borrowed()[last copy]

-

borrowed()[not last copy]

Deployment diagram

hardware
A(/
- Workstation lotta: PC
<< AN>>
artifact>>1 | mmmmm e <<artifact>>
& <<yuse>>

Collaboration

e W Provides a focused view of how instances of classes may
W collaborate to achieve something, for example, a use-case

role name Goods sale -
}pe connector
7
‘.\ buyer. Company goods: Goods seller: Company

Traceability

= analysis design Implementation

~|_vertical
traceabllity

horizontal

& J*lﬂ traceabil Ity

Traceablility methods

= Explicit links provided by a tool
= Textual references
= Name tracing using a pre-defined convention

= System knowledge and domain knowledge used by
experienced people

Cross-referencing traceabillity

R1: The system shall
print all invoices at the
department. (D1, D2, ...)

D1: The system takes
data from the customer
data base and template A
to print external invoices.
(R1)

D2: The system prompts
the user for input and use
template B for internal
invoices. (R1)

pe) - Atla)
J = l'_)H‘—:- vl Q.
Adalcvotr T

=T

ad @y

The traceability matrix

D1

D2

D3

D4

D5

D6

D7

R1

R2

R3

R4

Oops!

Benefits from good traceabillity

= Fulfilment of requirements can be assured

= Design rationale can be sought in affected requirements
= Change impact analysis forwards and backwards

= Cost estimations are made possible

= System understanding becomes easier

= Maintenance and testing are facilitated

Troubles with traceabillity

= Hard to know what to trace

= Hard to maintain tracing information

= People don’t trust tracing information

= Hard to visualize traces

= Itis thought of as an internal quality factor
= |s traceability item-wise even possible?

Practical investigation in traceabillity

= From Lindvall and Sandahl: Practical Implications of
Traceability, Software — Practice and Experience, 26(10),
1161-1180.

= Conducted at Ericsson’s PMR project
= Example of successful project

= Method and tool: Forward engineering, Objectory SE
(forerunner of UML and IBM Rational

= Updating of models was emphasised by the project
leader

Types of traceability

MODEL A MODEL B

Traceability classification

1. Object-to-object

2. Association-ic-
association

3. Use-case-to-

___usecase _

4. Use-case-to-object

5. Two dimensional

object-to-object
Tegend T m—
traceatnity e

associaton = = O.

| Inheritance - - - =

Object-to-object traceability

= Task: trace the concept Connection as described in the
RS:

= "The purpose is to provide a PMR operator with a
presentation of the output from the recording in such a
way that support is given for troubleshooting, verification
of the radio network during one or several Connections
for a specified MS”

Pt steor pcls vT
A=A g

| name trace:

Requirements
Specification

—_—— e —

Measurement
> Data

Frequency
l; Hoppmg

~ Frequency

Analysis Design
Object Object
Model

et e

S

connection

measurement

Cell el
- Frequency ~ frequency
Hopping . Hopping

traceability link:

Association-to-association traceabillity

= Task: determine if there is a correspondence between
associations of the objects

~ L
dew palthdend

Original model

Ocdh ded Tin

Measurement

%y

)

f
G’Tb /n a&b

{80 buinies

Pt sleori pcla VT

QU Atlan (.'(:..Hr
~Ofewdliy
Adalovot tlada,

Cell

Correct and simplified model

Adapted Analysis Object Model

Measurement

laqarne wed ¥

Measurement

Adapted Design Object Model

/’nect\
measurement /

frequencyHeopping

cell

Use-case to object traceability

fraceability ~~ ~ traceability

\—/
Requirements Analysis Analysls Use-case Design Use-case
Use{case

v o e

) o f

-

Sis elg g8

A 212 28

F P

O traceability 5 fraceability

Domain Object Analysis Object Design Object

o} ~
1, idttdlL.
o
fe)

%,

N, 2

Gs Nt
oled R
e

Use-case to object traceability

= Task: trace the requirement Recording Collection.
= Step 1: Find the use-case with name tracing
= Step 2: Trace to analysis objects

= Step 3: Trace to design objects via use-case
= Finally: Compare the object models

A g Wl e *
~J

daw r.JaLH hes

& L'L{O‘E"S T"L"L'.“jh I-L'r*

[~ bt

i L‘]; "_T___.(._?
P ps

Twni e €}
fden 4 o

{1-.1\.(! hbrﬁrr,; \

- et sleori ol T

\ -Atlas g
Offenliy =
Adalcvste Clada

HO
CNAM interface PMR_Cnaminterface

Recordl% network PMR_Network
Recgrd!ng PMR_Recording
Fite antout PMR_FilePrintout
Alphanum?ﬂc printout PMR_AlphaPrintout
MML'gt)ertaoe

Alphanumerlic Printout Interface PMR_SabAxelntertace

O
File Printout Interface

Recording M%M
L]

Recording " CollectarElement

Hecordl% MSC

Hecordl%W PMR_OrderElement

Recording BSC
HO)

CNCM interface PMR_Networkinto
O 0l

CAB Intertace PMR_Collector
Legend
Traceability link:

Three-to-one traceabillity

HO
MML interface

Alphanumeric Printout interface PMR_SabAxelnterface

File Printout interface

A
O 2\
Back ‘g % Wheel

QO O O

Threeleg Seat Armrest

Figure 6.11: A chair modeled as a direct correspondence to its physical realization
in the real world.

conslstsOf

O consistsOf O

product part

! Pt steor pcls vT
- Afiae ua_Hr
= Offewiliy vTT‘
Adalcroit Clads

Figure 6.12: A chair modeled as the role it plays in an information system:.a product
consisting of parts.

Many-to-many traceability

Recording MQ&M
L]
Recortg%g _CollectorElement

Recordir% MSC 2
O L
Recording MSC 30 PMR_OrderElement
Recording BSC
Legend

Traceability link; —— I

o} M
1, idttdlL.
o
fe)

%,

v, N
Gis UNY

PUIRL R
e

Two-dimensional traceability

Recording Ma(r:l)aged E t
4y

! Y

orElement

Coli

PMR_OrderElement

Rooorgl-’l)lg BSC

Legend
Traceability link; —
Inheritance: -——

Recording Managed Element
4y
AN
i\
i \
! \
!
COHQOI‘EIemem

i
[}
!
!
] ;
[
i
, f
! ;
' L
f H
1 r
! !
{
_,Org';!rElomont

f
! Recording BSC R4

[

Peilcleori pcla vT

offeuilis R*"“’“"Qliiso': R3

~ "-’H“w“i ? 4 ,:—T‘
Legend

Adalcroit Clads
O‘L‘.U ‘ I .. T 1] Y
ta Traceabiiity link:
inheritance: ———w

b aaana 086

A wicked visualisation problem

Matrix browser

Matel Frit Hik=

Ll I
.l
i gl i

lisht 1%
b !

Produkion
-

Wanainds 2.,

IFF &—
ML =
IFts &
IFa w

IPT % —
TEG &
feuii =
|F el

I8 &—
M -
Mikroelekinmnik
loF -

= - —
M= -
ST =
E =
17k &
1o Schonkac il
I0F =
ILT =

1PN & —]
IST =
Bz -
Warki=nme
EMI =&

ol 8 —

e Jbamaschen -1

o For :n:n:-ngsgauim_
=] Inforrreatio nskes hrok 5t
3

e | TR R

& F'rndl.idi:lrr:-n'u'nn-m:m'-:-rl'r—zq
TrarzpoHinglstk
Feoli b
#hulam aligle nng
ForsinJidior
Feapid Frofohping

L aserlralagan

- a s

=%
"1
[|

Fol
|

IKTS =
I°FF =
gonsige {1
IEE =% —
[[= =3¢ 3
IR =
I -

- -

=—_ 14 Ppifigrhinik

% GenEnrk
| Ainanahtik
|_ e st S Gl an

-
i iy
e
DDjCJ'I‘:'
i

gy |

|8]

gy |
=8 |

Do {{E=T S TR [O
Crashleats -

& .

Ierswingsieie
BT | veerta Frersie chinlks ;
£ | ¥erkstefleshnik 7

Gl
1

£~ | Enamgistechnik

=[5 Bauecnnik
i
wl 1 ¥ e

den palthezdint]

ek §

Ocla

G43GS UNTy,
R “%

Be gql‘h

G

L\g-l T

Y

Table lens

G4

Hé

(55

HS

G6

HE

o1y BT 55
g 4 éc

Q 8
\ vl @

UNy %S

Conclusions

= Traceability in model-based development is possible and
boosts system understanding and correctness

= In practice many different methods are used
simultaneously

= You need to determine what is important to trace
= Sometimes you can get traceability for free

= To take full advantage you need to invest and handle the
attitudes

Future: Integrational Software Engineering

C1l

P
<

C3

N

[
Ll

Op3

Final
system

The NFR Framework

Good Capacity
for accounts

/A\ Response

Space, tlme

ﬁ\
\
1
'
\
\
\
\
'
1
\
!

Q Validity access

against eligibility
rules

Use uncompressed Use indexing

format

{ \
A
’
’
,
’

,
’
,
’
,
’
’
’
,
’
,
’
,
’
,
’
~
~
~
~
~
N

Secure
accounts

Annotating UML models

Kt sweor.
- AHl & rg
A

/N

Time constraints in a sequence diagram

g

Requirements in SysML

“reguirement»
Requirement name

text="The system shall do”
ld="62j32"

Hrequirement
Parent

&P

s=requirement== =<requirement=>
Child1 Child2

Pt steori pcla vT

<) - Affae gt
= Offewdliy wH
r"k.{tnl(\':ﬂ" Lalay

Hewdlig 7
Adalcreth tlada

0aLib

b wasann 1.6
17 H:ECSUN*’L
@‘-15

LJ{’

N('tsl UN‘?‘

Table representation

table [requirement] Performance [Decomposition of Performance Hequirement:u

id [name text
The Hybrid SUV shall have the braking, acceleration, and off
road capability of a typical SUNV, but have dramatically better
2| Performance fuel economy.

The Hybrid SUV shall have the braking capability of a typical
2.1|Braking SV,

The Hybrid SUV shall have drarmatically better fuel economy
2.2| FuelEconomy than a typical SUV.

The Hybrid SUV shall have the off-road capability of a
2.3|OffRoadCapability |typical SUV.

The Hybrid SUV shall have the acceleration of a typical
24|Acceleration SV,

Relations

«slereotypen
UMLASysML::Trace

wotereotypes
DeriveReqt

wstereotypen
Werify

«Fereotypen
Copy

wslerectypas
Satisfy

req M asterCylinderSafety /

Decelerate Car

"’ .
éjf «refiney

“rationale»
hody =" This design of the brake
assembly satisfies the federal safety
requirements.”

“requirementy

“«hlocky
BrakeSystem

f: FrantBrale

r- Hear Brake

Master Cylinder Efficacy / [1: BrakeLine
;" __—— |2 Brakeline
id="5541" /o wsatishoy T m: MasterCylinder
text ="A master cylinder shall have a reservair ;_,._rf-*““"'_
compartment for each service brake <= activateBrake()
subsystem serviced by the master cylinder. releaseBrake()
Loss of fluid from one compartment
shall not result in a complete loss of
brake fluid from another compartment.”
«deriveRegb» «denveReqt» «rationale»
!f' T hody = "The hest-practice
_ . solution consists in assigning
«requirementy» «requirementy one reservoir per brakeline "
LossOfFluid Reservoir
Do _-"
id="s54 13" id ="354 1p" e
text ="Frevent complete loss of fluid” text = "Separate reservoir compartment” SatisfiedBy
3 BrakeSystem: |1
- BrakeSystem::|2
! T «rationalex
: hody ="The hest-practice
Satisfied By solution consists inusing a set of
BrakeSyster:rm springs and pistons to confine the
loss to a single compartment”

o1y BT 55
g 4 éc

Q 8
\ vl @

UNy %S

Formal methods

= Just as models, formal methods is a complement to
other specification methods.

= Standard is model-based methods, specified
mathematically and interpreted with logic.

= Benefits: Non-ambiguous specification, all issues are
discovered, proof of properties, simulation, code
generation.

= Costs: Time, tools, training and inherent complexity of
algorithms.

= High costs = use only for critical applications

The three Cs - definition

= Consistency — no internal contradictions

= Completeness — everything is there

= Correctness — satisfaction of business goals
Potential problems:

= adding requirements make the specification more
complete, but there is a risk of introducing contradiction.

= correctness is vaguely defined,
formally: consistent + complete?
pragmatically: satisfaction of customer needs?

G [- S U
q7 6{1& NII’Z-"
S0l o

Single specification model

Requirements Specification

states relationships Domain prov%aninterface to

between elements of

S U D E R what we know about the domain,
system and interfaces makes R true.
Nothing in R is missing in S and D

S u D is consistent = Tells if S is complete N Proof obligation towards
mission of S is possible with respectto R correctness of S,or formal
proof of correctness?

Evolutionary model

change change change

llnonotonic chan monotonic chan
D]_ ge D2 ge. D3

Business goal To make notation more convenient,
or Belief let B=R,
and S =R,,;

The three Cs

N\

D,

RUD R,
(completeness)

R U D, ¥ 1 (consistency)

D, £ D;; (monotonicity) =
RUD ER_;UD,

R2 Rn+l

D,

Induction gives:

R, UD,.; ERjU{}
Replace back and have:
SuD,,; EB

Specification deployed in final domain satisfies customer needs = correctness

Example: shop owner(1)

= B ={when a customer comes near the entrance, the door
shall open}

First attempt:

= D, ={when a person comes near the entrance door, a
presence sensor gets activated}

= R; ={when the sensor gets activated, the door shall
open}

= Prove R, U D, ¥ B, and fail, since B talks about
customers, D, talks about persons

= Two choices: Improve D, with biometry and recognition
or weaken B:

= B ={when a person comes near the entrance, the door
shall open}

o, = Prove R, U D, E B and succeed (consistent, complete)

Adalcyse clad

0.l

SRTAT VA

G . 6iGS UNJp
97 '.bé"iﬁc Nu@,

Example: shop owner (2)

Second iteration:
= D,=D; U {when a sliding door's motor is turned on, the door opens}

R, = {when the sensor gets activated, the door’s motor shall be turned
on}

= R, U D, is consistent and complete w.r.t R;
= D, F D, (containment)

= R, ¥ R; (knowledge about whether motor(on) = door(opened) is the
the domain theory, not in RS)

Continued development:

= S ={when a signal is detected on the input line associated with the
door’s presence sensor, establish +5V on the output line associated
with the door’s motor}

= If we have proved consistency and completeness in all iterations, S is
correct w.r.t B

Z example

LOOKUP
ST = Key — VAL . » "
INIT i : ;EY ¥ B
s’ : BT .
v : VAL
e k € dom(st} A
om
INSERT t(;z N
T =
gk, s & 8f S
gsE" = sk
k : KEY |
v : VAL |
DELETE
k &€ dom{st) A sk, st’ & ST
st’ = st U {k — v} & & KE

k € dom(st) A

’*?ﬁ, e
Ao lcvoe Clad
OLU . st’ = (k} 4 st

SRTPTTo I AN

	Model-Based Requirements Engineering
	Planned topics
	Requirements
	Elicitation
	Analysis: Goal
	Analysis: Requirements classification
	Analysis: Conceptual Modelling
	Specification
	SRS contents
	Individual requirements
	Requirements specification
	Validation of requirements
	Requirement representation process
	Introduction
	Develop complementary system models
	UML 4+1 Model
	Slide Number 17
	Use-case diagram
	Use-case diagram for the library
	Relations between use-cases
	Extension points
	Identifying classes: noun analysis
	The single class model
	The library class model
	More relations between classes
	Where to go now?
	Writing a detailed use-case specification
	“Classical” use-case specification
	Use-cases need System-wide requirements
	Continue modelling :Sequence diagram
	Combining fragments of sequence diagrams
	More fragments of sequence diagrams
	Continue modelling: next level
	State diagram
	State diagram with guards
	Deployment diagram
	Collaboration
	Traceability
	Traceability methods
	Cross-referencing traceability
	The traceability matrix
	Benefits from good traceability
	Troubles with traceability
	Practical investigation in traceability
	Types of traceability
	Object-to-object traceability
	Slide Number 47
	Association-to-association traceability
	Original model
	Correct and simplified model
	Are these the same models?
	Use-case to object traceability
	Use-case to object traceability
	Slide Number 54
	Three-to-one traceability
	Slide Number 56
	Many-to-many traceability
	Two-dimensional traceability
	Slide Number 59
	A wicked visualisation problem
	Matrix browser
	Table lens
	Conclusions
	Future: Integrational Software Engineering
	The NFR Framework
	Annotating UML models
	Time constraints in a sequence diagram
	Requirements in SysML
	Table representation
	Relations
	Example
	Formal methods
	The three Cs - definition
	Single specification model
	Evolutionary model
	The three Cs
	Example: shop owner(1)
	Example: shop owner (2)
	 Z example

