
Model-Based Requirements
Engineering

Tutorial 2010-02-09
by
Kristian Sandahl

Planned topics

 What are requirements?
 Modelling requirements in UML
 Requirement model traceability
 Non-functional software requirements
 Short introduction to requirements in SysML
 Short introduction to formal methods

Requirements

 “Software requirements express the needs and
constraints placed on a software product that contribute
to the solution of some real-world problem.”

(Kotonya and Sommerville 2000)

Process model:
 Elicitation
 Analysis
 Specification
 Validation

Elicitation

Purpose:
 Understand the true needs of the customer
 Trace future implementation to needs

Sources:
 Goals
 Domain knowledge
 Stakeholders
 Environment

Carol
the customer

Robert
the requirements engineer

need
s

need
s

Techniques:
• Interviews
• Scenarios
• Prototypes
• Facilitated meetings
• Observation

Analysis: Goal

 Detect and resolve conflicts btwn requirements
 Discover bounds of software
 Define interaction with the environment
 Elaborate high-level requirements to derive detailed

requirements

Analysis: Requirements classification

 Functional vs non-functional requirements
 Source
 Product or process requirements
 Priority
 Scope in terms of affected components
 Volatility vs stability

Analysis: Conceptual Modelling

 Representation in semi-formal notation
 Often diagrammatic representation
 Examples:

 Object-orientation, use-cases, state-machines
 Activity diagrams
 Data flow diagrams
 Entity-relationship models

Specification

 There is no perfect specification, but you can write a good one
 The RS, or SRS avoids many misunderstandings
 The RS is of special importance in outsourcing programming

Carol
the customer

Robert
the requirements engineer

need
s

need
s

SRS

SRS contents

1 Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms and

abbreviations
1.4 References
1.5 Overview

4 Supporting information
4.1 Index
4.2 Appendices

2 Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies
2.6 Lower ambition levels

3 Specific requirements
3.1 Interface requirements

3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communication interfaces

3.2 Functional requirements
3.3 Performance requirements
3.4 Design constraints
3.5 Software system attributes
3.6 Other requirements

Individual requirements

Requirements specification

Requirements are:
 Numbered
 Inspected
 Prioritised
 Unambiguous
 Testable
 Complete
 Consistent

 Traceable
 Feasible
 Modifiable
 Useful for:

 operation
 maintenance
 customer
 developer
 ….

Validation of requirements

Before design and coding
 Inspections
 Cross-referencing
 Interviews
 Checklists
 Scenarios
 Proofs
 Model validation
 Simulation
 Prototyping

After (some) design and coding
 Prototyping

 Overcomittment
 Teach-back

 Alfa test
 Beta test
 Acceptance test

Requirement representation process

time

specification

fuzziness

elicitation

modelling formalisation

customer
developer

Introduction

 Models supplement natural language
 Models support both elicitation and design
 The boundaries between specification and design have

to be decided
 There are high transition costs from functional to object-

oriented models
 UML is becoming the standard notation

Develop complementary system models

Benefits:
 Forces analysis from

different views
 Different readers take

different views
Implementation:
 The UML 4+1 model
 Combination of other

diagrams

Drawbacks:
 Different readers make

different interpretation
 Normally weak exception

handling
 Hard to model non-

functional requirements

UML 4+1 Model

Views:
 Logical view: which parts belong together?
 Process view: what threads of control are there?
 Development view: what is developed by whom? reuse

issues
 Physical view: which part will execute where?
+
 Use-case model: required system from the user’s point of

view. static and dynamic

Use-case modelling

A use-case is:
“… a particular form or pattern or exemplar of

usage, a scenario that begins with some
user of the system initiating some
transaction of sequence of interrelated
events.”

(Jacobson, m fl 1992)

Use-case diagram

Borrow copy of book

BookBorrower
A BookBorrower presents a book.
The system checks that the potential
borrower is a member of the library,
and that he/she doesn’t already have
the maximum permitted book on loan.
This maximum is 6 unless the
member is a staff member, in which
case it is 12. If both checks succeed, the
system records that this library member
has this copy of the book on loan.
Otherwise it refuses the loan.

Actor: a user of
the system in a
particular role.
Can be human
or system.

Detail of use-case

Use-case diagram for the library

BookBorrower

JournalBorrower

Browser

Librarian

Reserve book

Borrow copy
of book

Return copy
of book

Extend loan

Borrow journal

Return journal

Browse

Update catalog

Library system

Relations between use-cases

Extend loan

Borrow copy
of book

Check for
reservation

<<include>>

<<include>>BookBorrower

Refuse loan
<<extend>>

Stereotype: extended
classification of meaning

”Separating scenarious”

”Reuse”

Please, keep as
simple as possible.

Extension points

Perform loan transaction
on-line helpextension points:

Selection
<<extend>>

Condition: {customer selected HELP}
extension point: Selection

Identifying classes: noun analysis

A BookBorrower presents a book.
The system checks that the potential
borrower is a member of the library,
and that he/she doesn’t already have
the maximum permitted book on loan.
This maximum is six unless the
member is a staff member, in which
case it is 12. If both checks succeed, the
system records that this library member
has this copy of the book on loan.
Otherwise it refuses the loan.

•book – real noun handled
by the system

•system – meta-language

•borrower – already actor

•library member – handled
by the system

•staff member – handled by
the system

•checks – event

•copy of book – handled by
the system

The single class model

Book

title: String

copiesOnShelf() : Integer
borrow(c:Copy)

name

attribute

operations

The library class model

LibraryMember

MemberOfStaff

Book

Copy

Journal

borrows/returns

borrows/returns

is a copy of
1

1..*

0..1

0..1

0..*

0..*

generalisation

More relations between classes

Topic Link
1..* 10..* aggregation

Encylopedia Volume
1 1..* composition

Board Square1 qualified
association

1row:{1,2,..8}
column:{1,2,..8}

Book
Copy

Journal

is a copy of

1..* 0..*

is a copy of

{xor}

0..*
1..*

constraint

Where to go now?

1. Continue with a traditional specification
2. Writing a detailed use-case specification
3. Continue modelling

Writing a detailed use-case specification

 Name
 Brief Description
 Flow of Events: Write the description so that the

customer can understand it. The flows can include a
basic flow, alternative flows, and sub flows.

 (Key scenarios)
 Special Requirements
 Preconditions
 Post-conditions
 Extension points

“Classical” use-case specification

max 40 pages

Use-cases need System-wide
requirements

1. Introduction
2. System-Wide Functional

Requirements
3. System Qualities

3.1 Usability
3.2 Reliability
3.3 Performance
3.4 Supportability

4. System Interfaces
4.1User Interfaces

4.1.1 Look & Feel
4.1.2 Layout and Navigation

Requirements
4.1.3 Consistency
4.1.4 User Personalization &

Customization Requirements

4.2Interfaces to External
Systems or Devices

4.2.1 Software Interfaces
4.2.2 Hardware Interfaces
4.2.3 Communications Interfaces
5. Business Rules
6. System Constraints
7. System Compliance

7.1 Licensing Requirements
7.2 Legal, Copyright, and Other

Notices
7.3 Applicable Standards

8. System Documentation

Continue modelling :Sequence diagram

aMember:
BookBorrower

theLibraryMember:
LibraryMember theCopy: Copy theBook: Book

borrow(theCopy)
1: okToBorrow

2: borrow 2.1: borrowed

A

C

{C-A < 5s}

{borrowed’ –
borrowed < 1s}

Combining fragments of sequence diagrams

:Order :TicketDB :Account

SD processOrder

create

Get existing customer dataref

loop

[get next item]
reserve(date,no)

add(seats)

destruction

answer

loop condition

loop

More fragments of sequence diagrams

:Order :TicketDB

loop
[get next item]

reserve(date,no)

add(seats)

reject

alt [available]

[unavailable]

nested conditional

alternate branches

guard condition

Continue modelling: next level

Next level Use-case

State diagram

on loan on the shelf
return()/book.returned(self)

borrow()/book.borrowed(self)

For class Copy:
start marker

state event, causing
transition

action, reaction
to the event

object message this object

State diagram with guards

not borrowable borrowable
returned()

borrowed()[last copy]

For class Book:

returned()

borrowed()[not last copy]

Wiht OCL, Object Constraint
Language, this becomes very
powerful

Deployment diagram

august: Workstation lotta: PC
<<LAN>>

hardware

<<artifact>> <<artifact>>

Collaboration
 Provides a focused view of how instances of classes may

collaborate to achieve something, for example, a use-case

buyer: Company seller: Companygoods: Goods

Goods salerole name

type connector

Traceability

analysis design implementation

vertical
traceability

horizontal
traceability

Traceability methods

 Explicit links provided by a tool
 Textual references
 Name tracing using a pre-defined convention
 System knowledge and domain knowledge used by

experienced people

Cross-referencing traceability

 R1: The system shall
print all invoices at the
department. (D1, D2, ...)

 D1: The system takes
data from the customer
data base and template A
to print external invoices.
(R1)

 D2: The system prompts
the user for input and use
template B for internal
invoices. (R1)

The traceability matrix

D1 D2 D3 D4 D5 D6 D7

R1 x x

R2 x x

R3 x

R4 x x x

R5 x x

R6 x x x

R7

Oops!

Benefits from good traceability

 Fulfilment of requirements can be assured
 Design rationale can be sought in affected requirements
 Change impact analysis forwards and backwards
 Cost estimations are made possible
 System understanding becomes easier
 Maintenance and testing are facilitated

Troubles with traceability

 Hard to know what to trace
 Hard to maintain tracing information
 People don’t trust tracing information
 Hard to visualize traces
 It is thought of as an internal quality factor
 Is traceability item-wise even possible?

Practical investigation in traceability

 From Lindvall and Sandahl: Practical Implications of
Traceability, Software – Practice and Experience, 26(10),
1161-1180.

 Conducted at Ericsson’s PMR project
 Example of successful project
 Method and tool: Forward engineering, Objectory SE

(forerunner of UML and IBM Rational
 Updating of models was emphasised by the project

leader

Types of traceability

Object-to-object traceability

 Task: trace the concept Connection as described in the
RS:

 ”The purpose is to provide a PMR operator with a
presentation of the output from the recording in such a
way that support is given for troubleshooting, verification
of the radio network during one or several Connections
for a specified MS”

Association-to-association traceability

 Task: determine if there is a correspondence between
associations of the objects

Original model

Correct and simplified model

Are these the same models?

Use-case to object traceability

Use-case to object traceability

 Task: trace the requirement Recording Collection.
 Step 1: Find the use-case with name tracing
 Step 2: Trace to analysis objects
 Step 3: Trace to design objects via use-case
 Finally: Compare the object models

Three-to-one traceability

Many-to-many traceability

Two-dimensional traceability

A wicked visualisation problem

Requirements Design

Matrix browser

Table lens

Conclusions

 Traceability in model-based development is possible and
boosts system understanding and correctness

 In practice many different methods are used
simultaneously

 You need to determine what is important to trace
 Sometimes you can get traceability for free
 To take full advantage you need to invest and handle the

attitudes

Future: Integrational Software Engineering

A1

R1 R2 R3 R4

C1

C2

C3
Op1

Op2

Op3

Op5

Final
system

The NFR Framework

Space
Response
time

Use uncompressed
format

Use indexing

- + +

Validity access
against eligibility
rules

Good Capacity
for accounts

Secure
accounts

-

Annotating UML models

Time constraints in a sequence diagram

Requirements in SysML

Table representation

Relations

Example

Formal methods

 Just as models, formal methods is a complement to
other specification methods.

 Standard is model-based methods, specified
mathematically and interpreted with logic.

 Benefits: Non-ambiguous specification, all issues are
discovered, proof of properties, simulation, code
generation.

 Costs: Time, tools, training and inherent complexity of
algorithms.

 High costs ⇒ use only for critical applications

The three Cs - definition

 Consistency – no internal contradictions
 Completeness – everything is there
 Correctness – satisfaction of business goals
Potential problems:
 adding requirements make the specification more

complete, but there is a risk of introducing contradiction.
 correctness is vaguely defined,

formally: consistent + complete?
pragmatically: satisfaction of customer needs?

Single specification model
Requirements

Domain

Specification

states relationships
between elements of

provides an interface to

S ∪ D ⊨ R

Tells if S is complete
with respect to R

S ∪ D is consistent ⇒
mission of S is possible

What we know about the domain,
system and interfaces makes R true.
Nothing in R is missing in S and D

Proof obligation towards
correctness of S,or formal
proof of correctness?

∧ ⇒

Evolutionary model

B R1 R2

D2D1 D3

Schange changechange

monotonic change monotonic change

Business goal
or Belief

To make notation more convenient,
let B = R0

and S = Rn+1

The three Cs

R0 R1 R2

D2D1 D3

Rn+1

Ri ∪ Di ⊨ Ri-1
(completeness)

Ri ∪ Di ⊭ ⊥ (consistency)

Di ⊨ Di-1 (monotonicity) ⇒
Ri ∪ Di ⊨ Ri-1 ∪ Di-1

Induction gives:

Rn+1 ∪ Dn+1 ⊨ R0 ∪ { }

Replace back and have:

S ∪ Dn+1 ⊨ B

Specification deployed in final domain satisfies customer needs = correctness

Example: shop owner(1)

 B = {when a customer comes near the entrance, the door
shall open}

First attempt:
 D1 = {when a person comes near the entrance door, a

presence sensor gets activated}
 R1 = {when the sensor gets activated, the door shall

open}
 Prove R1 ∪ D1 ⊨ B, and fail, since B talks about

customers, D1 talks about persons
 Two choices: Improve D1 with biometry and recognition

or weaken B:
 B = {when a person comes near the entrance, the door

shall open}
 Prove R1 ∪ D1 ⊨ B and succeed (consistent, complete)

Example: shop owner (2)

Second iteration:
 D2 = D1 ∪ {when a sliding door’s motor is turned on, the door opens}
 R2 = {when the sensor gets activated, the door’s motor shall be turned

on}
 R2 ∪ D2 is consistent and complete w.r.t R1
 D2 ⊨ D1 (containment)
 R2 ⊭ R1 (knowledge about whether motor(on) ⇒ door(opened) is the

the domain theory, not in Rs)
Continued development:
 S = {when a signal is detected on the input line associated with the

door’s presence sensor, establish +5V on the output line associated
with the door’s motor}

 If we have proved consistency and completeness in all iterations, S is
correct w.r.t B

Z example

	Model-Based Requirements Engineering
	Planned topics
	Requirements
	Elicitation
	Analysis: Goal
	Analysis: Requirements classification
	Analysis: Conceptual Modelling
	Specification
	SRS contents
	Individual requirements
	Requirements specification
	Validation of requirements
	Requirement representation process
	Introduction
	Develop complementary system models
	UML 4+1 Model
	Slide Number 17
	Use-case diagram
	Use-case diagram for the library
	Relations between use-cases
	Extension points
	Identifying classes: noun analysis
	The single class model
	The library class model
	More relations between classes
	Where to go now?
	Writing a detailed use-case specification
	“Classical” use-case specification
	Use-cases need System-wide requirements
	Continue modelling :Sequence diagram
	Combining fragments of sequence diagrams
	More fragments of sequence diagrams
	Continue modelling: next level
	State diagram
	State diagram with guards
	Deployment diagram
	Collaboration
	Traceability
	Traceability methods
	Cross-referencing traceability
	The traceability matrix
	Benefits from good traceability
	Troubles with traceability
	Practical investigation in traceability
	Types of traceability
	Object-to-object traceability
	Slide Number 47
	Association-to-association traceability
	Original model
	Correct and simplified model
	Are these the same models?
	Use-case to object traceability
	Use-case to object traceability
	Slide Number 54
	Three-to-one traceability
	Slide Number 56
	Many-to-many traceability
	Two-dimensional traceability
	Slide Number 59
	A wicked visualisation problem
	Matrix browser
	Table lens
	Conclusions
	Future: Integrational Software Engineering
	The NFR Framework
	Annotating UML models
	Time constraints in a sequence diagram
	Requirements in SysML
	Table representation
	Relations
	Example
	Formal methods
	The three Cs - definition
	Single specification model
	Evolutionary model
	The three Cs
	Example: shop owner(1)
	Example: shop owner (2)
	 Z example

