
Presentation at MODPROD'2010Presentation at MODPROD'2010
PELAB PELAB –– Programming Environment LaboratoryProgramming Environment Laboratory

Department of Computer and Information ScienceDepartment of Computer and Information Science
LinkLinkööping University ping University

20102010--0202--0909

PeterPeter FritzsonFritzson

Research in ModelResearch in Model--Based Product DevelopmentBased Product Development
at PELAB in the MODPROD Centerat PELAB in the MODPROD Center

class x {

public

int a;

float b;

int func (int a,int b);

Asa asad

Asda ad

Asd ad cc

Aac sdscfcc c a

Ascccv ca

Ascc cac

}

class x {

public

int a;

float b;

int func (int a,int b);

Asa asad

Asda ad

Asd ad cc

Aac sdscfcc c a

Ascccv ca

Ascc cac

}

class x {

public

int a;

float b;

int func (int a,int b);

Asa asad

Asda ad

Asd ad cc

Aac sdscfcc c a

Ascccv ca

Ascc cac

}

class x {

public

int a;

float b;

int func (int a,int b);

Asa asad

Asda ad

Asd ad cc

Aac sdscfcc c a

Ascccv ca

Ascc cac

}

2 © Peter Fritzson

Examples of Complex Examples of Complex Systems in Systems in
EngineeringEngineering
• Robotics
• Automotive
• Aircraft
• Mobile Phone Systems
• Business Software
• Power plants
• Heavy Vehicles
• Process industry

3 © Peter Fritzson

Vision of IntegratedVision of Integrated
ModelModel--Based Product DevelopmentBased Product Development

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Vision of unified modeling framework for model-driven
product development from platform independent models (PIM)
to platform specific models (PSM)

4 © Peter Fritzson

Important QuestionsImportant Questions

• Design of modeling languages for modeling
complex (physical) systems (Modelica) including
precise semantics, extensibility, etc.

• How to engineer complex engineering systems of
both hardware and software in a consistent and
safe manner?

• Compilation of models for efficient (real-time)
execution on multi-core architectures

• Traceability from requirements to models to
implementation

5 © Peter Fritzson

ModelingModeling--Language DesignLanguage Design

Modeling Support EnvironmentsModeling Support Environments

6 © Peter Fritzson

Modeling Language and Tool ResearchModeling Language and Tool Research

• How can a modeling language be designed
with precise semantics to avoid errors?

• Can the language be made extensible?

• Can it model itself (meta-modeling)?

• How should a user-supportive modeling
environment be designed?

7 © Peter Fritzson

Context of Using of Semantics for Checking Context of Using of Semantics for Checking

8 © Peter Fritzson

Our Current Semantics WorkOur Current Semantics Work

• Defining Core language MKL (Modeling Kernel
Language) for expressing base semantics

• Other constructs should be expressible in the
Core language

• Defining extensible meta-modeling/meta-
programming language primitives (e.g.
MetaModelica)

9 © Peter Fritzson

The OpenModelica Open Source Enviroment The OpenModelica Open Source Enviroment
www.openmodelica.orgwww.openmodelica.org
• Advanced Interactive Modelica compiler (OMC)

• Supports most of the Modelica Language

• Basic environment for creating models
• OMShell – an interactive command handler * ModelicaML UML Profile
• OMNotebook – a literate programming notebook * MetaModelica transforms
• MDT – an advanced textual environment in Eclipse

10 © Peter Fritzson

Industrial members (16)
•ABB Corporate Research
•Bosch-Rexroth AG, Germany
•Siemens Turbo Machinery AB
•CDAC, India
•Creative Connections, Prague
•Equa Simulation AB, Sweden
•Frontway AB
•IFP, Paris, France
•InterCAX, Atlanta, USA
•MostforWater, Belgium
•MathCore Engineering AB
•MapleSoft, Canada
•TLK Thermo, Germany
•VI-grade, Italy
•VTT, Finland
•XRG Simulation AB, Germany

Open-source community services
• Website and Support Forum
• Version-controlled source base
• Bug database
• Development courses
• www.openmodelica.org

Code Statistics

•Linköping University, Sweden
•Ghent University, Belgium
•Hamburg University of Technology/TuTech, Germany
•Technical University of Braunschweig, Germany
•Université Laval, the modelEAU group, Canada
•Griffith University, Australia
•University of Queensland, Australia
•Politecnico di Milano, Italy
•Mälardalen University, Sweden
•Technical University Dortmund, Germany
•Technical University Dresden, Germany
•Telemark University College, Norway

University members (12)

OSMC OSMC –– International Consortium for Open Source International Consortium for Open Source
ModelModel--based Development Tools, based Development Tools, 28 members Dec 200928 members Dec 2009

Founded Dec 4, 2007

11 © Peter Fritzson

Integrated HardwareIntegrated Hardware--Software Software
ModelingModeling

ModelicaML ModelicaML
UML Profile for ModelicaUML Profile for Modelica

SysMLSysML--Modelica Integration Modelica Integration

12 © Peter Fritzson

Using ECLIPSEUsing ECLIPSE as as IntegrationIntegration PlatformPlatform

Java
runtime

ECLIPSE Rich Client Platform (RCP) Runtime

ECLIPSE Process Framework (EPF)
Composer Specific components

OpenModelica
runtime

MetaModelica
runtime

C/C++
runtime

ECLIPSE Modeling Framework

OpenModelica
MDT

OpenModelica
MDT

Graphical Modeling Framework

UML-Modelica
Plug-in

UML-Modelica
Plug-in

OpenUP/BasicOpenUP/Basic Capacity Sub-
Process Areas

Capacity Sub-
Process Areas

13 © Peter Fritzson

ModelicaML ModelicaML –– UMLUML Profile for Profile for ModelicaModelica
1st Generation1st Generation

• Extension of SysML subset
• Features:

• Supports Modelica constructs
• Modelica generic class modeling
• Modelica syntax in definitions
• Equation-based modeling
• Simulation modeling

14 © Peter Fritzson

ModelicaML ModelicaML Diagrams Diagrams –– Overview Overview

15 © Peter Fritzson

ModelicaMLModelicaML Class Internal DiagramClass Internal Diagram

• Modelica Connection
diagram
• Better visual comprehension
• Predefined connector

locations

• Class Internal diagram
• Nested models
• Top-model parameters and

variables
• Flow direction
• Other ModelicaML elements

16 © Peter Fritzson

ModelicaMLModelicaML Class DiagramClass Diagram
• Example

17 © Peter Fritzson

Equations Equations DiagramDiagram
• Example

18 © Peter Fritzson

Requirements Requirements DiagramDiagram

19 © Peter Fritzson

Simulation Simulation DiagramDiagram
Introduced by ModelicaMLIntroduced by ModelicaML

20 © Peter Fritzson

ModelicaML UML Profile, 2nd GenerationModelicaML UML Profile, 2nd Generation
SysML/UML to Modelica OMG StandardizationSysML/UML to Modelica OMG Standardization
(with Wladimir Schamai)(with Wladimir Schamai)
• ModelicaML is a UML Profile for SW/HW modeling

• Applicable to “pure” UML or to other UML profiles, e.g. SysML

• Standardized Mapping UML/SysML to Modelica
• Defines transformation/mapping for executable models
• Being standardized by OMG

• ModelicaML
• Defines graphical concrete syntax (graphical notation for diagram) for

representing Modelica constructs integrated with UML
• Includes graphical formalisms (e.g. State Machines, Activities,

Requirements)
• Which do not exist in Modelica language
• Which are translated into executable Modelica code

• Is defined towards generation of executable Modelica code
• Current implementation based on the Papyrus UML tool +

OpenModelica

21 © Peter Fritzson

ModelicaML: Graphical NotationModelicaML: Graphical Notation

Structure

Behavior

Requirements

22 © Peter Fritzson

Example: Representation of System StructureExample: Representation of System Structure

Interconnection
s

Inheritance

Component
s

23 © Peter Fritzson

Example: Representation of System BehaviorExample: Representation of System Behavior

State
Machine of
the Tank

State Machine
of the
Controller

Conditional
Algorithm (Activity
Diagram)

24 © Peter Fritzson

ExampleExample: : Representation of System RequirementsRepresentation of System Requirements

Textual Requirement Formalized Requirement

25 © Peter Fritzson

ExampleExample: : Simulation and Requirements Simulation and Requirements
EvaluationEvaluation

Req. 001 is instantiated 2 times
(there are 2 tanks in the
system)

tank-height is 0.6m

Req. 001 for the tank2 is
violated

Req. 001 for the tank1 is
not violated

26 © Peter Fritzson

Parallel Execution Parallel Execution
Compilation to MultiCore Compilation to MultiCore

27 © Peter Fritzson

TowardsTowards HighHigh--LevelLevel ParallelParallel
Modeling and SimulationModeling and Simulation
• Simulations are

time-consuming
• Moore’s ”Law”: (since 1965)

• #devices per chip area doubles
every 18 months

• CPU clock rate also doubled every
18 months – until 2003,

then: heat and power issues, limited ILP, ...
superscalar technology has reached
its limits,
only (thread-level) parallelism can increase
throughput substantially

• The consequence:
Chip multiprocessors (+ clusters)
• Multi-core, PIM, ... (for general-purpose computing)

• Need parallel programming/modeling/parallelization
• Automatic parallelization
• Explicit parallel modeling and parallel programming

Single-processor Performance Scaling

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

2010

2012

2014

2016

2018

2020

L
o

g
2

 S
p

e
e
d

u
p

Limit: Clock rate

Limit: RISC ILP

Throughput incr. 55%/year

65 nm45 nm 32nm 22nm90 nm

Pipelining

RISC/CISC CPI

Device speed

Parallelism

Assumed increase
17%/year possible

Source: Doug Burger, UT Austin 2005
2006

28 © Peter Fritzson

Towards Towards EasyEasy--toto--UseUse
ModelingModeling & Simulation using Parallel Computers& Simulation using Parallel Computers

Modeling using
drag’n’drop

Translation

Parallel
Simulation

Code

Parallel
Execution

Visualization

29 © Peter Fritzson

Integrating Parallelism and Mathematical ModelsIntegrating Parallelism and Mathematical Models
Three ApproachesThree Approaches

• Automatic Parallelization of Mathematical Models (ModPar)
• Parallelism over the numeric solver method.
• Parallelism over time.
• Parallelism over the model equation system

• ... with fine-grained task scheduling

• Coarse-Grained Explicit Parallelization Using Components
• The programmer partitions the application into computational components

using strongly-typed communication interfaces.
• Co-Simulation, Transmission-Line Modeling (TLM)

• Explicit Parallel Programming
• Providing general, easy-to-use explicit parallel programming constructs

within the algorithmic part of the modeling language.
• NestStepModelica

30 © Peter Fritzson

Modelica Simulations Modelica Simulations –– Parallelization ApproachParallelization Approach

• Simulation = solution of (hybrid) DAEs from models

• In each step of numerical solver:
• Calculate in g (and Y in h)

• Parallelization approach: perform the calculation of
in parallel
• Called parallelization over the system.

• Drawback: Numeric solver might become bottle-neck

0
0

=
=

),,(
),,,(

tYXh
tYXXg

X

X

31 © Peter Fritzson

ExampleExample –– Task Graphs and Task Graphs and ParallelizedParallelized
ApplicationApplication

1
2

3
2

2
1

4
1

5
2

6
2

7
1

8
1

5 0

0 0 0

0 010

Clustered Task Graph

1 2 4 8 16
Proc

0.5

1

1.5

2

2.5

3
Speedup

Thermofluid Pipe Application

32 © Peter Fritzson

The The ModPARModPAR Parallelization Tool Parallelization Tool –– Part of the Part of the
OpenModelica EnvironmentOpenModelica Environment

Modelica
Compiler

C compiler

Model
.mo

C code

C compiler

M
odPar

M
odPar

Parallel
C codeSolver

lib
MPI
lib

Seq exe

Parallel exe

33 © Peter Fritzson

Speedup Results on Flexible ShaftSpeedup Results on Flexible Shaft

Linux Cluster (SCI network)
(monolith.nsc.liu.se)

2 4 6 8 10 12 16
Processors

1.2

1.4

1.6

1.8

2

2.2

Speedup

2 4 6 8 10 12 16 20
Processors

1.5

2

2.5

3

3.5

4

4.5

Speedup

SGI Altix 3700 Bx2
(mozart.nsc.liu.se)

34 © Peter Fritzson

Modified ApproachModified Approach
Automatic FineAutomatic Fine--Grained Grained

Parallelization Parallelization
Using Software Pipelining and Using Software Pipelining and

Solver InliningSolver Inlining

35 © Peter Fritzson

New New Modified Approach Modified Approach ––
Inlining and PipeliningInlining and Pipelining

• Try to keep communication as close as
possible

• Only communicate in one direction inside a
time step.

• Solver Inlining – distribute the solver across all
the processors

• Some parallelism across the method – parallel
evaluation of Runge-Kutta step

36 © Peter Fritzson

E
quation tasks

E
quation tasks

S

E
quation tasks

S

E
quation tasks

E
quation tasks

E
quation tasks

S

S

S

S

S

S

S

S

S

SS

Use a graph
rewriting
system to
merge tasks
into larger
tasks, based
on latency and
bandwidth.

Task Merging vs New Approach with Task Merging vs New Approach with
Pipelining/InliningPipelining/Inlining

Some tasks
are duplicated
to avoid
communication
within a step

• Try to keep
communication
as close as
possible

• Only
communicate in
one direction
inside a time
step.

• Solver Inlining –
distribute the
solver across all
the processors

37 © Peter Fritzson

MeasurementsMeasurements
(100000 steps Flexible Shaft Model)(100000 steps Flexible Shaft Model)

Relative speedup

0

0,5

1

1,5

2

2,5

3

3,5

4

0 5 10 15

Number of processors

Sp
ee

du
p

SGI Altix 3700 Bx2

Relative speedup

0

1

2

3

4

5

6

7

0 2 4 6 8 10

Number of processors
Sp

ee
du

p

Intel Xeon SGI Altix 3700 Bx2

372/11/2010 PELAB - Linköping University

Task-merging, MPI, SGI Altix Pipelined, Pthreads, SGI, Intel Xeon

SGI

Intel

38 © Peter Fritzson

Recent Speedup Measurements on NVIDIA (nov 2009)Recent Speedup Measurements on NVIDIA (nov 2009)
Modelica Model, Generated Code, Function of Problem SizeModelica Model, Generated Code, Function of Problem Size

39 © Peter Fritzson

New 2 TeraFlop Parallel Platform to PELAB/LIUNew 2 TeraFlop Parallel Platform to PELAB/LIU

• Just ordered: An NVIDIA Fermi 2050 2 Teraflop
peak parallel platform, delivery in May-Sept
2010.

• Use, e.g. in research on compiling Modelica to
MultiCore

40 © Peter Fritzson

Summary of MODPROD Research in PELABSummary of MODPROD Research in PELAB

• Modeling language design (semantics, type
systems, meta-modeling, extensibility)

• Modelica-SysML integration
• Requirements traceability, also Non-functional

requirements
• Compilation to multi-core platforms

