
111/02/2010

The Simantics System for Semantics-based Integrated
Modeling

Hannu Niemistö
VTT

211/02/2010

Original goals

There are lots of different kind of simulators built on research
projects in VTT that never get used in industry because they are not
productized.
A simulation integration platform:

Support for multi-disciplinary multi-level simulation and
modeling at VTT
Reusable components for modeling and simulation
infrastructure (less focus on solver technology)
Open source
Mapping between different data models
Team work (version control)
Distributed simulation
Simulation integration

311/02/2010

Simulators we have integrated or are integrating

Apros (to be released in 9/2010)
Dynamic process simulator in particular for conventional and nuclear power plants
and paper production processes
Most used simulator developed in VTT

Balas (to be released in 9/2010)
Steady-state process simulator

OpenModelica
Multi-domain equation-based dynamic system simulator

NuSMV
Model checking

OpenFOAM
CFD toolbox

An academic phase field simulator
Nano sellulose solvers
TempSimu

Continuous casting simulator
A toy discrete event system simulator for testing purposes

411/02/2010

Plug-in Architecture for Modelling and
Simulation

Simantics Core
triple database

Historian
Simulation result

database

Plug-in

APROS simulation engine

Plug-in

BALAS simulation engine

Plug-in

VTT-Talo building
simulation environment

Plug-in

OpenModelica system
simulation environment

Plug-in

OpenFOAM CVM CFD
simulation environment

Plug-in (*)

Elmer FEM
multi-physics simulation

environment
Plug-in

NuSMV
Model checker

Plug-in

…

Plug-in

…

Plug-in

…

Simantics Platform

• Eclipse based application framework
• 2D diagram framework
• OpenCASCADE 3D geometry kernel
• …
• Editors (text, 2D diagram, 3D geometry)
• Structural data handling and mapping
• Project/team management tools
• Distributed modelling and simulation facilities
• …

511/02/2010

How to unify the data model of different
simulators?

Started the experiments with XML in 2000
Played with custom data models in 2003
In 2005, embraced ”semantic” technologies (Simantics project
starts at 2006)
In some respects, we deviated also slightly from RDF:

URIs are implicit (they encode ConsistsOf-paths of the
resources).
Literals are not objects of statements but they are attached to
a resource. The data type of the literal is indicated by a
statement in the resource.

Everything is put into one large semantic graph.

611/02/2010

711/02/2010

Comparison of semantic graph and object
oriented representation of data

Instances may contain arbitrary attributes (not only the attributes
mentioned in the type).

More flexible
Easier to write invalid (not conforming to ontology) data
Does not allow as efficient serialization as OO-representation
But possible savings by storing only non-default values.

No so clear separation between instance and type data:
Easy to add metadata to types
Model configurations may contain types
Of course, this can be modeled in OO-representation

Relations are not bound to certain types (as attributes are). The
relations may be subrelations of other relations.

Classification and grouping of attributes useful
Makes mapping to OO-representation harder

811/02/2010

How to describe ontologies?

Tried existing OWL reasoners in 2006. Slow, not expressive
enough and open world semantics not very useful in
simulation and modeling context.
We used OWL-like restriction language with closed world
semantics in 2007-2008. Efficient for data validation, but not
expressive enough. Also not optimal for code generation.
Inspired by MOF, splitted the description language into two
parts (in 2008):
1. limited UML-like language

Useful for code generation, expressive enough for
most restrictions

2. more expressive constraint and transformation
language (SCL) based on Datalog

911/02/2010

1011/02/2010

1111/02/2010

Literal data

In RDF, literal types are usually described with XML schemas. XML
documents are not very efficient representation of large arrays of
numerical data.
First we supported only fixed set of data types (primitives and arrays
of primitives).
In 2009, we designed a structural type system for literal data:

Primitives: Byte, Integer, Long, Float, Double, String
Array types
Record types
Union types
Recursive type definitions
Variants, optional types, maps
Numerical range restrictions, array&string length restrictions,
regular pattern restrictions for strings

1211/02/2010

Data storage

Tried different triple stores in 2005 (for example Jena)
Not satisfactory performance for small writes and local reads.

Started to implement our own triple store (Simantics Core) in 2006
Features

Optimized with clustering for local browsing, not for large
queries over the whole database
Transactional
Versioning
So far tested with up to 10Mtriples of data

Numerical data is collected in a file based storage during the
simulations and archived to triple store.

1311/02/2010

Primitive DB API example

public static void printChildren(final Resource library)
throws GraphRequestException {

SimanticsUI.getSession().syncRequest(
new ReadRequest() {

public void run(ReadGraph g) throws GraphRequestException {
Builtins b = g.getBuiltins();
for(Resource child : g.getObjects(library, b.ConsistsOf))

System.out.println(g.getRelatedValue(child, b.HasName));
}

});

}

1411/02/2010

Listening the data

Much of the implementation effort of the user interfaces goes
for listening and synchronizing the data models.
We have two basic listening mechanisms for model
configurations:

Making incrementally updated queries to the database.
This mechanism is mostly used in user interfaces.
Listening and processing change sets (graph deltas)
produced by write transactions. Used only in some cases
where we cannot produce the query beforehand: for
example validation.

Also lots of utilities on top of these mechanisms

1511/02/2010

Run time data
Run time data

Communication between components

Model configuration

Diagram editor Model browser Property view

Simulator

1611/02/2010

@GraphType("http://www.simantics.org/Sysdyn#Dependency")
public class DependencyElement extends Element {

@RelatedElement("HasTail")
Connectable tail;
@RelatedElement("HasHead")
Connectable head;
@RelatedValue("HasAngle")
double angle = 0.1;
...

}

public class SysdynDiagramSchema extends SimpleSchema {
...
addLinkType(MappingSchemas.fromAnnotations(g,

DependencyElement.class));
...

}

1711/02/2010

public class SysdynDiagramEditor extends ResourceEditorPart {
...
SysdynDiagramSchema schema = new SysdynDiagramSchema(g);
mapping = Mappings.createWithListening(schema);
diagram = (IDiagram)mapping.map(g, getInputResource());
...
mapping.addMappingListener(new IMappingListener() {

@Override
public void domainModified() {

session.asyncRequest(new ReadRequest() {
@Override
public void run(ReadGraph graph)

throws DatabaseException {
mapping.updateRange(graph);

}
});

}
}
...

}

1811/02/2010

Real time data

Built on a simple RPC-protocol
Communication described with the same data types that was
used in literals.
Protocols may be described using textual notation or by
reflection with Java-interfaces

Currently developing
Graph based access to real time data. This would allow a
uniform listening mechanisms.
Unified experiment control model. Current framework is
restricted to dynamic system simulation and for example
steady-state simulator (Balas) has a custom interface.

1911/02/2010

User Interface

Built on Eclipse platform
We use

Eclipse RCP (SWT, JFace)
P2 (provision)
Mylyn
Plugins/Extensions/Extension Points

We don’t use
Eclipse file system (IResource etc.)

We store almost all data in one graph database
GEF

We have our own diagramming framework using AWT
EMF

2011/02/2010

Generic Simantics UI components

Diagram editor
Model browser
Property editor
Trend view
...

2111/02/2010

Template of simulator integration process

Write the data model (ontology) of the simulator.
Customize existing user interface or implement new UI-
components so that they listen and manipulate the
configuration data in Simantics DB.
Implement simulator integration (transforming data from
graph to the native representation of the simulator)

Every simulator is different
Very big models require that the native representation of
the simulator is updated incrementally. This is also
necessary if the data model in Simantics does not
contain all aspects of the native model (for example parts
of the state).

2211/02/2010

Thanks!

More information in
http://www.simantics.org/

