ModelicaML: Getting Started

Issue 1.6.8
February 10, 2013

Wiladimir Schamai
EADS Innovation Works (Hamburg, Germany)
Linkoping University (Linkoping, Sweden)

Abstract: This document provides a short introduction to ModelicaML and describes how to
install the ModelicaML modeling and simulation environment.

Table of Contents

1 ModelicaML: INEFOAUCTIONcviiiiiiiiiie et bbb bbb 4
1.1 ModelicaML NOtAtioN OVEIVIEWcceiuiieiiiiieiieieiesie sttt 5
1.2 MOAEliCAML GUI N PaPYIUSecieieiieiieeie ettt sttt nne s 6
1.3 Validation of ModelicaML Models and Modelica Code Generation.............cccccoeevenienene 8
1.4 Modelica COUE GENEIALION.eiveieeiiterieieerte e 8
15 Graphical ANNOTATIONceeiiieie et sre e 9
1.6 Using Existing Modelica Models in ModelicaMLcccooeoiiiiiiiiniiieec e 9

161 HOW IO USE IL ..o 10
1.7 Using Modelica Standard Library (MSL) in ModelicaMLc.ccccoovvvienieiivineenenn 12
1.8 Subset of the UML Used in ModeliCaMLccooeiiiiiniiiirce s 12

1.8.1 Subset of UML2 Activity Concepts Supported in ModelicaML.............ccccccevenennnne. 13

1.8.2 Subset of UML2 State Machines Concepts Supported in ModelicaML 13

1.8.2.1 Support of Graphical NOtationcccoceiiiiiriiiiiee s 13

1.8.2.2 Supported Subset of UML State Machine ConCepts.........cccccevvvveieerieiieiecieeieiens 13

1.8.3 Predefined MACKOS.couiiiiiieieie et 14

1.8.3.1 Macros inside TranSition GUAITSccceeueriiirinirienieine st 14

1.83.1.1 e I 1 V- Tt o OSSR 14

1.8.3.1.2 CHANGE - IMCIO ...ttt st 14

1.8.3.1.3 ADSOIULE ValUE - MACKO........ooviiiiiiie e 14

1.8.3.2 Macros inside ACLION BOGIEScc.evveeririiriiieese e 14

1.8.3.3 GEN_CHANGE - MACIO ..ottt 14
19 Limitations With Regard TO MOGEHCA..........ccccveeeririiiee e 15

2 INSTAHTALION ..o bbbttt eens 16
2.1 Download Eclipse Modeling Tools Package (EClipse JUNO).........cccoovvevieneneinenenienns 16
2.2 Install Papyrus (UML Modeling TOOI).......cccuvieieiiiieseeie e 16

2.2.1 UPAALE PAPYIUSecvieiiieieiete sttt sttt sttt st st sbe st eens 17
2.3 Install Xtext (ModelicaML Action Code Editing)ccccovvrriiiinninniieie e 18
2.4 Install Acceleo 2.8 (Modelica Code GENEration)cceoevevvreereseseseere e sesaeseeneens 18
2.5 Install Modelica Development TOOIINGcccoveieiieiiieeie e 19
2.6 INSEAll MOABIICAML ..ot 20
2.7 Install OpenModelica COMPIIETccvcveiiiiceee e 16
2.8 IMPOrt an EXamMPIE PrOJECEScveiieieeieie sttt 21

I O 1) (0] 14 L o] TSRO TRPRORRTRT 23
3.1 o] 1T 0 F1= TN o PR 23
3.2 Eclipse ModelicaML PerspeCIVE..........cccveieiicieceee s 23
3.3 PrEfErENCE PAGES. ... i veieeieieie sttt bt 25

3.3.1 ModelicaML and Papyrus Preference Pages........cccocuvereieenenenieiese e 25

3.3.2 Model Validation CUStOMIZALIONcceiviiiiiiiiceese s 25
3.4 Papyrus CUSTOMIZALION.cccviuiieieiiesieiee sttt 26
3.5 Papyrus Diagram Palette CUStOMIZAtiONcccovveiieiiiieece s 27

RETEIENCES ...t bbbt bbb bbbt b bt b bt b et nr e b 28

Table of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 15:
Figure 16:
Figure 15:
Figure 17:
Figure 18:

MOAEIICAML CONCEPL....cvieieieiiite ittt bbb bbb b 4
ModelicaML prototype arChiteCIUIEcveiie i 5
MOAeliCAML NOTALIONe.veuieiiitcieeee et 6
ModelicCaML GUI IN PAPYIUSooveiiiiiiiiieiieieieste et 7
ModelicaML GUI aCtioNS iN PaPYTUSccveiiieiieieieseeeeie e e seesee e sre e sae e e sneeseeseens 7
ModelicaML VAIIAALIONcviiiiiiiiseee e 8
ModelicaML COUE GENEIALION........ccueiiiiieiieieesie et 9
Convention for project TOlder SITUCTUIEoovvveiere e 9
Proxy Synchronization toolbar DUON ... 10
: Proxy SYynchronization VIBW.........cccoeiiiiiiriiiie e 11

Example Of Created PrOXIESoovieiiirieieiee st e 11
Importing a registered liDrary in Papyrusccocoveiiireereie e 12
Eclipse Network CONNECLIONS........c.coiiiiiiieire e e 16
INSEAIT PAPYIUS ...ttt bbbt st 17
UPAALE PAPYIUS.....c.eiieiieeieiiesie ettt te ettt sbe s et steeneeaesaesreeneeneneas 18
INSTAIT XEEXE ...ttt bbb 18
INSEAIL ACCEIEO ... ettt b e 19
Install Modeling Development TOOHNG (MDT)cooviieiiiiieiiee e 20
Install ModeliCaML fOr PAPYIUS........cueviriiieieeie sttt nnens 21
Import ModelicaML eXaMPIESccccoieieiiiieeee e 22

Figure 19: Example ModelicaML Perspective 1ayOUL............ccccovvvveriiinieseeic e 24
Figure 20: Example Perspective CUStOMIZALIONcc.coviveiereieieeie e 24
Figure 21: ModelicaML and Papyrus Preference Pagescooecvverereeeiene s 25
Figure 22: Model Validation Preference PAgeS.......cccoveieireniinieiese s 26
Figure 23: Loading ModelicaML Model Explorer Customizationcc.cceevvvvveveernninsneeeniennns 26

Figure 24:

Papyrus Diagram Palettes.........c.coiiiiieiiiii i 27

1 ModelicaML: Introduction

ModelicaML is a graphical modeling language and UML profile for the description of system
architecture and system dynamic behavior. ModelicaML is based on an extended subset of the OMG
Unified Modeling Language (UML) and is designed for Modelica code generation from graphical
models such as state machines and activity diagrams, supporting hardware/software co-modeling and
system requirement verification. ModelicaML is developed in collaboration between Linkdping
University and EADS Innovation Works, within the Open Source Modelica Consortium.

ModelicaML extends the graphical modeling capabilities of Modelica by providing standardized
diagrams for presenting the composition, connection, inheritance, and behavior of system models.
Moreover, ModelicaML incorporates methods for model-based verification of system requirements
using simulations.

(1) system Modeling with ModelicaML

@Modelica Code Generation

@ System Simulation with Modelica Tools

Figure 1: ModelicaML concept

The goal of ModelicaML is to enable an efficient and effective way to create, visualize and
maintain combined UML and Modelica models. ModelicaML is defined as a graphical notation
that facilitates different views (e.g., composition, inheritance, behavior) on system models. It is
based on a subset of UML and reuses some concepts from SysML. ModelicaML is designed to
generate Modelica code from graphical models. Since the ModelicaML profile is an extension of
the UML meta-model it can be used as an extension for both UML and SysML™.

UML/SysML provides the modeler with powerful descriptive constructs at the expense of
sometimes loosely defined semantics that are marked as “semantic variation points” in the
UML/SysML specifications. The intention in ModelicaML is to provide the modeler with
powerful executable constructs and precise execution semantics that are based on the Modelica
language. Therefore, ModelicaML uses a subset of UML, extends the UML meta-model (using the
UML profiling mechanism) with new constructs in order to introduce missing Modelica concepts,
and reuses some concepts from SysML. However, like UML and SysML, ModelicaML is mainly
used as a graphical notation. ModelicaML models are eventually translated into Modelica code.
Hence, the ModelicaML execution semantics are defined by the Modelica language and ultimately
by a Modelica compiler that will translate the generated Modelica code into an executable form.

! SysML itself is also a UML Profile. All ModelicaML stereotypes that extend UML meta-classes are also applicable to the
corresponding SysML elements.

Presently, the ModelicaML prototype is based on the following architecture:

Papyrus [5] is used as modeling tool. It is extended by the ModelicaML profile and
customized modeling tool features (e.g. dedicated toolbars, diagram selections, etc.).
A ModelicaML model can be validated in order to check constraints and possible
inconsistencies by using a validator plug-in which informs the modeler about
inconsistencies or restriction violations. Note that the validation on the ModelicaML
model does not replace the semantic analysis by a Modelica compiler.

The ModelicaML code generator that generates Modelica code from the ModelicaML
models is implemented using the Acceleo Eclipse plug-in [4], which follows the MDA
approach and the model-to-text recommendations of the OMG.

Finally, Modelica tools such as OpenModelica[7], Dymola[8] or MathModelica[9] are
used to load the generated Modelica code and to simulate it.

,1 ModelicaML Profile (Eclipse Plug-In) Any Modelica Simulation Tool

P

Armiers_p— Fls £t dwer ok reb

Seect | zuom | Pon | | vk | Profaerces | dcte | dmage

Plot by OponMlodatica

1]

|

¥

¥
e o
g &8 F
i 0§ B 2
i

: A
Y = !
O QJ RE L,_J 26) Model to Text Transformation
:> mo
ModelicaML Code Generator Generated Modelica Code
(Eclipse Plug-In) (.mo files)

Figure 2: ModelicaML prototype architecture

Since the ModelicaML profile is an extension of the UML meta-model it can be used for both:
modeling with the standard UML and with the SysML?.

1.1 ModelicaML Notation Overview
The following UML diagrams can be used in ModelicaML for a graphical representation of model

data:

Class Diagram: for representing inheritance and class decomposition.

Composite Structure Diagram: for representing class components and their
interconnection. This diagram is similar to the Modelica Connection Diagram.
Activity Diagram: for modeling of conditional equations or algorithm statements.
State Machine Diagram: for modeling of state-based behavior.

2 SysML itself is also a UML Profile. All stereotypes that extend UML meta-classes are applicable to the SysML as well.

Structure Reguirements

F—"
(TwTankaSyatomExsmpis. Desigridodels Models Libran)

BaseCantrolles = arequremeils
Requrement
K ModehcaReal TankyCommecindi “ ,;:’l;,' g Mas lovel of liquid in a tank
stomperets Rexn = The level of liquid in & tank shall never A
— 2 evariables marLevel ModelicaReal

ofted L exceed B0% of the tank-height 2 avarisblos tank_height: ModolicaReal

icsi ° w — — specifesType = [Tank| £ avarisbles level, ModelicsResl

X — o n wi

_| sEstandsRalation 1 1

a >

e Volume of the tanki

(T Tank sSymtemEvampie Dosgriodeis)
PlesntisususConallar

2 cvwiabies x ModebicaRieal
< avanatles powsred: ModebcaBioslean H m
n won - on

Behavior POt

fext = The volume of the tark1 shall be 0.8m3

L | 2 evarisbles tank_volme: ModalicaReal
specifesObject = [TanksConnectedPl tank1) ~

& cranisblos dosign_value: ModehcaReal

typeMadéicaton = L - Woiuslar ISafrker . A
<Regusramints
=002

o
Tank states *
wcondtionalAigortremDug am)s ¥
limit walue algorithim Mosltaslng signal recsption
T Unset vislated ‘entry B
e oom] }
=
oty partially filsd
v S (T “‘"':"“I -
> pMax] [<phin] Sot evaluted ontiy
pLim 2= pMax: /'F“ S plim = pMin: 1h> tank_haigt
=
‘| slse]
b d [« tanik_height]
pLim o= g

Figure 3: ModelicaML notation

Textual requirements are represented using classes with additional attributes such as ID and text. It
is possible to link requirements to other classes in order to establish traceability. Furthermore, it is
possible to formalize requirements and to bind them to design models in order to evaluate
requirements during system simulations. See the ModelicaML examples for more information.

1.2 ModelicaML GUI in Papyrus

ModelicaML plug-ins are implemented as extensions of the Papyrus UML tool. The extensions
are:
- Diagram palette for creating ModelicaML elements on diagrams
- Model explorer actions for creating elements, diagrams and launching the validation and
Modelica code generation, etc.

The following figures depict the graphical user interfaces.

€ Papyrus - modelicaml.example. twotankssystem/model.di - Eclipse

File Edt Diagram iwindow Help =
Bl pr o m®W L w A A HERLBRT LR BREE| 6w z
&5 modelExplor 23 (proectExpl | = O (79 modelai 22 =il
- BES® Q%] A palette b
=N = B3 TwaTanksExample Is
=03 Design sm: Tank States
@[3 TanksConnectedp! =i
®-C3 Library () Region
=-E3 Companents @ State
@ L levelofLiguid > 0.01 o Il

Partiall filed

(@ shallowHistory
+ o Fork

B contraller Inheritance

BB terfaces - i
3 Simulations levEICHLiquid > height » < Cheice
t profileApplication (1) + @ EntryPoint
levelOfinuid < height \ @ Fslstats

Overflow ([Edges €0

levelOfLiquid < 0.01

=3 Transttion

é’g(mtm\lar Inheritance | B3 Compositebiagram | $eg sm: Tank States &2 B
= Properties 2 (B ModelicamL validation| @) Error Log | Bl Console = v=8
T3 Class Components Tree 51 = B <<model>> <Class> PIcontinuousController °
EIEICh | Name: | PleantinuousCantraller
- I;k?;::‘:;uscmmw e ::;:““ML ~ Modelica Specific Properties: Restricted Class
& couln) ° P Ote @fae
g i Replaceable: Otrue @fdbe
5 outCtr Final: Ortrue @ false
g ;im Encapsulated: Otrue @ false
X
@ Model Browser: Shows model elements
(2} Properties View: Shows the properties of selected
element
© Diagram Editors (different UML-based diagrams)
@ Palette (different for each diagram)
© ModelicaML code generation and validation buttons
© Component tree: Shows the components hierarchy of
the selected class
Figure 4: ModelicaML GUI in Papyrus
E- Model Explorer £3 [T Project Explorer = 8|7 model.di 22
i o
@ - laz = <-1§_§>
| TanksConne

£3 Requirements Import profile from registered profile
3 _valueBinding:
3 Design

3 Simulations
t profilsapplicatii

Import package from File

Import package fram registered library
Creakte Query

qln qout’E;Il_‘\
FSensnr

Element LM T Package(s)

'3 ModelicatL: Mew Diagram 4 EE Class Diagrarm
%ﬁ MaodelicaML: Walidation and Code Generation 4 .

e - ﬁ Requirement(s)

e Chi

New Diagram ' ﬁ System Model{s)
3 Delete Delete E Interface Defintionis)
J validation N E Calculation Model{s)

ﬁ Simulation Model(s) 1
[a0]] Rename. ..
Modelica Classes 4

|
Figure 5: ModelicaML GUI actions in Papyrus

1.3 Validation of ModelicaML Models and Modelica Code Generation

A ModelicaML model can be validated by clicking on any model element (in the model browser
or on diagrams and select “Validate ModelicaML model”). Violations or warnings are displayed
in the ModelicaML Validation view (you will have to make it visible by going to window->Show
view -> Other->ModelicaML->ModelicaML Validation view) and advise the modeler to correct
the model. At the same time a name_validation_results.xml is created in the “validation-gen”
folder of the project. The folder is created automatically and the files are overridden when
regenerating.

Modelica code can be generated at any time independently of the result of the validation. Notice,
the generator does not check for empty names or name-clashes between classes (e.g. two classes in
a package that have the same name). Furthermore, this validation feature does not replace
semantic validation as done by Modelica compilers.

& ModelicaMlL Modeling - modelicaml.example.iwotankssystem_v02/model. di - Eclipse Platform

Fle Edt Diagram Search Mindow Help

e e o3~ o.;.‘;;gg. T
B Model Explorer 52 [Project Explorer = 017D *modeldi 22 =08
e S - A 5 palette b
5 B TwoTanksExample 2 TanksConnectedrl NEED

B3 Rrequirements
B3 _valueBindings
=-E3 Design

@ TanksConnectedrl
TanksConnectedPID
B Lbrary

(= Components @0
i@l Component

o Port

 Connection

B3 components

[& Liquidsource ctuator = Commen

[PlcontinuousContralier

[PIDcontinuousControler

= [Tark
@ Readsignal tSensor !:l.
o actsignal tActuator
o LiguidFlow gln
o LiquidFlow got 3
B2 paraneter Resl flowgain = 0.05 - -
B2 parameter Real mink =0 - -) =
5 mormeter ol e 10 % Test case: Change... | BE Requirement kext .. | S Requirement text ... | By Requirement text ... | B Tank System Simul... |[B3 Tank System Archi.. 52 |
B parameter Real area =1 = properties | B Madelicatil valdation 22~ B console | €7 Error Log | [Z1 Problems | 5 Pragress =0

&@ parameter Real height = 2

: o Co Litems
=
g zeal ‘Vnulrgeﬂ a:a eicht Deseription Location
+ el level g A
i iy ModelicaML validation: Mo errars were detected For TraTanksExample' TweTanksExample

@ eq: balance equation

©* sm: Tank States ~
B Class Companents Tree 52 G E®@~ =8

B & Tankssystemsimulation 1' components
=l designModel (5)
© nputs (2)
51 req_volume_of _s_tank_1 (4)
51 teq_volume_of_s_tank 2 (4)
= req_input_flow_limits_1 (5)
=l req_level_control_bounds_1 (%)
53 req_nax_level_of _liquid_in_tank_t (4
531 tea_mas_level_of _liquid_in_tank_2 (4
O _reqTestResults (4)

1~

Figure 6: ModelicaML validation

1.4 Modelica Code Generation

The ModelicaML code generator generates textual Modelica code (folders, representing packages,
and containing .mo files per class). The output folder is called “code-gen” (it will be created
automatically if it does not exist) inside the defined project. A regeneration of code from a model
will override all .mo files that exist in this folder (except for the use-code areas that are marked
explicitly).

In order to launch the code generator click on any model element (in the model browser or on
diagrams and select “Generate Modelica code from this ModelicaML model”).

& ModelicaML Modeling - modelicaml.example.twotankssystem_v02/model. di - Eclipse Platform

Fle Edt Diagram Search Window Help

. og - D 9. mE . ET S N e
— | Bi- o8 P A a:u*u: R SR o 12

- Madel Explor & ¥ = 5

<P Fmodel.dl 72 =
E &I 5 Palstte I>
@ &
= (= TwoTanksExampls sm: Tank States Fs & &
(= _ValueBindings (= Nodes @
== Design () Region
= Camponents
[LinuidSouree. mo lewelOfLiquid > 0.01 @ State
) package.mo Partially Filled ® Tnitil
% PleontinuousContralier. mo @ shalonkistory
PIDcantinuausCentraller.ma L
levelOfLiquid < 0.01
Tankon ok

(= Interfaces lewelOfLiquid = height

= Library
M package.mo lewelOfLiguid < height
[M TanksConnectedPl,mo
[M TarksConnectedPID.ma

+ 4 Choice
+ @ EntryPoink
+ @ Finalstate

Overflow

[~ Edages £
(= (= Requirements »
[Iriput_Flow_limits. _ 3 Transtian
(1] e _level _cof liquid_in_tank.mo
M) package.ma
[M] Setting_time_and_bounds_after_a_change_of _input_flo v
[M] Volume_of_a_tank,ma < >
(= Simulations By Requirsment text ... B Requirement bext ... |Bg Tank System Simul... | S Controller nheri... | % sm: Tank States 52| %%
= valdation-gen = Properties 52 [E) ModelicaL validation | B Console| @ Error Log | [£1 Problems | 55 Progress =~ =0
? model.di - modelicaml.example.twotankssystem_v02
51 model.notation
#] modeluml Resource | Fropety walue e
= Infa
& ? derived false
15 Class Components Tree 50 EE®~YS0 editable true
B B Tankssystemsimulation 1' components ~ fast madiied 16, Mérz 2011 150701
linked false
5 designiadel (<) lacation D\ PROJECTS|2008_PHD\tools\edipse_3_6_madelinglyuntime-New_config..
Bl _nputs (2) name madel.di
15 req_volume_of_s_tark_1 (4] path imodelican, example. bwokankssystem_vO2imodel, di
Bl req_volume_of _a_tank_2 (4] size 2.971 bytes
= req_input_flow_limits_1 (=) v
[req_level_contral_bounds_t (%) 3 < IS

ao* ~¥ model.di - modelicaml.example.twotankssystem_voz

Figure 7: ModelicaML code generation

The code generator may modify the names of model elements as follows:
- It replaces all special characters and white spaces (if there are any)
- If aname starts with a number the code generator adds “ " in front of the number

1.5 Graphical Annotation

Some basic icon annotation (basic UML notation for a package, class and state machine) is
generated from the ModelicaML model. However, no diagrams are translated into Modelica
graphical annotation.

1.6 Using Existing Modelica Models in ModelicaML

It is possible to use existing Modelica models in ModelicaML. By convention, in order to enable it
all Modelica models must be located in the “code-sync” folder (see Figure 8) inside your Eclipse
ModelicaML project.

[=1+1=F modelicaml.tutorial. UsingExistingModelicaModelsAsProxies
= code-gen
== code-svnc
ExisingModelicaCode.mo
<9 model.di
=] model. notation
@ madel, uml
Figure 8: Convention for project folder structure

The central idea is that the created ModelicaML elements, called proxies, only reflect the
Modelica models from the “code-sync” folder. This means that proxies should never be edited in
ModelicaML but kept synchronized with the Modelica models from the “code-sync” folder.
Therefore, whenever the Modelica models have change, the proxies should be synchronized as
described in section 1.6.1.

There is the following restriction on the Modelica models to be imported:
- Thefirst level class must be a Modelica Package

- The first level Modelica package should not have extends or import relations (those will
not be imported)

Moreover, in the current version the following data is not translated (subject to future
enhancements):

- contrainedBYy relation between types

- partial derivative function relation between functions.

1.6.1 How to Use It

Alternative 1: To create new proxies or synchronize the Modelica models from the “code-sync”
folder with the existing proxies click on the “Synchronize Modelica Model Proxies” from the
toolbar (see Figure 9) and follow the dialog instructions. For small or mid-size models the
synchronization takes seconds. For large models, such as entire MSL, the synchronization may

take minutes or hours.
@B o ({):

Figure 9: Proxy Synchronization toolbar button

Alternative 2: In addition, there is an alternative graphical Eclipse view (see Figure 10) that
provides a tree-based overview of the loaded Modelica models, and has separate actions for
loading and synchronizing proxies. The tree-items are decorated with colored text-style and error
or warning overlay images. These are useful features; however, the current implementation is not
yet efficient in coping with large models. It is not recommended to use the graphical Eclipse view
(from Figure 10) when synchronizing large models such as the entire Modelica Standard Library
(in such a case Alternative 1 from above should be used).

10

" Value Bindin | &7 Bindings Tra | || Modelica Ma £ = O
= %l EL | & l:‘:}'f.—"t- e

4 [2 code-sync (1) - modelicaml.example.usingModelicabModels
4 7 ExistingModelicaCode (12
4 @ ActSignalln (1

[

3

»

3

2 act: Real
] ActSignalQut (1
[Ea act: Real
2] ReadSignalln (1
fz] ReadSignalOut (1
2] LiquidFlowln (1
e LiquidFlowOut (1
ﬁ BazeController (7}
E2 K:Real
Ea T:Real
O cIn: Existing
O cOut: Existing B

[, (Re)Load This Model

Synchronize This Model

Locate in Papyrus

g ref: Real

&2 error: Real Go Home

Ea outCtr: Real Go Back
& limitvalue (4 Go Into
(i LiquidSource (2
(il PleontinucusCon = Collapse

(] Tank (@

@ TanksConnectedPl (5

Figure 10: Proxy Synchronization View

Result: The proxies are created in the ModelicaML model as additional root nodes (see Figure 11)
and can be referenced by other ModelicaML elements.

%‘_ Maodel Explarer &5 L5 Project Explarer

=-E=2 ModelicamLMadel
@ SystemModell
Y profileapplication (143
ClassDiagram
=B ExistingModelicaCode
™ AckSignal
E Read3ignal
E LiquidFlow
@ PazeControler
@ limnittalue
@ LiquidSource
@ PIcontinuousController
@ TanksConnectedPI
@ Tank
t_ profileapplication (14)

Figure 11: Example of created proxies

Note that no Modelica code is generated from proxies. Instead, for simulation both, the
generated code (from the “code-gen” folder) and the referenced Modelica models (from the
“code-sync” folder) must be loaded into the Modelica compiler. Moreover, if classes from the
Modelica Standard Library (MSL) are used then the MSL should also be loaded in the Modelica
compiler before simulating a model.

11

1.7 Using Modelica Standard Library (MSL) in ModelicaML

Modelica Standard Library is provided as proxies (see section 1.6) within the ModelicaML profile.
The following figure illustrates how to import a registered library in Papyrus. To import the MSL
right-click on your top-level model, select “Import package from registered library” and select
“Modelica Standard Library”.

- Madel Explarer 53 17" Project Explorer = 8|79 *m
EARDS -
ALModel
Ml SystemModel] Import profile from registered profile
Y profileapplicat Import package from file
EE ClassDiagram Import package from registered library

& Libraries to import:

Select an item ko open (7 = any character, * = any string): -

ok

Matching items:

@ EcorePrimitiveTypes

m JavaPrimitiveTypes

)| rodelica standard Library 3.2 Proxies
@ SysMLPrimitiveTypes

] UMLPrimitiveTypes

(K| BMLPrimikive Ty pes

Libraries already imported: (Read-only table)

M Modelica Standard Library 3.2 Proxies - Opentodelica Project

(?j [oK H Cancel]

Figure 12: Importing a registered library in Papyrus

1.8 Subset of the UML Used in ModelicaML

ModelicaML uses only a subset of the UML as basis meta-model. The following UML meta-
classes (their interrelations are implicit and are not listed here) from [2] are used in ModelicaML
models and are eventually translated into Modelica code. Most of them are extended by the
ModelicaML Profile in order to facilitate the capturing of required Modelica constructs. Some are
not extended and are used as defined by the UML (e.g. InitialNode, ControlFlow, Enumeration,
Comment, etc.). The numbers in the title-rows correspond to the chapter-numbers in [2].

7 Classes 11 Actions 13 Common Behaviors

Class CallBehaviorAction FunctionBehavior

Comment OpaqueAction OpaqueBehavior

Constraint

Enumeration 12 Activities 15 State Machines

Generalization Activity Pseudostate

Package ControlFlow Region (parallel states)

Parameter DecisionNode State

Dependency MergeNode StateMachine
InitialNode Transition

9 Composite Structures

Class

Connector

Parameter

Port

12

[Property | | || |

1.8.1 Subset of UML2 Activity Concepts Supported in ModelicaML
A subset of the UML Activity is used in ModelicaML to model conditional equations or algorithm
statements. The only constructs inside an Activity (with respective stereotype applied indicating
that it is an equations or algorithm section) that are supported today are:

- InitialNode (exactly one),

- ControlFlows,

- OpaqueActions (for capturing the assignments or equations),

- CallBehaviorAction (for hierarchical modeling),

- MergeNode and

- DecisionNode (with if/when stereotypes).
Note that the semantic of this sub-set of UML activity is not based on the token-principle. This
notation used for modeling conditional constructs, such as Modelica i f or when.

1.8.2 Subset of UML2 State Machines Concepts Supported in ModelicaML

UML defines two types of state machines: Behavior state machines and protocol state machines.
Behavior state machines are used to model parts of class behavior. ModelicaML state machines
are derived from UML behavior state machines. Compared to behavior state machines, protocol
state machines are limited in terms of expressiveness and are tailored to the need to express
protocols or to define the lifecycle of objects. Since this is not the main intended area of
application for ModelicaML, the protocol state machines are not taken into account.
Consequently, none of the chapters of the UML specification that address the protocol state
machines are considered.

1.8.2.1 Support of Graphical Notation

The graphical notation for ModelicaML state machines is based on the notation for UML behavior
state machines. All modeling constructs are supported except SendSignalActions or other actions
(see [2], p.578) which are not supported graphically. Instead the modeler can capture required
behavior in the behavior bodies (e.g., entry/do/exit behavior of states).

1.8.2.2 Supported Subset of UML State Machine Concepts

In the following a list of UML state machine concepts® is presented which are not supported in
ModelicaML or which are supported in a different way:

¢ 15.3.2 FinalState (from BehaviorStateMachines): Supported in ModelicaML. However, no
explicit completion events are generated if regions of a composite state have reached the

FinalStates (see UML[2] p.574, see also comments for “Completion transitions and completion

events” below). Furthermore, no termination of the context object (i.e. class owning the state

machine) is implied if all regions of a composite state reach their FinalStates (see also
comments for terminate state below).
¢ 13.3.6 CallEvent (from Communications):

e CallEvent implies a call of a class operation. This is not applicable to Modelica since
Modelica does not support the class-method concept that can be found in object-oriented
languages such as Java or C++.

e 15.3.8 Pseudostate (from BehaviorStateMachines), 15.3.9 PseudostateKind (from

BehaviorStateMachines):

o DeepHistory is not supported in ModelicaML.

e Terminate: Reaching a terminate state in ModelicaML does not imply termination of the
context object (i.e. class owning the state machine). Reaching a terminate state implies the
deactivation of state machine.

¢ 15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines):
o Deferred events and State redefinition are not supported in ModelicaML.

% The chapter numbers correspond to the UML[2] specification chapter numbers.

13

¢ 15.3.12 StateMachine (from BehaviorStateMachines):
¢ Priority scheme for conflicting transitions that are at different hierarchy levels is different

StateMachine extension is not supported in ModelicaML.

¢ 15.3.14 Transition (from BehaviorStateMachines):
¢ Internal (and local) transition are not supported in ModelicaML. Only external transitions

are supported.

from UML. UML defines that “The priorities of conflicting transitions are based on their
relative position in the state hierarchy. By definition, a transition originating from a sub
state has higher priority than a conflicting transition originating from any of its containing
states.” UML [2], p. 567). The ModelicaML priority scheme for conflicting transitions is
different.

e Completion transitions and completion events as defined in UML (see p. 574) are not
supported in ModelicaML. The reason for this is that for ModelicaML state machines a
different priority scheme for conflicting transitions (that are at different hierarchy levels) is
used. The same behavior can be expressed in ModelicaML using isInState (..) macro or

joins).
Deferred triggers and Transition redefinition are not supported in ModelicaML.

¢ 15.3.15 TransitionKind (from BehaviorStateMachines): Only kind = external is supported in
ModelicaML.

1.8.3 Predefined Macros

The following macros can be used inside transition guard definition or inside the bodies of
entry/do/exit state-actions or transition effects.

1.8.3.1 Macros inside Transition Guards

1.8.3.1.1 AFTER - Macro

Semantic: AFTER() macro is dedicated to state transitions. The meaning is that after a
state is entered and the local state time exceeds the given number this part of the
transition-guard evaluates to true.

Syntax: AFTER (expression)

Example: AFTER (23)

Expanded to: time - state path.timeAtActivation > 23

1.8.3.1.2 CHANGE - Macro

Semantic: CHANGE() macro has the same meaning as the Modelica change() function.

Renamed to: change (variable name)

1.8.3.1.3 Absolute Value - Macro

Semantic: Absolute value macro has the same meaning as the Modelica abs() function.
Syntax: |variable name]
Expanded to: abs (variable name)

1.8.3.2 Macros inside Action Bodies

1.8.3.3 GEN_CHANGE - Macro

Semantic: GEN_CHANGE() is used to negate a Boolean variable.
Syntax: GEN CHANGE (name of the boolean variable)
Example: GEN CHANGE (varl)

Expanded to: name of the boolean variable := not
name of the boolean variable

14

1.9 Limitations With Regard To Modelica

Since ModelicaML is based on the UML meta-model some limitations exist with regard to the
Modelica code to be generated or imported. These limitations are particularly important when
importing existing Modelica code (e.g. Modelica Standard Library) into UML-based (e.g.
ModelicaML) models:
- Graphical Decomposition of Ports (Instances of Connector Classes): In UML it is not
possible to represent Ports decomposition (in ModelicaML these represent instances of
connector classes) graphically.

- Short-Class-Definition: Modelica short-class-definition is not possible in ModelicaML.

The modeler should use inheritance constructs instead.

15

2 Installation

The ModelicaML modeling and code generation environment is implemented using the Eclipse
technology and includes the following plug-ins:

- Papyrus [5] as UML-based modeling tool (for ModelicaML modeling)

- Acceleo [4] for model to text transformation (for Modelica code generation)

Acceleo® became Eclipse Projects and is now based on the OMG model-to-text standard
specification. For the future, it is planned to migrate the current environment from Acceleo 2.8 to
Acceleo 3.x version.

The current ModelicaML Eclipse implementation has been tested for the following configuration:
- Eclipse (Juno), Papyrus 0.9, Acceleo 2.8, Xtext 2.3 version

2.1 Install OpenModelica Compiler (OMC)

Follow the instruction from http://www.openmodelica.org/index.php/download to install
OpenModelica compiler (OMC) that is used for simulating ModelicaML models. It should be
installed before Eclipse is installed.

2.2 Download Eclipse Modeling Tools Package (Eclipse Juno)

Description: Eclipse framework is used by ModelicaML modeling and code generation tools.
Provider website: www.eclipse.org/downloads/

Procedure:
- Download, extract and start Eclipse Modeling Tools
- Update the network connection properties (if required) so other plug-ins can be installed.

& Preferences

= General

Capabilities

Compare/Patch

Content Types
- Edikars

Figure 13: Eclipse Network Connections

2.3 Install Papyrus (UML Modeling Tool)
Description: Papyrus UML Modeler is used to create ModelicaML models.

Procedure:
- In Eclipse click Help -> Install Modeling Components -> Select Papyrus -> Install
- Update the network connection properties (if required) so other plug-ins can be installed.

* http://www.eclipse.org/modeling/m2t/?project=acceleo

16

http://www.openmodelica.org/index.php/download
http://www.eclipse.org/downloads/
http://www.eclipse.org/modeling/m2t/?project=acceleo

& Java - Eclipse

File Edit Source Refactor Mavigate Search Project Run ‘Window NEE[S

1 [wil ® HB-O0-G- HGEG- 'Ei(ng:\Welcnme
[£ package Explorer ©3 =0 () Help Contents
0 & - %7 Search
=2l L Dynamic Help
Key Assist... Chrl+Shift4+L
Tips and Tricks...

&,} Report Bug or Enhancement., ..
Cheat Sheets...

Check For Updates
Install New Software

Eclipse Marketplace...

Abaut Eclipse

& Eclipse Modeling Components Discovery

Eclipse Modeling Components Discovery

Pick a modeling component ta install it

Find: | papyrus| | [#] Incubation

Modeler
Modeling environment taols,

/9 Papyrus (Incubation) by Eclipse.org, EPL (D)

Papyrus provides an integrated, user-cansurable environment For editing models based an UML and
other related languages such as SysML,

@
Figure 14: Install Papyrus

Provider website: http://www.eclipse.org/modeling/mdt/papyrus/
Eclipse Update Site: Part of the Eclipse Modeling Package

2.3.1 Update Papyrus

It is recommended to update the Papyrus release that is shipped with the Eclipse Modeling
Package. The Eclipse update site for the Papyrus nightly updates is:
http://download.eclipse.org/modeling/mdt/papyrus/updates/nightly/juno

= Install

Available Software
Check the items that you wish te install,

Work with: Papyrus nightly builds - http://download.eclipse.org/medeling/mdt/papyrus/updates/nightly/junc Add...
Find more software by working with the "Available Software Sites” preferences.

type filter text

Name Version

4 (00 Papyrus
[7] & Papyrus Extra Binaries and Sources (Incubation) 0.9.0.v201208150514
[7] & Papyrus Extra Feature (Incubation) 0.9.0.v201208150514
% Papyrus SDK Binaries (Incubaticn) 0.9.0.,201208210459
[7] & Papyrus SDK Binaries and sources (Incubation) 0.9.0,v201208210459

[Select All] [Deselect All 1 item selected
Details

Papyrus SDK Binaries (Incubation) 0.9.0.v201208210458 i

Kilnre

Show only the latest versions of available software [] Hide items that are already installed
Group items by category What is already installed?

|| Show enly software applicable to target environment

Contact all update sites during install to find required software

@ < Back et » Finish

http://www.eclipse.org/modeling/mdt/papyrus/
http://download.eclipse.org/modeling/mdt/papyrus/updates/nightly/juno

Figure 15: Update Papyrus

2.4 Install Xtext (ModelicaML Action Code Editing)
Description: Xtext - Language Development Framework.

Provider website:

http://www.eclipse.org/Xtext/

Eclipse Update Site: Part of Eclipse Modeling Package

~ Eclipse Modeling Components Discovery = @

Eclipse Modeling Components Discovery ‘%
Pick a modeling component to install it. E 5

Find: [¥]Incubation

-

Concrete Syntax Development

Tools and frameworks to develop dedicated modeling tools.

[&9 Extended Editing Framework by Eclipse.org, EPL (D
EEF (Extended Editing Framewaork) is a presentation framework for EMF models.

] @ Graphical Modeling Framework Tooling by Eclipse.org, EPL
GMF Tooling is a framework to generate functional graphical editors based on the GMF
Runtirne. L

] A%y Graphiti (Incubation) by Eclipse.org, EPL (D
Graphiti is a graphical API that enables the fast and easy creation of graphical tools for any
kindofd dal

-7 by Eclipse.org, EPL

-2, Xtext y Eclipse.org, EPL (D
Htext is a framework for development of programming languages and domain specific
languages (D5Ls). il

@:‘ [Finish] [Cancel

2.5

models.
Provider website:

Figure 16: Install Xtext

Install Acceleo 2.8 (Modelica Code Generation)
Description: Acceleo technology is used for the generating of Modelica code from ModelicaML

http://www.acceleo.org/pages/home/en

Eclipse Update Site: http://www.acceleo.org/update/

Note, the current version is based on Acceleo 2.8. Do not install Acceleo 3.0.

Procedure:

- In Eclipse go to Help -> Install New Software
- Add the Update-Site
- Install Acceleo Components (see screenshot)

18

http://www.eclipse.org/Xtext/
http://www.acceleo.org/pages/home/en
http://www.acceleo.org/update/

= Install =

e
i

Available Software
Check the items that you wish to install.

e

Work with: Acceleo 2.8 - hitp://www.acceleo.org/update/ - Ad

Find more software by working with the "Available Software Sites” preferences.

type filter text

MName Version

4 [H] 000 Acceleo
[4+ Acceleo External Modelers Compatibility Runtime 2.8.0.201102021515
[7] §i* Acceleo External Modelers Compatibility U 2.8.0.201102021515
[4+ Acceleo Localization 2.8.0.201102021515
L+ Acceleo Runtime 2.8.0.201102021515
Lt Acceleo UL 2.8.0.201102021515

» [C]000 Acceleo (deprecated)

4 1 F

[Select All] [Deselect All 2 iterns selected

Details

Show only the latest versions of available software [] Hide items that are already installed
Group items by category What is already installed?

[] Show only software applicable to target environment

Contact all update sites during install te find required software

P
'\?_,' < Back Mext = Finish

Figure 17: Install Acceleo

2.6 Install Modelica Development Tooling

Description: MDT is used for viewing and editing of Modelica code within Eclipse environment
and for connecting ModelicaML tool to OpenModelica Compiler (OMC) for model validation and
simulation.

Provider Site: http://www.openmodelica.org/index.php/developer/tools/133
Eclipse Update Site: http://www.ida.liu.se/~pelab/modelica/OpenModelica/MD T/

Procedure:
- In Eclipse go to Help -> Install New Software
- Add the Update-Site
- Install MDT (see screenshot)

19

http://www.openmodelica.org/index.php/developer/tools/133
http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/

= Install | = [= =]

Available Software
Check the items that you wish to install.

L]
) -

Work with: MDT - httpe/fwww.ida.liu.se/~pelab/modelica/OpenModelica/MDT/ - Add...

Find more software by working with the "Available Software Sites” preferences.

type filter text
Mame Version
[¥] 5+ Modelica Development Tocling 0722
4| 1 3
| SelectAll || DeselectAl 1 item selected
Details
(V] Show only the latest versions of available software ["] Hide items that are already installed
| ["] Group items by categery | What is already installed?

[] Show only software applicable to target environment
[¥] Contact all update sites during install to find required software

3 -

Figure 18: Install Modeling Development Tooling (MDT)

2.7 Install ModelicaML

Provider Site: http://www.openmodelica.org/modelicaml

Update site:
http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/ModelicaML/update/juno/

http://www.openmodelica.org/modelicaml
http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/ModelicaML/update/juno/

= Install = &[]

Available Software

Check the items that you wish to install. 3:

Work with: ModelicaML - http://www.ida.liu.se/~pelab/modelica/OpenMeodelica/MDT/ModelicaML/update/indigo/ = Add...
Find more software by working with the "Available Software Sites” preferences.
type filter text

MName Version

d><p ModelicaML - Papyrus Customization, Modelica Code Generation, Simula 1.8.5.201202111855

[SelectAll || Deselect Al 1 itern selected

Details

ModelicaML is a UML Profile for modeling and simulating of the hid
Show only the |atest versions of available software [] Hide items that are already installed
|| Group itemns by category I What is already installed?

[] Show only software applicable to target environment
[¥] Contact all update sites during install to find required software

@ < Back Next > Einish

Figure 19: Install ModelicaML for Papyrus

2.8 Import an Example Projects
- Download the example project from the ModelicaML website [11]
- Goto File -> Import Existing Project into Workspace
- Select the example project
- Select the option “copy projects into workspace”

& Papyrus - Eclipse Platform
55N Edit Mawigate Search Project Runm Window Help

HNew Ale+Shife+r ¥
Open File.,,
]
= —
& Import [- BEX
select
-

Create new projects from an archive fils or directary. I E - 5 i

Select an import source:

|type filter text |

#| Refresh FS = (= General
Conwert Line Delimiters To 4 5, Archive File
o
{7, Fils System
Switch Workspace ’ E Preferences
Restart (= Accelen
= oS
&7 Export... = (= RunfDebug
E (= Tasks
E (= Team

1 BoundingBall.mo [BouncingBalljcodey. .]
2 package.mo [BouncingBallfcodey.]
3 myUMLModel.diz [BouncingBal] (]
4 Class_nmo [MyProjectjcodefmyUMLModel]

21

Import @
Import Projects

Select a directory ko search For existing Eclipse projects.

() Select oot directory: | |

(%) Select archive file: | CiiDocuments and Settingsirmwscham\DeskiopiModelicalL_examples, zip | ‘ I
Brojects:
madelicaml. exarmple. bwotankssystem_v02 {modelicaml.example.twotankssystem_v02) Select Al

Deselect All

Copy projects into workspace
Warking sets

[add project to waorking sets

Select,..

©
Figure 20: Import ModelicaML examples

22

3 Customization

3.1 Eclipse.ini

Components of ModelicaML typically require more memory allocated to Eclipse as defined by
default. In order to avoid “out of memory” messages you should modify your eclipse.ini file in
order to allocate more memory to eclipse. Add to your eclips.ini the following lines (adopt if
needed):

openFile

--launcher. XXMaxPermSize
1024M

-showsplash
org.eclipse.platform

--launcher. XXMaxPermSize
1024m

--launcher.defaultAction
openFile

-vmargs
-Dosgi.requiredJavaVersion=1.5
-Dhelp.lucene.tokenizer=standard
-XX:MaxPermSize=2048m
-Xms512m

-Xmx2048m

3.2 Eclipse ModelicaML Perspective

ModelicaML defines no perspective layout by default. You can define the layout by first selecting
all views you want to see (go to “Window-> Show View -> ModelicaML” and select the views
including “Project Explorer” and “Model Explorer”). Then you can drag, move and drop the
views in order to define your own workbench layout. A typical ModelicaML perspective layout
could look like in the figure below.

23

= ModelicaML ing - deli l.exampls 3 .tutorial_v04/model.di - Eclipse
File Edit ~ Diagram Mavigate Search Papyrus Window Help

| - [02 | 5 % b o | [o] | 2| Ex | Tahome 9 [2w ov o~ Quick Access
"o | [Project Explorer | M Model Explorer £ AL EE Y= O 9 maddd 3 =g
K 4 =21 TwoTanksBExample = - A
= , B2 <Package Import> ModelicaMLPredefinedTypes
4 B3 Requirements TanksConnectedPT

> [fg 001 - Volume of a tank

.+ [fg 002 - Input flow limits
+ Rl 003 - Max level of liquid in tank
. [fgl 004 - Settling time and bounds after 3 change of input flow
> [fg 005 - System draining time
. B3 #Inputs for Requirements Evaluation
4 [Design
. [SystemEnvironment
s B2 Library
4 B1 Components
. [@ LiquidSeurce
> [@ PlcontinuousController
- [@ PIDcontinuousController
> [Tank
» |l TanksConnectedPl
By Diagram Controller Inheritance =

m

» £3 Interfaces - < I
. B # Potential Stimulis [& Tank System Architecture 57
» B3 Scenarios 2
1 Properties i3 =7 Y =0
! Value Bindings 5 =g

o - @ TanksConnectedPI
Alal$BE] &
4 B TwoTanksExample' model value mediators(2) ModelicamL ~ MName TanksConnectedPl

4 [CF #Inputs for Requirements Evaluation(l UML

. 1 * Chapter1 required properties(10 Profile Partial © true @ false
i (1)
‘ F—;' EPD:':::::T;!; _— Advanced | Visibility © public © private © protected () package
° level start value for any tank - mediator, Real, clients (1), providers (1) Replaceable) true @ false
+ ° reference level for controllerl - mediator, Real, clients (1), providers (3) Final © true @ false
+°, reference level for controller 2 - mediator, Real, clients (1, providers (3) B B
> syteminput flow level - mediator, Real, clients (1], providers (1) Encapsulated) true @ false

] 1 items selected

Figure 21: Example ModelicaML Perspective layout

Moreover, you can customize the Eclipse toolbar and menus by first switching to “ModelicaML
Modeling” perspective and then got to “Window -> Customize Perspective”. A customization
could look like this:

= Customize Perspective - ModelicaML Modeling

Tool Bar Visibility | Menu Visibility | Command Groups Availability | Shortcuts|

Choose which tool bar items to display.

Tool Bar Structure:

= File

. [1E sampleToolbar

- [5 EMF Facet NatTable

- [5 EMF Facet NatTable

> [B3 Papyrus customization toolbar
- [[1E2 Papyrus Table Toolbar

- [[]EH toolbar

. [1 B Papyrus Toolbar Action

- [[1E sampleToolbar

= Customize Perspective - ModelicalL Modeling

» [toolbar Tool Bar Visibility | Menu Visibility ‘ Command Groups Availability | Shurtcuts|
. [[1E Search Choose which menu items to display.

. [Toggle Mark Occurrence:

= ModelicaML Verification

B MedelicaML Modelica Models Synchronization
= ModelicaML Code Generation
= ModelicaML Validation

. [7] B2 Hide empty columns

- [[]E Remove Mapping

. [B Match Mapping by Type

- [Execute

> O = Focus Editor on Active Task

> [E Navigate

- [E papyrusEditor

> [£1E help

. [B Active Tasks

Menu Structure:

[Filter by command group [T Filter by command group
@:‘ [QK] [Cancel] @:‘ QK] [Cancel

Figure 22: Example Perspective Customization

24

3.3 Preference Pages

3.3.1 ModelicaML and Papyrus Preference Pages

There ModelicaML and Papyrus and preference pages that you can use for the definition of default
settings.

& preferences =
type filter text ModelicaML Si ion Setting P - -
4 ModelicaML -

Pref for ModelicaML lati -
ModelicaML Modelica Model Synchronization Settings rererences for ModelicalL simulation
ModelicaML OpenModelica Compiler Settings default startTime: 0
ModelicaML Simulation Settings i 10
- Meodification
MoDisco default numberOfintervals: 500
- Mwe2 default tolerance: 0.000001
Mylyn =
. acL = default sobver: dassl
4 Papyrus default outputFormat: mat

4 Diagrams

» BlockDefinition Diagram

4 CompositeStructure Diagram
Abstraction Link
Activity Node
Actor Nede
AnyReceiveEvent Node
Artifact Mode
CallEvent Nede
ChangeEvent Node
Class Mede
Collaberation Node
CollaborationRole Node
CollaborationUse
CollaborationUse Node
Comment Node
CommentAnnotatedElement Link
Component Node
ComponentRealization Link

m

Connector Link ad
Constraint Node - 1 m r

Figure 23: ModelicaML and Papyrus Preference Pages

3.3.2 Model Validation Customization

ModelicaML validation is based on EMF Validation Framework [12]. Other plugins may
contribute (constraints) rules for validating the same models elements as are contained in
ModelicaML models. In order to validate your model only according to the ModelicaML
validation rules you should adopt the preferences as shown in the figure below.

25

% Preferences

type filter text Constraints
General

Activitycontrolflowguar I

Constraint categories:

Select constraints to enable:

Restore Defaults E

©)

r

- : [[] EmfFacet Facet Constraints C10_C11_FunctionBehaviorNumberOfParameterCon
» Algerithmsection
. Ant [[1 EmfFacet Model Browser Customizations Constraints C12_PropertyCausalityOfBlockCenstriant
+ Arraysubscript - FMFFHT#M”dpl Queg: Constraints (13_ConnectionStereotypeForCennectorConstraint
> Client MOdE|!CEML B.atch C14_ConnectionPortStereotypeForPortsOfConnecto
» Conditionalattribute ModelicaML Live C15_RedeclareRelationStereatypeForDependencyOf(
. Declaration . || org.echpse.papyrus.uml.centrolmode.profile N .)
@ Referential Inteqri C16_ConstrainedByRelationStereotypeForDependen:
» Ecore Tools Diagram erential Integrity C17 PartialDerivationRelationS ForD d
EMF Compare | [validatelnternalTransition _PartialDerrvationRelationStereotypeForDepende
. EMF Facet 3 . [validateUMLModel C18_GeneralizationStereotypeConstraint
. Equationsection 19 _ClasslnheritanceRulesConstraint
. Help C3_ClassWithMedelicaML5tereotypeConstraint
» Install/Update C31_ChoiceOrjunctionStateHaveOnlyOnelncoming/?
- lava 32_ChoiceOrlunctionStateShouldHaveOneElseBran
> Mediator [¥] C34_ForkStateMustHaveOnlyOnelncomingAndAtiea
a Model Validation 4| BN LLL} |
Constraints (Mo description available for selected category.)
> MModeledtor b
Modelica
» ModelicaML
» Modification
MoDisco
> Mwe
> Mylyn
» OCL i
4| [T | 3 Ul n

0K l [Cancel]

Figure 24: Model Validation Preference Pages

3.4 Papyrus Customization

In case the ModelicaML (with “ModelicaML Modeling” perspective) is not loaded by default on
the on top in Papyrus you should click on “Load Browser Custiomization” and select ModelicaML
Customization to be on top as depicted in the figure below.

= Load Customizations

Available Customizations

type filter text

= O]]

Feature

[StyleSheets

@ PapyrusEcoreBrowser

< T

ﬁ table_SysML_Allocation_showOn
ﬁ table_Ecore_hideEAnnotationFeal

ﬁ table_UML_Class_hideAllClassFea

“

ﬁ ModelicaMLCustomization

ﬁ UMLPapyrusDefaultBrowserCusty
ﬁ SysMLDefaultExplorerCustomizat
ﬁ PapyrusTableFacetCustomizatior,
[UMLFacetDefaultBrowserCustom
ﬁ MotationCustomization

ﬁ PapyrusMotation

ﬁ PapyrushlotationFacet

[| r

Load referenced facets

Up

Down

[ok || Concel |

Figure 25: Loading ModelicaML Model Explorer Customization

26

3.5 Papyrus Diagram Palette Customization

Each diagram in Papyrus can have multiple palettes. If you only want ModelicaML palettes to
appear on your diagram you should de-select other palettes are shown on the figure below.

B-R-S-~-|0B- m >
=08
L% Palette b

NEEE! @ right click here...
Layout » ®

Use Large Icons

Customize. ..
Settings...
PapyrusUMLClassDiagram Standard Palette Palettes il
v org,openmodelica, modelicaml.profile Pinned I
inne in Model
ﬁ Requirement
{7} Assert
(Constraint)
(= Relations &

+ /7 Extends Relation
" Dependency
(= Annotation %
[=) Annotation

=3 Comment

Figure 26: Papyrus Diagram Palettes

27

References

[1]

[2]

[3]
[4]
[5]
[6]

[7]
8]
[9]

Modelica Association. Modelica: A Unified Object-Oriented Language for Physical
Systems Modeling: Language Specification Version 3.0, Sept 2007. www.modelica.org

OMG. OMG Unified Modeling Language "™ (OMG UML). Superstructure \Version 2.2,
February 2009.

OMG. OMG Systems Modeling Language (OMG SysML™), Version 1.1, November 2008.

Acceleo, Eclipse Plug-In. www.acceleo.org/pages/home/en

Papyrus, www.eclipse.org/modeling/mdt/papyrus/

Schamai W. Modelica Modeling Language (ModelicaML) A UML Profile for Modelica,
Technical Report 2009:5, EADS IW, Germany, Linkoping University, Sweden,
www.ep.liu.se, 2009

The OpenModelica Project www.openmodelica.org

Dymola (Dynamic Modeling Laboratory), Dynamism. www.dymola.com

MathModelica, http://www.mathcore.com

[10] Acceleo, Eclipse Plug-In. www.acceleo.org/pages/home/en

[11] ModelicaML website: www.openmodelica.org/modelicaml
[12] Eclipse Modeling Framework Project (EMF)

http://www.eclipse.org/modeling/emf/?project=validation

28

http://www.modelica.org/
http://www.acceleo.org/pages/home/en
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica.html
http://www.dymola.com/
http://www.mathcore.com/
http://www.acceleo.org/pages/home/en
http://www.openmodelica.org/modelicaml
http://www.eclipse.org/modeling/emf/?project=validation

