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Abstract

We present a graphical criterion for reading dependencies from the minimal directed in-
dependence map G of a graphoid p, under the assumption that G is a polytree and p
satisfies weak transitivity. We prove that the criterion is sound and complete. We argue
that assuming weak transitivity is not too restrictive.

1 Introduction

A minimal directed independence map G of an
independence model p is typically used to read
independencies holding in p. However, G can
also be used to read dependencies holding in p.
For instance, if p is a graphoid that is faithful to
G, then lack of vertex separation is a sound and
complete graphical criterion for reading depen-
dencies from G. If p is simply a graphoid, then
there also exists a sound and complete graph-
ical criterion for reading dependencies from G
(Bouckaert, 1995). In (Peña, 2007), we present
a further sound and complete graphical crite-
rion for reading dependencies from G under
the assumption that G is a polytree and p is
a graphoid that satisfies composition and weak
transitivity. In this paper, we revisit the latter
work and drop the assumption that p satisfies
composition. In general, the more assumptions
a criterion makes about G and p the more pow-
erful it is (i.e. the more dependencies it can
read from G) but the less applicable it is (i.e.
the smaller the set of independence models it
can be applied to). Then, our new criterion
may be seen as being in between the criteria in
(Bouckaert, 1995) and (Peña, 2007): It is more
(resp. less) powerful but less (resp. more) ap-
plicable than the former (resp. latter) criterion.
See Section 5 for an example.

The rest of the paper is organized as follows.
Section 2 is devoted to the preliminaries, Sec-
tion 3 to our assumptions, Section 4 to our con-
tribution, and Section 5 to the discussion.

2 Preliminaries

Let U denote a set of random variables. The
elements of U are not distinguished from single-
tons, and the union of the sets U1, . . . , Un ⊆ U
is written as the juxtaposition U1 . . . Un. When
evaluating an expression, the union of sets pre-
cedes the set difference. Let X, Y , Z and W
denote four mutually disjoint subsets of U . An
independence model p is a set of independen-
cies of the form X is independent of Y given
Z. We denote that an independence is in p by
X⊥pY |Z and that an independence is not in p
by X 6⊥pY |Z. In the latter case, we say that the
dependence X 6⊥pY |Z is in p. An independence
model is a graphoid if it satisfies the following
properties: Symmetry X ⊥ pY |Z ⇒ Y ⊥ pX|Z,
decomposition X⊥ pY W |Z ⇒ X⊥ pY |Z, weak
union X⊥ pY W |Z ⇒ X⊥ pY |ZW , contraction
X ⊥ pY |ZW ∧ X ⊥ pW |Z ⇒ X ⊥ pY W |Z, and
intersection X⊥ pY |ZW ∧X⊥ pW |ZY ⇒ X⊥
pY W |Z.

We say that a node C is a collider in a
route in a directed and acyclic graph (DAG)
if A→ C ← B is a subroute of the route. Note
that A and B may coincide since we are dealing
with a route and not with a path. A route in a
DAG is said to be superactive wrt Z when (i)
every collider node in the route is in Z, and (ii)
every non-collider node in the route is outside
Z. When there is no route in a DAG G between
a node in X and a node in Y that is superac-
tive wrt Z, we say that X is separated from
Y given Z in G and denote it as X ⊥ GY |Z.



This definition of separation in DAGs is equiv-
alent to other more common definitions (Stu-
dený, 1998). Given an undirected graph (UG)
G, we say that X is separated from Y given
Z in G and denote it as X ⊥ GY |Z when ev-
ery path in G between a node in X and a node
in Y contains a node in Z. An independence
model p is faithful to an UG or DAG G when
X⊥pY |Z iff X⊥GY |Z. A DAG G is a directed
independence map of an independence model p
when X⊥ pY |Z if X⊥GY |Z. Moreover, G is a
minimal directed independence (MDI) map of p
when removing any edge from G makes it cease
to be an independence map of p. If G is a MDI
map of p, then the parents of a node A in G,
Pa(A), are the smallest subset of the nodes pre-
ceding A in a given total ordering of U , Pre(A),
such that A⊥ pPre(A) \ Pa(A)|Pa(A). We de-
note the children of A in G by Ch(A). Finally,
recall that a polytree is a directed graph with-
out undirected cycles.

3 WT Graphoids

Let X, Y and Z denote three mutually disjoint
subsets of U . Let V ∈ U \ XY Z. We call
WT graphoid to any graphoid p that satisfies
weak transitivity X ⊥ pY |Z ∧ X ⊥ pY |ZV ⇒
X ⊥ pV |Z ∨ V ⊥ pY |Z. This paper stud-
ies WT graphoids. We regard WT graphoids
as worth studying because important families
of probability distributions are WT graphoids.
For instance, any probability distribution that
is Gaussian or faithful to some UG or DAG is a
WT graphoid (Pearl, 1988). The following theo-
rem implies that there also exist probability dis-
tributions that are WT graphoids although they
are neither Gaussian nor faithful to any UG or
DAG. See (Peña et al., 2009) for the proof and
examples.

Theorem 1. Let p be a probability distribution
that is a WT graphoid and let W ⊆ U . Then,
p(U \W ) is a WT graphoid. If p(U \W |W = w)
has the same independencies for all value w of
W , then p(U \W |W = w) for any w is a WT
graphoid.

The following theorem introduces a new prop-
erty that every WT graphoid satisfies.

Theorem 2. Let p be a WT graphoid. Then,
p satisfies the following property: Intersectional
weak transitivity X⊥pY |Z∧X⊥pY |ZV ⇒ X⊥
pV |ZY ∨ V ⊥pY |ZX.

Proof. Assume to the contrary that X 6⊥pV |ZY
and V 6⊥pY |ZX. Then,

1. X 6⊥ pV Y |Z and V X 6⊥ pY |Z by the con-
trapositive form of weak union on X 6⊥ pV |ZY
and V 6⊥pY |ZX

2. X 6⊥pV |Z and V 6⊥pY |Z by the contrapos-
itive form of contraction on (1) and X⊥pY |ZV

3. X 6⊥ pY |ZV by the contrapositive form of
weak transitivity on (2) and X⊥pY |Z.

However, (3) contradicts the antecedent of
the property.

4 Reading Dependencies

If G is a MDI map of a WT graphoid p then we
know, by construction of G, that A(Pre(B) \
Pa(B)) 6⊥pB|Pa(B)\A for all the edges A→ B
in G. We call these dependencies the depen-
dence base of p for G. Further dependencies
in p can be derived from the dependence base
via the WT graphoid properties. For this pur-
pose, we rephrase the WT graphoid properties
in their contrapositive form as follows. Sym-
metry Y 6⊥ pX|Z ⇒ X 6⊥ pY |Z. Decomposi-
tion X 6⊥ pY |Z ⇒ X 6⊥ pY W |Z. Weak union
X 6⊥ pY |ZW ⇒ X 6⊥ pY W |Z. Contraction X 6⊥
pY W |Z ⇒ X 6⊥ pY |ZW ∨ X 6⊥ pW |Z is prob-
lematic for deriving new dependencies because
it contains a disjunction in the consequent and,
thus, we split it into two properties: Contrac-
tion1 X 6⊥ pY W |Z ∧X⊥ pY |ZW ⇒ X 6⊥ pW |Z,
and contraction2 X 6⊥ pY W |Z ∧ X ⊥ pW |Z ⇒
X 6⊥pY |ZW . Likewise, intersection gives rise to
intersection1 X 6⊥pY W |Z ∧X⊥pY |ZW ⇒ X 6⊥
pW |ZY , and intersection2 X 6⊥ pY W |Z ∧ X ⊥
pW |ZY ⇒ X 6⊥ pY |ZW . Note that intersec-
tion1 and intersection2 are equivalent and, thus,
we refer to them simply as intersection. Simi-
larly, weak transitivity gives rise to weak transi-
tivity1 X 6⊥pV |Z∧V 6⊥pY |Z∧X⊥pY |Z ⇒ X 6⊥
pY |ZV , and weak transitivity2 X 6⊥pV |Z ∧V 6⊥
pY |Z ∧ X ⊥ pY |ZV ⇒ X 6⊥ pY |Z. Finally, in-
tersectional weak transitivity gives rise to inter-
sectional weak transitivity1 X 6⊥ pV |ZY ∧ V 6⊥



pY |ZX ∧ X ⊥ pY |Z ⇒ X 6⊥ pY |ZV , and inter-
sectional weak transitivity2 X 6⊥ pV |ZY ∧ V 6⊥
pY |ZX ∧ X ⊥ pY |ZV ⇒ X 6⊥ pY |Z. The inde-
pendence in the antecedent of any of the proper-
ties above holds if the corresponding separation
statement holds in G. This is the best solution
we can hope for because separation is sound and
complete. Separation is sound in the sense that
it only identifies independencies in p. More-
over, separation is complete in the sense that
it identifies all the independencies in p that can
be identified by studying G alone (Peña, 2007).
We call the WT (resp. IWT) graphoid closure
of the dependence base of p for G to the set of
dependencies that are in the dependence base
of p for G plus those that can be derived from
it by applying the first eight (resp. all the ten)
properties above. The following example shows
that the WT and IWT graphoid closures of a
dependence base do not coincide in general.

Example 1. Let p be a probability distribu-
tion over U = {A,B, C} where A, B and C are
binary random variables. Let p(A,B) be uni-
form and C = XOR(A,B). Note that A⊥ pB,
A⊥pC and B⊥pC are the only independencies
in p. Then, p is a WT graphoid. Let G denote
the DAG A → C ← B. Note that G is a MDI
map of p. Now, note that A 6⊥ pB|C is in the
IWT graphoid closure of the dependence base
of p for G: The dependence base of p for G is
{A 6⊥ pC|B,B 6⊥ pC|A}, which implies A 6⊥ pB|C
by intersectional weak transitivity1 and A⊥GB.
However, the WT graphoid closure of the de-
pendence base of p for G is {A 6⊥ pC|B,B 6⊥
pC|A,A 6⊥ pBC, AB 6⊥ pC,B 6⊥ pAC,C 6⊥
pA|B,C 6⊥ pB|A,BC 6⊥ pA,C 6⊥ pAB,AC 6⊥ pB}
which does not contain A 6⊥pB|C.

Hereinafter, we use A : B to denote a route
between two nodes A and B in a DAG G. We
also use A : B to denote the nodes in the route.
It should be clear from the context which of
the two meanings is being used. We define the
parents of a route A : B as Pa(A : B) =
[∪C→D∈A:BPa(D)] \ (A : B). We say that a
route A : B is minimally superactive wrt X, Y
and Z in G if (i) A ∈ X and B ∈ Y , (ii) A : B
is superactive wrt Z, and (iii) no proper sub-

route of A : B is minimally superactive wrt X,
Y and Z in G. Finally, we introduce our graph-
ical criterion for reading dependencies from a
polytree-like MDI map of a WT graphoid.
Definition 1. Let G be a polytree. Let X, Y
and Z denote three mutually disjoint subsets of
U . We say that X∼GY |Z holds if
• there exist two nodes A ∈ X and B ∈ Y

and a single route A : B between them that is
minimally superactive wrt X, Y and Z in G,
and
• for all A′ ∈ Pa(A : B), A′ ∈ XY Z \ AB or

A′∼G\A′XY Z \AB where G\A′ is the DAG re-
sulting from removing from G the edge between
A′ and its child in A : B.

Note the recursive flavor of the definition
above: A base case (A′ ∈ XY Z \ AB) and a
recursive call (A′∼G\A′XY Z \ AB). The next
theorem proves that the criterion in Definition 1
is sound. We prove first some auxiliary lemmas.
Lemma 1. Let G be a polytree-like MDI map
of a WT graphoid p. Let A and B be two nodes
such that A∼GB|Z holds due to a route A : B
with no collider node. Let Pa(A : B) ⊆ Z.
Then, A 6⊥pB|Z.

Proof. We prove the lemma by induction over
the length of A : B. We first prove the lemma
for length one, i.e. A : B is A → B or A ← B.
Assume without loss of generality that A : B
is A → B. Let ZA denote the nodes in Z that
are in Pa(A) or connected to A by an undi-
rected path that passes through Pa(A). Let ZA

denote the nodes in Z that are in Ch(A) \ B
or connected to A by an undirected path that
passes through Ch(A) \ B. Let ZB denote the
nodes in Z that are in Pa(B) \ A or connected
to B by an undirected path that passes through
Pa(B) \A. Note that Pa(B) \A ⊆ ZB because
we have assumed that Pa(A : B) ⊆ Z. Then,

1. A(Pre(B) \ Pa(B)) 6⊥ pB|Pa(B) \ A from
the dependence base of p for G

2. A 6⊥ pB|Pa(B) \ A by contraction1 on (1)
and Pre(B) \ Pa(B)⊥GB|(Pa(B) \A)A

3. AZAZA 6⊥pB|Pa(B) \A by decomposition
on (2)

4. A 6⊥ pB|(Pa(B) \ A)ZAZA by intersection
on (3) and ZAZA⊥GB|(Pa(B) \A)A



5. A 6⊥ pB(ZB \ (Pa(B) \ A))|(Pa(B) \
A)ZAZA by decomposition on (4)

6. A 6⊥ pB|ZAZAZB by contraction2 on (5)
and A⊥GZB \ (Pa(B) \A)|(Pa(B) \A)ZAZA

7. A 6⊥pB(Z \ZAZAZB)|ZAZAZB by decom-
position on (6)

8. A 6⊥ pB|Z by intersection on (7) and A⊥
GZ \ ZAZAZB|ZAZAZBB.

Assume as induction hypothesis that the
lemma holds when the length of A : B is smaller
than l. We now prove the lemma for length l.
Let C be any node in A : B except A and B.
Recall that A : B has no collider node. Thus,
C /∈ Z because A : B is minimally superactive
wrt A, B and Z in G. Moreover, C /∈ Z im-
plies A ⊥ GB|ZC, A ∼ GC|Z, and B ∼ GC|Z.
The latter two statements imply A 6⊥ pC|Z and
B 6⊥ pC|Z by the induction hypothesis, which
together with A⊥ GB|ZC imply A 6⊥ pB|Z by
weak transitivity2.

Lemma 2. Let G be a polytree-like MDI map
of a WT graphoid p. Let A and B be two nodes
such that A∼GB|Z holds due to a route A : B of
the form A → C → . . . → D ← . . . ← C ← B
with possibly C = D. Let Pa(A : B) ⊆ Z.
Then, A 6⊥pB|Z.

Proof. Let ZD be the descendants of D that are
in Z. Note that A⊥GB|Z \ZDD as A : B is the
only route between A and B that is minimally
superactive wrt A, B and Z in G. Then,

1. A 6⊥pD|(Z \ ZDD)B by Lemma 1
2. B 6⊥pD|(Z \ ZDD)A by Lemma 1
3. A 6⊥pB|(Z \ZDD)D by intersectional weak

transitivity1 on (1), (2), and A⊥GB|Z \ ZDD
4. A 6⊥ pBZD|(Z \ ZDD)D by decomposition

on (3)
5. A 6⊥ pB|Z by contraction2 on (4) and A⊥

GZD|(Z \ ZDD)D.

Lemma 3. Let G be a polytree-like MDI map
of a WT graphoid p. Let X ∼ GY |Z hold due
to a route A : B with A ∈ X and B ∈ Y . Let
Pa(A : B) ⊆ XY Z \AB. Then, X 6⊥pY |Z.

Proof. Let W = XY Z \AB. Let D1, . . . , Dn be
the collider nodes in A : B. Then, for all i, A : B
has a subroute of the form Ai → Ci → . . . →
Di ← . . .← Ci ← Bi with Ai 6= Bi but possibly

Ci = Di. Let WDi denote the descendants of Di

that are in W . Let WCi denote the descendants
of Ci that are in W \WDiDi. Let W ′ = ∪iWCi .
We first prove A 6⊥pB|W \W ′. Note that Pa(A :
B) ⊆ W \W ′ and, thus, that A∼ GB|W \W ′

holds due to A : B. Then, we can divide A : B
into subroutes such that each of them is of the
form of the route in Lemma 1 or 2. We prove
A 6⊥ pB|W \W ′ by induction over the number
of such subroutes. If the number of subroutes is
one, then the result is immediate by Lemma 1
or 2. Assume as induction hypothesis that the
result holds when the number of subroutes is
smaller than l. We now prove the result when
this number is l. Let E be any node in A : B
where two of the subroutes meet. Note that
E is a non-collider node in A : B and, thus,
E /∈ W \W ′. Moreover, E /∈ W \W ′ implies
A⊥GB|(W \W ′)E, A∼GE|W \W ′, and E∼
GB|W \W ′. Then,

1. A 6⊥pE|W \W ′ and E 6⊥pB|W \W ′ by A∼
GE|W \W ′, E∼GB|W \W ′ and the induction
hypothesis

2. A 6⊥ pB|W \W ′ by weak transitivity2 on
(1) and A⊥GB|(W \W ′)E.

Finally, let X ′ ⊆ X \ A and Y ′ ⊆ Y \ B
contain the nodes in W ′ that are not descendant
of another node in X ′ or Y ′. Note that X ′ and
Y ′ must exist for A : B to be the only route
between A and B that is minimally superactive
wrt X, Y and Z in G. Let WX′ (resp. WY ′)
contain the descendants of X ′ (resp. Y ′) that
are in W ′. Then,

3. AX ′WX′ 6⊥ pB|W \W ′ by decomposition
on (2)

4. AX ′ 6⊥pB|(W \W ′)WX′ by intersection on
(3) and WX′⊥GB|(W \W ′)AX ′

5. AX ′ 6⊥ pBY ′WY ′ |(W \W ′)WX′ by decom-
position on (4)

6. AX ′ 6⊥pBY ′|(W \W ′)WX′WY ′ by intersec-
tion on (5) and AX ′⊥GWY ′ |(W \W ′)WX′BY ′

7. X 6⊥ pY |Z by decomposition and weak
union on (6).

If a route A : B in a DAG has a subroute of
the form C → D → . . . → E ← . . . ← D ← F
with C 6= F but possibly D = E, the subroute
D → . . .→ E ← . . .← D is called a rope.



Theorem 3. Let G be a polytree-like MDI map
of a WT graphoid p. If X ∼ GY |Z, then
X 6⊥ pY |Z is in the IWT graphoid closure of
the dependence base of p for G.

Proof. Let X∼GY |Z hold due to a route A : B
with A ∈ X and B ∈ Y . Let W = XY Z \ AB.
We prove the theorem by induction over the to-
tal number of recursive calls performed by X∼
GY |Z. If this number is zero, then the theorem
is immediate by Lemma 3. Assume as induction
hypothesis that the theorem holds when the to-
tal number of recursive calls is smaller than l.
We now prove the theorem when this number is
l. Let A′ ∼ G\A′W with A′ ∈ Pa(E) for some
E ∈ A : B be any recursive call performed by
X∼GY |Z. Let A′∼G\A′W hold due to a route
A′ : B′ with B′ ∈ W . We consider two sce-
narios. The first scenario is when E is outside
every rope in A : B. Then, A : B must have
a subroute of the form C → E or E ← D for
the recursive call A′∼G\A′W to be performed.
Assume without loss of generality that the sub-
route is of the form C → E. Let WE denote
the descendants of E that are in W . Note that
X ∼GY |Z implies that A∼GA′|(W \WEB′)E
holds. To see it, note that the subroute of A : B
between A and E followed by E ← A′, here
denoted A : A′, is the only route between A
and A′ that is minimally superactive wrt A, A′

and (W \WEB′)E in G. Moreover, every recur-
sive call that A∼ GA′|(W \WEB′)E performs
is of the form A′′ ∼ G\A′′ (W \ WEB′)E with
A′′ ∈ Pa(A : A′). This recursive call holds be-
cause A′′ ∈ Pa(A : B) and, thus, X∼GY |Z per-
forms the recursive call A′′ ∼ G\A′′W and WE ,
B′ and E are not used in it. By a similar rea-
soning, one can prove that A′∼ G\A′W implies
that A′∼GB′|(W \WEB′)E holds. Then,

1. A 6⊥ pA
′|(W \WEB′)E by A ∼ GA′|(W \

WEB′)E and the induction hypothesis
2. A′ 6⊥ pB

′|(W \WEB′)E by A′∼GB′|(W \
WEB′)E and the induction hypothesis

3. A 6⊥ pB
′|(W \WEB′)E by weak transitiv-

ity2 on (1), (2), and A⊥GB′|(W \WEB′)EA′

4. A 6⊥pB
′E|W \WEB′ by weak union on (3)

5. A 6⊥pE|W \WE by contraction2 on (4) and
A⊥GB′|W \WEB′

6. A 6⊥ pEWE |W \WE by decomposition on
(5)

7. A 6⊥ pE|W by intersection on (6) and A⊥
pWE |(W \WE)E

8. E 6⊥pB|W by E∼GB|W and the induction
hypothesis

9. A 6⊥ pB|W by weak transitivity2 on (7),
(8), and A⊥GB|WE

10. X 6⊥pY |Z by weak union and decomposi-
tion on (9).

The second scenario that we consider in the
proof is when E is in a rope in A : B. In this
case, A : B has a subroute of the form C →
D → . . . → E → . . . → F ← . . . ← E ←
. . .← D ← H with C 6= H but possibly D = E
and/or E = F . Let WF denote the descendants
of F that are in W . Let W ′ be as in the proof
of Lemma 3. Note that C ⊥ GH|W \W ′WF F
because A : B is the only route between A and
B that is minimally superactive wrt X, Y and
Z in G. Then,

11. C 6⊥ pF |(W \W ′WF F )H by considering
the first scenario for C∼GF |(W \W ′WF F )H

12. H 6⊥ pF |(W \W ′WF F )C by considering
the first scenario for H∼GF |(W \W ′WF F )C

13. C 6⊥ pH|(W \ W ′WF F )F by intersec-
tional weak transitivity1 on (11), (12), and
C⊥GH|W \W ′WF F

14. C 6⊥pHWF |(W \W ′WF F )F by decompo-
sition on (13)

15. C 6⊥ pH|W \W ′ by contraction2 on (14)
and C⊥GWF |(W \W ′WF F )F

16. A 6⊥ pC|W \W ′ by A∼ GC|W \W ′ and
the induction hypothesis

17. A 6⊥ pH|W \W ′ by weak transitivity2 on
(15), (16), and A⊥GH|(W \W ′)C

18. H 6⊥ pB|W \W ′ by H ∼GB|W \W ′ and
the induction hypothesis

19. A 6⊥ pB|W \W ′ by weak transitivity2 on
(17), (18), and A⊥GB|(W \W ′)H

20. X 6⊥ pY |Z follows from (19) by repeating
the steps (3)-(7) in the proof of Lemma 3.

Finally, note that we have derived (20) from
the dependence base of p for G by using only
the ten properties introduced at the beginning
of Section 4. Thus, X 6⊥ pY |Z is in the IWT
graphoid closure of the dependence base of p
for G.



The theorem below proves that the criterion
in Definition 1 is complete in certain sense.

Theorem 4. Let G be a polytree-like MDI map
of a WT graphoid p. If X 6⊥pY |Z is in the IWT
graphoid closure of the dependence base of p for
G, then X∼GY |Z.

Proof. Clearly, all the dependencies in the de-
pendence base of p for G are identified by the
criterion in Definition 1. It only remains to
prove that the criterion satisfies the ten proper-
ties introduced at the beginning of Section 4.
• Symmetry Y ∼GX|Z ⇒ X∼GY |Z.
Trivial.
• Weak union X∼GY |ZW ⇒ X∼GY W |Z.
We prove a simplified version of the property:

We assume that W contains a single node. Re-
peated application of this simplified property
proves the original property. Let X ∼ GY |ZW
hold due to a route A : B with A ∈ X and
B ∈ Y . We prove the simplified property by
induction over the number of collider nodes in
A : B. If this number is zero, then the proof is
immediate because W cannot be in A : B for
A : B to be minimally superactive wrt X, Y
and ZW in G. Assume as induction hypothe-
sis that the simplified property holds when the
number of collider nodes in A : B is smaller
than l. We now prove the simplified property
when this number is l. The proof is immedi-
ate unless W is in A : B. If the latter occurs,
then X ∼GY W |Z holds due to A : W , i.e. the
subroute of A : B between A and W . To see
it, note that A : W is the only route between
A and W that is minimally superactive wrt X,
Y W and Z in G. Note also that W must be a
collider node in A : B for A : B to be minimally
superactive wrt X, Y and ZW in G. Thus,
A : B has a subroute of the form C → D →
. . .→W ← . . .← D ← E with C 6= E but pos-
sibly D = W . Then, every recursive call that
X ∼ GY W |Z performs belongs to one of the
following two groups. The first group consists
of the recursive calls A′ ∼ G\A′XY ZW \ AW

with A′ ∈ Pa(A : W ) \ E. These recur-
sive calls hold because A′ ∈ Pa(A : B) and,
thus, X ∼ GY |ZW performs the recursive calls
A′ ∼ G\A′XY ZW \ AB and B and W are not

used in them. The second group consists of
the recursive call E ∼ G\E

XY ZW \ AW . We
prove that E ∼ G\E

Y |XZW \ A holds, which
implies that E ∼ G\E

XY ZW \ A holds by re-
peated application of the induction hypothesis
and, since W is not used in the recursive call,
E∼G\E

XY ZW \AW holds too. To see it, note
that the subroute of A : B between E and B,
here denoted E : B, is the only route between E
and B that is minimally superactive wrt E, Y
and XZW \ A in G\E . Moreover, every recur-
sive call that E∼G\E

Y |XZW \A performs is of
the form A′ ∼ (G\E)\A′XY ZW \ AB with A′ ∈
Pa(E : B). This recursive call holds because
A′ ∈ Pa(A : B) and, thus, X ∼ GY |ZW per-
forms the recursive call A′∼G\A′XY ZW \AB.

• Decomposition X∼GY |Z ⇒ X∼GY W |Z.

We prove a simplified version of the property:
We assume that W contains a single node. Re-
peated application of this simplified property
proves the original property. Let X ∼ GY |Z
hold due to a route A : B with A ∈ X and
B ∈ Y . The proof is immediate unless W is in
A : B. If the latter occurs, then, X ∼ GY W |Z
holds due to A : W , i.e. the subroute of A : B
between A and W . To see it, note that A : W
is the only route between A and W that is min-
imally superactive wrt X, Y W and Z in G.
Now, consider the following two scenarios. The
first scenario is when W is outside every rope
in A : B. In this case, every recursive call
that X ∼GY W |Z performs is of the form A′∼
G\A′XY ZW \ AW with A′ ∈ Pa(A : W ). This
recursive call holds because A′ ∈ Pa(A : B)
and, thus, X∼GY |Z performs the recursive call
A′∼G\A′XY Z \AB and B and W are not used
in it. The second scenario is when W is in some
rope in A : B. In this case, A : B has a sub-
route of the form C → D → . . .→ W → . . .→
E ← . . . ← W ← . . . ← D ← F with C 6= F
but possibly D = W and/or W = E. How-
ever, in this case, X∼GY |ZW holds due to the
route (A : B) \ (W → . . . → E ← . . . ← W ),
here denoted ρ. To see it, note that ρ is the
only route between A and B that is minimally
superactive wrt X, Y and ZW in G. More-
over, every recursive call that X∼GY |ZW per-



forms is of the form A′∼G\A′XY ZW \AB with
A′ ∈ Pa(ρ). This recursive call holds because
A′ ∈ Pa(A : B) and, thus, X∼GY |Z performs
the recursive call A′∼G\A′XY Z \AB and W is
not used in it. Finally, note that if X∼GY |ZW
holds, then X∼GY W |Z holds by weak union.
• Contraction1 X∼GY W |Z∧X⊥GY |ZW ⇒

X∼GW |Z.
In the proof of this property, we make use

of the fact that separation in DAGs is a WT
graphoid (Pearl, 1988) and, thus, it satisfies
the ten properties introduced at the beginning
of Section 4. Let X ∼ GY W |Z hold due to
a route A : B with A ∈ X and B ∈ Y W .
Then, A 6⊥ GB|XY ZW \ AB and, thus, X 6⊥
GB(Y \ B)|WZ \ B by weak union. This im-
plies that B /∈ Y because, otherwise, it would
contradict X ⊥GY |ZW . Likewise, for all A′ ∈
Pa(A : B), A 6⊥ GA′|XY ZW \ AA′ and, thus,
X \ A′ 6⊥ GA′(Y \ A′)|WZ \ A′ by weak union.
This implies that A′ /∈ Y because, otherwise,
it would contradict X⊥GY |ZW . Furthermore,
note that every recursive call that X∼GY W |Z
performs is of the form A′∼G\A′XY ZW \ AB

with A′ ∈ Pa(A : B) and A′ /∈ XY ZW . As-
sume that this recursive call holds due to a route
A′ : B′ with B′ ∈ XY ZW \AB. By reasoning as
above, we can conclude that A′ 6⊥GB′|XY ZW \
ABB′ and A′ 6⊥ GA′′|XY ZW \ ABA′′ with
A′′ ∈ Pa(A′ : B′). Then,

1. A 6⊥ GA′|XY ZW \ AB′ by A 6⊥
GA′|XY ZW \ AA′, A′ /∈ XY ZW , and B′ is
not involved

2. A′ 6⊥ GB′|XY ZW \ AB′ by A′ 6⊥
GB′|XY ZW \ABB′ and B is not involved

3. A 6⊥GB′|XY ZW \AB′ by weak transitivity
on (1), (2), and A 6⊥GB′|(XY ZW \AB′)A′

4. X \ B′ 6⊥ GB′(Y \ B′)|WZ \ B′ by weak
union on (3).

Note that (4) implies that B′ /∈ Y because,
otherwise, it would contradict X ⊥ GY |ZW .
Moreover,

5. A 6⊥ GA′|XY ZW \ AA′′ by A 6⊥
GA′|XY ZW \ AA′, A′ /∈ XY ZW , and A′′ is
not involved

6. A′ 6⊥ GA′′|XY ZW \ AA′′ by A′ 6⊥
GA′′|XY ZW \ABA′′ and B is not involved

7. A 6⊥GA′′|XY ZW \AA′′ by weak transitiv-
ity on (5), (6), and A 6⊥GA′′|(XY ZW \AA′′)A′

8. X \ A′′ 6⊥ GB′(Y \ A′′)|WZ \ A′′ by weak
union on (7).

Note that (8) implies that A′′ /∈ Y because,
otherwise, it would contradict X ⊥ GY |ZW .
Therefore, we have proven that X ∼ GW |Z
holds if the recursive calls performed by X ∼
GY W |Z do not perform other recursive calls be-
cause, in this case, none of the key nodes is in
Y and, thus, Y can be dropped. When a recur-
sive call performed by X ∼ GY W |Z performs
another recursive call and this possibly another
and so on, one just needs to repeat the reason-
ing above for each of these recursive calls.
• Contraction2 X∼GY W |Z ∧X⊥GW |Z ⇒

X∼GY |ZW .
Let X∼GY W |Z hold due to the route A : B

with A ∈ X and B ∈ Y W . We prove that
X ∼ GY |ZW holds due to A : B. Since A : B
is minimally superactive wrt X, Y W and Z in
G, no node in XY W \ AB can be in A : B.
Then, B ∈ Y by X⊥GW |Z and, thus, A : B is
minimally superactive wrt X, Y and ZW in G.
Moreover, A : B is the only such route between
A and B. To see it, assume to the contrary that
there is a second such route between A and B.
Note that this second route must have some col-
lider node in C ∈ W for A : B to be the only
route between A and B that is minimally su-
peractive wrt X, Y W and Z in G. Then, this
second route must also have some collider node
D ∈ Y between A and C by X⊥GW |Z. How-
ever, this is a contradiction. Finally, note that
every recursive call that X∼GY |ZW performs
holds because X ∼ GY W |Z also performs that
recursive call because, as shown, B ∈ Y .
• Intersection X∼GY W |Z ∧X⊥GY |ZW ⇒

X∼GW |ZY .
Let X∼GY W |Z hold due to the route A : B

with A ∈ X and B ∈ Y W . We prove that
X∼GW |ZY holds due to A : B. Since A : B is
minimally superactive wrt X, Y W and Z in G,
no node in XY W \AB can be in A : B. Then,
B ∈ W by X ⊥ GY |ZW and, thus, A : B is
minimally superactive wrt X, W and ZY in G.
Moreover, A : B is the only such route between
A and B. To see it, assume to the contrary that



there is a second such route between A and B.
Note that this second route must have some col-
lider node in C ∈ Y for A : B to be the only
route between A and B that is minimally su-
peractive wrt X, Y W and Z in G. Then, this
second route must also have some non-collider
node D ∈W between A and C by X⊥GY |ZW .
However, this is a contradiction. Finally, note
that every recursive call that X∼GW |ZY per-
forms holds because X∼GY W |Z also performs
that recursive call because, as shown, B ∈W .
• Intersectional weak transitivity1 X ∼

GV |ZY ∧ V ∼ GY |ZX ∧ X ⊥ GY |Z ⇒ X ∼
GY |ZV .

Let X ∼ GV |ZY and V ∼ GY |ZX hold
due to the routes A : V with A ∈ X and
V : B with B ∈ Y , respectively. We prove
that A ∼ GB|XY ZV \ AB holds, which im-
plies X ∼ GY |ZV by weak union and decom-
position. Note first that X ⊥ GY |Z implies
that A : V followed by V : B, here denoted
A : B, is the only route between A and B
that is minimally superactive wrt A, B and
XY ZV \ AB in G. Note also that every re-
cursive call that A ∼ GB|XY ZV \ AB per-
forms is of the form A′∼G\A′XY ZV \AB with
A′ ∈ Pa(A : B). Note also that A′ ∈ Pa(A : V )
or A′ ∈ Pa(V : B). In the former case, we
know that X ∼ GV |ZY performs the recursive
call A′∼G\A′XY Z \A which does not use B or
V and, thus, A′∼G\A′XY ZV \AB holds. In the
latter case, we know that V ∼GY |ZX performs
the recursive call A′∼G\A′XY Z \B which does
not use A or V and, thus, A′∼G\A′XY ZV \AB
holds.
• Intersectional weak transitivity2 X ∼

GV |ZY ∧ V ∼ GY |ZX ∧ X ⊥ GY |ZV ⇒ X ∼
GY |Z.

Let X ∼ GV |ZY and V ∼ GY |ZX hold due
to the routes A : V with A ∈ X and V : B
with B ∈ Y , respectively. We prove that A∼
GB|XY Z \ AB holds, which implies X∼GY |Z
by weak union and decomposition. Note first
that X ⊥ GY |ZV implies that A : V followed
by V : B, here denoted A : B, is the only route
between A and B that is minimally superactive
wrt A, B and XY Z \ AB in G. Note also that

every recursive call that A ∼ GB|XY Z \ AB
performs is of the form A′∼G\A′XY Z\AB with
A′ ∈ Pa(A : B). Note also that A′ ∈ Pa(A : V )
or A′ ∈ Pa(V : B). In the former case, we
know that X ∼ GV |ZY performs the recursive
call A′ ∼ G\A′XY Z \ A which does not use B

and, thus, A′ ∼ G\A′XY Z \ AB holds. In the
latter case, we know that V ∼GY |ZX performs
the recursive call A′∼G\A′XY Z \B which does
not use A and, thus, A′∼G\A′XY Z \AB holds.
•Weak transitivity1 X∼GV |Z ∧V ∼GY |Z ∧

X⊥GY |Z ⇒ X∼GY |ZV .
1. X∼GV Y |Z and V X∼GY |Z by decompo-

sition on X∼GV |Z and V ∼GY |Z
2. X ∼GV |ZY and V ∼GY |ZX by contrac-

tion2 on (1) and X⊥GY |Z
3. X∼GY |ZV by intersectional weak transi-

tivity1 on (1), (2), and X⊥GY |Z.
•Weak transitivity2 X∼GV |Z ∧V ∼GY |Z ∧

X⊥GY |ZV ⇒ X∼GY |Z.
Just replace (3) in the proof of weak transi-

tivity1 by
3. X ∼ GY |Z by intersectional weak transi-

tivity2 on (1), (2), and X⊥GY |ZV .

5 Discussion

As discussed in Section 1, the new criterion
introduced in this paper is more (resp. less)
powerful but less (resp. more) applicable than
the criterion in (Bouckaert, 1995) (resp. (Peña,
2007)). To see it, consider Example 1. The new
criterion and the criterion in (Bouckaert, 1995)
can be applied but the criterion in (Peña, 2007)
cannot, because p does not satisfy composition
X ⊥ pY |Z ∧ X ⊥ pW |Z ⇒ X ⊥ pY W |Z. How-
ever, the new criterion reads A 6⊥ pB|C from G
but the criterion in (Bouckaert, 1995) does not,
because A and B are not adjacent in G and this
is necessary for that criterion to be conclusive.
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