Errata for "Jose M. Peña. Reading Dependencies from Polytree-Like Bayesian Networks. In *Proceedings of the 23rd Conference on* Uncertainty in Artificial Intelligence, 303-309, 2007"

Jose M. Peña ADIT, IDA, Linköping University, SE-58183 Linköping, Sweden

The proof of contraction2 in Theorem 5 can be made more precise as follows.

• Contraction2 $dep(\mathbf{X}, \mathbf{YW}|\mathbf{Z}) \land sep(\mathbf{X}, \mathbf{W}|\mathbf{Z}) \Rightarrow dep(\mathbf{X}, \mathbf{Y}|\mathbf{ZW})$. Let C denote the closest node to A that is in both \mathbf{Y} and the path A : B in the left-hand side. Such a node must exist for $sep(\mathbf{X}, \mathbf{W}|\mathbf{Z})$ to hold. For the same reason, no node in A : C can be in \mathbf{W} , and no head-to-head node in A : C can have a descendant in \mathbf{W} that is not a descendant of some node in \mathbf{Z} . Then, A : C satisfies the right-hand side.

We claimed that the proof of intersection in Theorem 5 is like the proof of contraction1. However, this is not correct. A correct proof of intersection follows.

• Intersection $dep(\mathbf{X}, \mathbf{YW}|\mathbf{Z}) \land sep(\mathbf{X}, \mathbf{Y}|\mathbf{ZW}) \Rightarrow dep(\mathbf{X}, \mathbf{W}|\mathbf{ZY})$. Let C denote the closest node to A that is in both \mathbf{W} and the path A : B in the left-hand side. Such a node must exist for $sep(\mathbf{X}, \mathbf{Y}|\mathbf{ZW})$ to hold. For the same reason, no node in A : C can be in \mathbf{Y} . Then, A : C satisfies the right-hand side unless A : C has a head-to-head node D that has a descendant E in \mathbf{Y} that is not a descendant of some node in \mathbf{Z} (if several such nodes exist, let D be the closest to A and let E be any of the closest to D). If the latter happens, there must exist some node F between D and E that is in \mathbf{W} for $sep(\mathbf{X}, \mathbf{Y}|\mathbf{ZW})$ to hold (if several such nodes exist, let F be the closest to D). Then, A : F satisfies the right-hand side.

June 10, 2010