
TALplanner: An Empirical Investigation of a
Temporal Logic-based Forward Chaining Planner

Patrick Doherty
Dept of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

patdo@ida.liu.se

Jonas Kvarnström
Dept of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

jonkv@ida.liu.se

Abstract

We present a new forward chaining planner, TALplan-
ner, based on ideas developed by Bacchus [5] and Ka-
banza [11], where domain-dependent search control knowl-
edge represented as temporal formulas is used to effectively
control forward chaining. Instead of using a linear modal
tense logic as with Bacchus and Kabanza, we use TAL,
a narrative-based linear temporal logic used for reason-
ing about action and change in incompletely specified dy-
namic environments. Two versions of TALplanner are con-
sidered, TALplan/modal which is based on the use of em-
ulated modal formulas and a progression algorithm, and
TALplan/non-modal which uses neither modal formulas nor
a progression algorithm. For both versions of TALplanner
and for all tested domains, TALplanner is shown to be con-
siderably faster and requires less memory. The TAL ver-
sions also permit the representation of durative actions with
internal state.

1. Introduction

Recently, Bacchus and Kabanza et al. [3, 4, 5, 11] have
been investigating the use of temporal logics to express
search control knowledge for planning. In the approach,
they utilize domain-specific control knowledge represented
as formulas in a first-order modal tense logic to effectively
control a forward-chaining planner. The approach is im-
plemented in the TLplan system. Empirical results for a
number of test domains have demonstrated impressive im-
provements in planning efficiency when compared to many
recent planners such as BLACKBOX [14] and IPP [15] (See
[5] for comparisons). BLACKBOX and IPP were the best
performers in the AIPS’98 planning competition [1].

In the past few years, we have been developing a family
of temporal logics for reasoning about action and change

in incompletely specified dynamic worlds. These logics are
collected under the acronym TAL (Temporal Action Log-
ics) [10, 6, 7, 8, 13, 12]. More recently, we have begun
to apply these logics in the WITAS UAV project1, one as-
pect of which is the design, specification and implemen-
tation of a hybrid deliberative/reactive system architecture
for the command and control of an autonomous unmanned
aerial vehicle (UAV). A fundamental requirement of the ar-
chitecture is the ability to generate plans in a timely and/or
any-time manner and to be able to dynamically update con-
trol knowledge as observations are made during plan gener-
ation.

In order to satisfy this requirement, we have begun ex-
perimentation with a forward chaining planner in the spirit
of TLplan which we call TALplanner. Instead of using
a modal tense logic to represent domain-specific control
knowledge, we use TAL, which is a first-order logic with
explicit time which is used to reason about narratives. In
fact, a narrative may be viewed as a plan, and TALplan-
ner generates narratives given goals and control knowledge
specified in TAL. Modal formulas can be emulated using
macros in a surface language. TAL provides a solid basis for
experimentation with forward-chaining planners because
of its rich expressivity. Actions with duration, context-
dependent actions, non-deterministic actions, delayed ef-
fects of actions [13], concurrent actions [12], incompletely
specified timing of actions, and side-effects of actions [10]
can all be expressed. In addition, robust solutions to the
frame [6], ramification [10] and qualification [8] problems
exist when reasoning in restricted domains in incompletely
specified environments.

As a first step in exploring the design space of plan-
ners for our UAV project, we have implemented TALplan-
ner and compared its performance with TLplan. We have
used the test domains provided with TLplan (also used

1Wallenberg Information Technology and Autonomous Systems Labo-
ratory (WITAS).

in AIPS’98 [1] planning competition) in our comparisons.
TALplanner’s performance is shown to be markedly bet-
ter than TLplan both in terms of time and memory. While
TLplan is implemented in C, TALplanner is implemented
in Java, an interpreted language. Although TALplan/modal
is similar to TLplan in many respects, the implementa-
tion techniques of both TALplan/modal and TALplan/non-
modal are quite different. In addition, both of the TAL-
based planners permit the representation of durative actions
with internal state. The latter requires modification of the
original TLplan algorithm.

The main contribution in this paper is the integra-
tion of a well-developed and highly expressive tempo-
ral logic for reasoning about action and change with a
well-developed and highly promising logical approach to
a forward-chaining plan synthesis technique. The intent of
this paper is to verify the adequacy of the technique and pro-
vide a basis for continued development of the approach in
the context of TAL. We demonstrate this by extending the
algorithm for durative actions with internal state.

In the remainder of the paper, we will briefly describe
TAL and the representation of temporal narratives, the plan-
ning task and its representation in TAL, an example, the use
of modal and non-modal control formulas, and finally, the
empirical test results and comparison with TLplan.

2. TAL: Temporal Action Logics

The basic approach we use for reasoning about action
and change is as follows. First, represent a temporal narra-
tive description as a set of narrative statements in a surface
language L(ND), which is a high-level language for repre-
senting observations, action types (plan operators), action
occurrences (instantiations of plan operators), dependency
constraints, domain constraints, and timing constraints re-
lated to actions and their durations. Second, translate the
narrative statements represented in L(ND) into the base
language L(FL), which is an order-sorted first-order lan-
guage with a linear, discrete time structure.2 Third, mini-
mize potential spurious change via a circumscription axiom
which is easily reducible to a first-order formula via syntac-
tic transformation. The intent of the minimization is to deal
with the well known frame, qualification and ramification
problems. Finally, use the resulting logical theory to reason
about the narrative.

Narrative statements in L(ND) are always labeled in a
narrative description N and a set of syntactic restrictions
are normally associated with each labeled class of state-
ments. In the following we denote the narrative statements
in N of statement class: action type, observation, depen-
dency constraint, domain constraint, action occurrence, and

2In the remainder of the paper, we will use Trans() to denote the trans-
lation procedure.

schedule, as Υacs, Υobs, Υdepc, Υdomc, Υocc and Υscd with
labels acs, obs, dep, dom, occ and scd, respectively. The
sets of formulas in L(FL) corresponding to the 2nd-6th nar-
rative statement classes in N are denoted by Γobs, Γdepc,
Γdomc, Γocc and Γscd, respectively. In the translation process
Trans() from L(ND) to L(FL), an action type in Υacs cor-
responding to an action occurrence in Υocc is instantiated,
resulting in a schedule statement in Γscd.

Given a narrative description Υ in L(ND), the corre-
sponding theory ∆ in L(FL) is Γ ∧ Γfnd, where Γ =
Γobs ∧ Γocc ∧ Γdomc ∧ Γdepc ∧ Γscd, and Γfnd are the foun-
dational axioms associated with TAL narratives and con-
tain unique names axioms, temporal structure axioms, etc.
Let Γ′ be the result of applying a circumscription policy to
Γdepc∧Γscd in Γ to filter spurious change from the theory ∆
and ∆′ = Γ′ ∧ Γfnd, then any formula α is entailed by the
narrative Υ iff ∆′ |= α. See Kvarnström and Doherty [16]
for a WWW accessible implementation of TAL, and Do-
herty et al. [7] for a detailed overview of TAL.

3. The Planning Task

For the planning task, the basic idea is to generate a
temporal narrative description Np in L(ND), given a goal
narrative description GN in an extended surface language
L(ND)∗ as input to the planning algorithm. The goal narra-
tive description contains an intended goal statement Υigoal,
a set of goal domain constraint statements Υgdom and a set
of goal control statements Υgctrl, in addition to action types,
observations, domain and dependency constraints found in
standard narrative descriptions. The goal control and goal
domain constraint statements represent the domain depen-
dent control knowledge that will be used in the planning
algorithm to achieve the intended goal. If the planning al-
gorithm is successful in achieving the goal then the output
Np of the planner is (GN \ (Υigoal∪Υgctrl∪Υgdom))∪Υocc,
where Υocc is the sequence of action occurrences with tim-
ing (planning steps) generated by the planning algorithm.
The planning algorithm is sound in the following sense. If
the algorithm generates a narrative descriptionNp as output
given GN as input then ∆′

Np
|= Trans([t]Υigoal), where

∆′
Np

is the circumscribed logical theory in L(FL) corre-
sponding toNp, and [t] is the end timepoint of the last action
occurrence in Υocc. Completeness of the planning algo-
rithm is a more difficult issue and dependent on the nature
of the control knowledge used for each domain. Observe
that Υigoal ∪ Υgctrl ∪ Υgdom is only used in the plan syn-
thesis algorithm.

3.1. Extensions to L(ND)

An atemporal narrative formula is defined inductively
using the set of atemporal atomic expressions and isvalue

expressions in L(ND) as the base class and using the stan-
dard logical connectives, quantifiers and delimiters in the
normal manner (see [7]). A goal expression has the form
goal(ψ), where ψ is any atemporal narrative formula. A
goal domain constraint in L(ND)∗Goal has the same syntax
as an L(ND) domain constraint, but may also contain goal
expressions. A goal control formula in L(ND)∗Control may
contain goal expressions and temporal modal operators ap-
plied to atemporal narrative formulas. No other temporal
expressions are allowed in the formula.
L(ND) is extended to L(ND)∗ by adding three new la-

beled classes of narrative statements used only in goal nar-
ratives: intended goal statements (Υigoal, an atemporal nar-
rative formula, labeled igoal), goal domain constraint state-
ments (Υgdom ⊆ L(ND)∗Goal, labeled gdom), and goal con-
trol statements (Υgctrl ⊆ L(ND)∗Control, labeled gctrl).

Assume a goal narrative GN with intended goal Υigoal =
{φ}. When recursively evaluating statements in Υgctrl ∪
Υgdom in the plan synthesis algorithm, the meaning of a
goal expression goal(ψ) in such statements is determined
by checking whether φ |= ψ (whether ψ is true in all mod-
els (goal states) satisfying φ). In the plan synthesis algo-
rithm, it is sometimes necessary to check whether a for-
mula in L(FL) with possible goal expressions entails an-
other formula in L(FL) with possible goal expressions. In
this case, the formulas are evaluated in the same way as
in L(FL) after evaluating the goal expressions in the man-
ner above and replacing them with true or false. We use
the following notation to describe this evaluation process
Trans∗(φ) |=∗ Trans∗(ψ).

3.2. Experimental Methodology

TAL is an expressive logic for reasoning about action
and change and has a formal declarative semantics. Con-
sequently, it provides an ideal basis for experimentation
with plan synthesis based on the use of declarative domain-
dependent control knowledge and for formally verifying
the correctness of generated plans. The efficiency of the
plan synthesis algorithm is primarily dependent on how ef-
ficiently one can check whether a narrative formula is en-
tailed by a partially developed narrative or whether a goal
expression is entailed by the intended goal in a narrative,
which in turn depends on how well one can reuse previous
work done when checking other partially developed narra-
tives. Tradeoffs between efficiency of the plan synthesis
algorithm and expressivity of the plan representation lan-
guage can be studied by placing or relaxing syntactic con-
straints on the different classes of narrative statements and
using analysis tools from from descriptive complexity or ap-
plying various model checking techniques, for instance.

As already stated, TAL, as a formalism for reasoning
about action and change, is highly expressive. Action types

can be context dependent or non-deterministic, may have
variable duration, and explicit point-based temporal con-
straints may be used. This permits the representation of
many types of plan operators such as those used in STRIPS
and ADL. In addition, side-effects represented using depen-
dency and domain constraints, and real concurrency are ex-
pressible. Different degrees of incompleteness in the do-
main specification such as incomplete initial state or ob-
servations in states other than the initial state are also ex-
pressible. All these properties have a corresponding formal
semantics.

Obviously, the expressivity associated with TAL does
not automatically induce efficient implementations of plan
synthesis algorithms. On the contrary, one must restrict
TAL’s expressiveness in various ways. For the purposes of
this paper, we begin at the lower rungs of the ladder of ex-
pressivity.

In the current implementation of TALplanner, the fol-
lowing restrictions apply:

• The set of values a fluent can have in L(FL) must be
finite.

• The initial state of a goal narrative must be completely
specified.

• Action types are deterministic, but may be context-
dependent.

• No domain or dependency constraints are permitted in
narratives.

In addition, we allow:

• Durative actions with internal state changes are permit-
ted.

• Disjunctive goals are allowed.

Note that the TALplanner algorithms currently permit
the use of restricted classes of domain and dependency
constraints at the risk of generating inconsistent narratives.
This could be avoided by introducing a consistency check
in the GoodPlan algorithm in Section 5.1. Due to the com-
putational complexity this implies, we leave this topic for
future research.

3.3. A Goal Narrative Example

In the remainder of this paper, we will use the blocks
domain described in Bacchus [5] and used as a test domain
in [1].

In TAL, [t] α means that α holds at t. Action type spec-
ifications of the form [t1, t2]action(x)

∧n
i=1([t1]αi →

R([t2]βi))∧φi define what happens when action is invoked
with the arguments x between times t1 and t2: For each i,
if αi holds at t1, then βi must hold at t2. If 1 < i then the

action is context dependent and each αi is a specific pre-
condition (context). φi denotes a context dependent con-
straint on the action’s duration. For example, for single-
step actions, all φi have the form t2 = t1 + 1. We define
Preconds([t1, t2]action(x)) = {αi | 1 ≤ i ≤ n}.

The following goal narrative GN in L(ND)∗ is essen-
tially what is provided as input to the planner.3 This par-
ticular example is quite small, containing only six blocks,
AA–FF. Other examples tested contain up to 1000 blocks.
It contains a specification of action types (acs), observa-
tions about the initial state (obs), goal domain constraints
(gdom), an intended goal statement (igoal), and goal con-
trol statements about the blocks domain (gctrl). Recall that
L(ND)∗ is a high-level language designed to support the
definition of complex narratives. Many of the operators in
the narrative, such as the modal operators, are simply syn-
tactic sugar (macros) and are reduced in the transformation
to L(FL).

acs1 [t1, t2] putdown(b) [t1] holding(b)→
R([t2] ¬holding(b) ∧ ontable(b) ∧ clear(b) ∧
handempty) ∧ t2 = t1 + 1

acs2 [t1, t2] pickup(b)
[t1] ontable(b) ∧ clear(b) ∧ handempty→
R([t2] holding(b) ∧ ¬ontable(b) ∧ ¬clear(b) ∧
¬handempty) ∧ t2 = t1 + 1

acs3 [t1, t2] stack(b1, b2) [t1] holding(b1) ∧ clear(b2)→
R([t2] ¬holding(b1) ∧ ¬clear(b2) ∧ on(b1, b2) ∧
clear(b1) ∧ handempty) ∧ t2 = t1 + 1

acs4 [t1, t2] unstack(b1, b2)
[t1] on(b1, b2) ∧ clear(b1) ∧ handempty→
R([t2] holding(b1) ∧ clear(b2) ∧ ¬on(b1, b2) ∧
¬clear(b1) ∧ ¬handempty) ∧ t2 = t1 + 1

obs1 ∀b1, b2[[0] on(b1, b2)↔ b1 = BB ∧ b2 = AA ∨
b1 = AA ∧ b2 = EE]

obs2 ∀b[[0] ontable(b)↔ b = EE∨b = CC∨b = DD∨b = FF]
obs3 [0] handempty ∧ ∀b[¬holding(b)]
obs4 ∀b[[0] clear(b)↔ b = BB ∨ b = CC ∨ b = DD ∨ b = FF]
igoal1 ontable(AA) ∧ ontable(BB) ∧ on(FF,EE)
gdom1∀t, b[[t] goodtower(b)↔

[t] clear(b) ∧ ¬goal(holding(b)) ∧ [t] goodtowerbelow(b)]
gdom2∀t, b[[t] goodtowerbelow(b)↔ [t] ontable(b) ∧

¬∃b2[goal(on(b, b2))] ∨ ∃b2[[t] on(b, b2) ∧
¬goal(ontable(b)) ∧ ¬goal(holding(b2)) ∧
¬goal(clear(b2)) ∧ ∀b3[goal(on(b, b3))→ b3 = b2] ∧
∀b3[goal(on(b3, b2))→ b3 = b] ∧
[t] goodtowerbelow(b2)]]

gctrl1 2∀b[clear(b) ∧ goodtower(b)→
©(clear(b) ∨ ∃b2[on(b2, b) ∧ goodtower(b2)])]

gctrl2 2∀b[clear(b) ∧ ¬goodtower(b)→©(¬∃b2[on(b2, b)])]
gctrl3 2∀b[ontable(b) ∧ ∃b2[goal(on(b, b2)) ∧

¬goodtower(b2)]→©(¬holding(b))]

If the goal narrative GN above is provided as input to the
planning algorithm, the output Np will be:

3A narrative preamble (not included here) is also part of a narrative and
contains type information for the fluents and actions in the narrative.

acs1–4, obs1–4: Same as above
occ1 [0, 1] unstack(BB,AA)
occ2 [1, 2] putdown(BB)
occ2 [2, 3] unstack(AA,EE)
occ2 [3, 4] putdown(AA)
occ2 [4, 5] pickup(FF)
occ2 [5, 6] stack(FF,EE)

It is easily observable that Np entails the intended goal
Υigoal at time 6.

In Section 5, we describe how the plan sequence Γocc is
generated given an initial goal narrative GN . Before doing
this, we will consider the use of modal formulas in TAL.

In the rest of the paper, let GN be a goal narrative.

4. Modal Formulas in TAL

From a semantic perspective, temporal modalities in
TAL are simply viewed as a special type of macro-operator
in the extended surface language L(ND)∗. Given a formula
φ in L(ND)∗Control containing temporal modal operators,
the formula [τ] φ, where τ is the timepoint where φ is in-
tended to hold, can be translated into a formula in the base
language L(FL) without temporal modal operators. Modal
formulas are used in the following ways:

• TALplan/modal – Control formulas in a goal narrative
may contain modal operators. The control formulas
are progressed in the TALplan/modal planner using a
progression algorithm.

• TALplan/non-modal – Control formulas in a goal nar-
rative may contain modal operators. The control
formulas are transformed into a formula in L(ND)∗

without temporal modalities before being used in the
TALplan/non-modal planner. This planner is designed
in a different manner and contains no progression al-
gorithm.

There are four specific temporal operators, U (until), 3

(eventually), 2 (always), and © (next), but all of them
may be defined in terms of the U operator. As in Ka-
banza [11], the first three temporal operators can be indexed
with closed, open or semi-open intervals. The meaning of a
formula containing a temporal operator is dependent on the
point n (the current state) in which it is evaluated.

• φU[τ,τ ′] ψ – φ must hold from n until ψ is achieved at
some timepoint in [τ + n, τ ′ + n].

• 3[τ,τ ′] φ ≡ trueU[τ,τ ′] φ – Eventually φ will be true at
a timepoint in [τ + n, τ ′ + n].

• 2[τ,τ ′] φ ≡ ¬3[τ,τ ′] ¬φ – φ must always be true at all
points in the interval [τ + n, τ ′ + n].

• ©φ ≡ trueU[1,1]φ.

The following abbreviations are also used:

• φU ψ ≡ φU[0,∞] ψ, 3φ ≡ 3[0,∞] φ,
2φ ≡ 2[0,∞] φ, [τ, τ ′] < 0 ≡ τ < 0 ∧ τ ′ < 0.

The translation function TransModal takes a timepoint
and a modal control formula as input and returns a formula
in L(ND)∗ without temporal modalities as output. In the
following, Q is a quantifier and ⊗ is a binary logical con-
nective.
Inputs: A formula γ ∈ L(ND)∗Control and a timepoint n
where γ is intended to be evaluated.
Output: A formula in L(ND)∗ without temporal modali-
ties.
1 procedure TransModal(n, γ)
2 if γ = goal(φ) then return goal(φ)
3 if γ contains no modalities then return [n] γ
4 if γ = Qx.φ then returnQx.TransModal(n, φ)
5 if γ = φ⊗ ψ then
6 return TransModal(n, φ)⊗ TransModal(n, ψ)
7 if γ = ¬φ then return ¬TransModal(n, φ)
8 if γ = (φU[τ,τ ′]ψ) then return (∃[t : n + τ ≤ t ≤ n + τ ′]

(TransModal(t, ψ) ∧ ∀[t′ : n ≤ t′ < t]TransModal(t′, φ)))

The algorithm TransModal provides the meaning of the
temporal modalities in TAL, a linear, discrete temporal
logic, which correspond to their intuitive meaning in a lin-
ear tense logic.

5. TALplanner: A Forward Chaining Planner

The algorithm described below is based on a combina-
tion of those found in Bacchus [5] and Kabanza [11]. The
distinction is that the algorithms are modified for the TAL
family of logics and the notion of a narrative. In addition,
the cycle check is done in a different place. The imple-
mentation of the algorithm also differs. Two of the major
differences are the use of lazy evaluation in the node ex-
pansion algorithm in TALplanner and the method used to
evaluate formulas in states. The method used is the same as
that used in VITAL [16].

5.1. The TALplan/modal Algorithm

Inputs: An initial goal narrative GN , a sentence α ∈
L(ND)∗Goal, and a sentence γ ∈ L(ND)∗Control.
Output: A narrative plan Np which entails the goal α.
1 procedure TALplan/modal(α, γ,GN)
2 acc← {} // Accepted final states
3 Open← {(γ, 0, 0,GN)}
4 while Open 6= ∅ do
5 (φ, τ, τ ′,GN)← Choose(Open)
6 Open← Open \ (φ, τ, τ ′,GN)
7 φ+ ← Progress goal(φ, τ, τ ′,GN)
8 if φ+ 6= false then
9 if GoodPlan(α, τ ′,GN) then

10 return GN \ (Υigoal ∪Υgctrl ∪Υgdom)

11 if (state at time τ ′ for GN) 6∈ acc then
12 acc← acc ∪ {(state at time τ ′ for GN)}
13 Open← Open ∪ {(φ+, τ1, τ2,GN ′) |
14 (GN ′, [τ1, τ2] a) ∈ Expand(τ ′,GN)}

Different implementations of Choose provide different
search algorithms. For example, in the empirical tests we
use depth-first search. Different implementations of Expand
provide for the possibility of using different lookahead,
decision-theoretic and filtering mechanisms for choice of
actions. Different implementations of GoodPlan provide
for different criteria for evaluating plans which satisfy the
goal, in terms of resource usage etc.
Inputs: A timepoint τ and a goal narrative GN .
Output: A set of pairs (GN ′

i , [τ, τ
′
i] ai), where for all i,

GN ′
i = GN ∪ {[τ, τ ′i] ai} (that is, the old narrative with a

new action occurrence added).
1 procedure Expand(τ,GN)
2 Succ← {}
3 for all a(x) ∈ ActionTypes(GN) do
4 for all [τ, τ ′] a(c) ∈ Instantiate(τ,a(x)) do
5 for all φ ∈ Preconds([τ, τ ′] a(c)) do
6 if Trans(GN \(Υigoal∪Υgctrl∪Υgdom)) |= Trans([τ] φ)
7 then Succ←
8 Succ ∪ {(GN ∪ {[τ, τ ′] a(c)}, [τ, τ ′] a(c))}
9 return Succ

Inputs: A sentence α ∈ L(ND)∗Goal, a timepoint τ and a
goal narrative GN .
Output: true iff GN satisfies α at timepoint τ .
1 procedure GoodPlan(α, τ,GN)
2 if Trans(GN \ (Υigoal ∪Υgctrl ∪Υgdom)) |= Trans([τ]α) then

return true
3 else return false

5.1.1. Progression of modal formulas. Assume that an
action a occurs in interval [τ, t2] where the state associated
with timepoint τ is the current state from which one is pro-
gressing. Assume further that GN is a partial narrative con-
taining the action occurrence [τ, t2] a and where there are
no other action occurrences [τ ′, t′2] a

′ in GN where t′2 > τ .
The following algorithm can be used for progressing a for-
mula φ from τ to t2.
Inputs: A timepoint τ corresponding to the current state,
a timepoint t2 ≥ τ corresponding to the successor state, a
formula φ ∈ L(ND)∗Control labeling the current state, and
a goal narrative GN .
Output: A new formula φ+ labeling the successor state.
Algorithm Progress goal(φ, τ, t2,GN)

1. τ = t2 : φ+ = φ

2. φ contains no temporal modalities:
if Trans∗(GN \Υgctrl) |=∗ Trans∗([τ] φ) then φ+ ← true
else φ+ ← false

3. φ = ¬φ1 : φ+ ← ¬Pg(φ1, τ, t2,GN)

4. φ = φ1⊗φ2 : φ+ ← Pg(φ1, τ, t2,GN)⊗Pg(φ2, τ, t2,GN)

5. φ = φ1U[τ1,τ2]φ2 : if [τ1, τ2] < 0 then φ+ ← false
else if 0 ∈ [τ1, τ2] then φ+ ← Pg(φ2, τ, t2,GN) ∨
(Pg(φ1, τ, t2,GN)∧Pg(φ1U[τ1−1,τ2−1]φ2, τ+1, t2,GN))
else φ+ ← Pg(φ1, τ, t2,GN) ∧

Pg(φ1U[τ1−1,τ2−1]φ2, τ + 1, t2,GN)

The result of Progress goal (abbreviated Pg) is simplified
using the rules ¬false = true, (false ∧ α) = (α ∧ false) =
false, (false∨α) = (α∨ false) = α, ¬true = false, (true∧
α) = (α ∧ true) = α, and (true ∨ α) = (α ∨ true) = true.

Since ©, 2, and 3 can be defined in terms of U , the al-
gorithm above suffices, although adding the following cases
to the algorithm might be useful for clarity and efficiency:

6. φ = 3[τ1,τ2] φ1 : if [τ1, τ2] < 0 then φ+ ← false
else if 0 ∈ [τ1, τ2] then φ+ ←

Pg(φ1, τ, t2,GN) ∨ Pg(3[τ1−1,τ2−1]φ1, τ + 1, t2,GN)
else φ+ ← Pg(3[τ1−1,τ2−1]φ1, τ + 1, t2,GN)

7. φ = 2[τ1,τ2] φ1 : if [τ1, τ2] < 0 then φ+ ← false
else if 0 ∈ [τ1, τ2] then φ+ ←

Pg(φ1, τ, t2,GN) ∧ Pg(2[τ1−1,τ2−1]φ1, τ + 1, t2,GN)
else φ+ ← Pg(2[τ1−1,τ2−1]φ1, τ + 1, t2,GN)

8. φ =©φ1 : if τ + 1 = t2 then φ+ ← φ1

else φ+ ← Pg(φ1, τ + 1, t2,GN)

The following theorem provides a semantic justification for
the use of the progression algorithm.

Theorem 1 Trans∗(N) |=∗ Trans∗(TransModal(n, φ)) iff
Trans∗(N) |=∗

Trans∗(TransModal(t2,Progress goal(φ, n, t2,N)))

5.1.2. Action Duration and Internal State. In [5], Bac-
chus and Kabanza use a first-order version of LTL [9], lin-
ear temporal logic, and restrict their algorithm to single step
actions. In [4], they use a first-order version of MITL [2],
metric interval temporal logic, where actions may have du-
ration. In the latter case, although actions have duration,
they have no internal state. In other words, a plan step may
have duration, but there are no states or state changes be-
tween the initiation state and the effect state. This is re-
flected in the model structure for the logics and the pro-
gression algorithm. On the other hand, TAL actions with
duration have internal state and one can express change in
fluent values within an action’s duration. Consequently, the
Progress goal algorithm proposed in [4] has to be modified
to reflect progression within an action’s duration. In this
case, we replace the original step 5 in [4] (reformulated for
TAL):

5. φ = φ1U[τ1,τ2]φ2 : if [τ1, τ2] < 0 then φ+ ← false
else if 0 ∈ [τ1, τ2] then φ+ ← Pg(φ2, τ, t2,GN) ∨

(Pg(φ1, τ, t2,GN) ∧ φ1U[τ1,τ2]−(t2−τ)φ2)
else φ+ ← Pg(φ1, τ, t2,GN) ∧ φ1U[τ1,τ2]−(t2−τ)φ2

with its modification for actions with internal state in step 5
of the current algorithm (Section 5.1.1). Steps 6–7 are also
modified accordingly.

5.2. The TALplan/non-modal Algorithm

The non-modal version of the TALplan algorithm does
not progress control formulas. Instead, it translates them
into control formulas with no temporal modal operators us-
ing the TransModal+ algorithm (see below).
Inputs: An initial goal narrative GN , a sentence α ∈
L(ND)∗Goal, and a sentence γ ∈ L(ND)∗Control.
Output: A narrative plan Np which entails the goal α.

1 procedure TALplan/non-modal(α, γ,GN)
2 acc← {} // Accepted final states
3 Open← {(TransModal+(0, γ), 0, 0,GN)}
4 while Open 6= ∅ do
5 (φ, τ, τ ′,GN)← Choose(Open)
6 Open← Open \ (φ, τ, τ ′,GN)
7 if not Trans∗(GN \Υgctrl) |=∗ ¬Trans∗(φ(τ ′)) then
8 if GoodPlan(α, τ ′,GN) then
9 return GN \ (Υigoal ∪Υgctrl ∪Υgdom)

10 if (state at time τ ′ for GN) 6∈ acc then
11 acc← acc ∪ {(state at time τ ′ for GN)}
12 Open← Open ∪ {(φ, τ1, τ2,GN ′) |
13 (GN ′, [τ1, τ2] a) ∈ Expand(τ ′,GN)}

One of the main advantages of using TALplan/non-
modal is that since it does not store multiple progressed
control formulas, the algorithm uses much less memory (see
Section 6 and Table 1).

The translation function TransModal+ is similar to
TransModal. The differences are due to the fact that for-
mula progression is not used in TALplan/non-modal. The
function takes a timepoint and a modal control formula as
input and returns a formula in L(ND)∗ without temporal
modalities as output. In the following, Q is a quantifier and
⊗ is a binary logical connective.
Assuming GN is a goal narrative in L(ND)∗ with at least
one action occurrence, t∗ is the ending timepoint of the last
action occurrence in GN .

Inputs: A formula γ ∈ L(ND)∗Control and a timepoint n
where γ is intended to be evaluated.
Output: A formula in L(ND)∗ without temporal modali-
ties, parameterized by t∗.

1 procedure TransModal+(n, γ)
2 if γ = goal(φ) then return n ≤ t∗ → goal(φ)
3 if γ contains no modalities then return

n ≤ t∗ → [n] γ
4 if γ = Qx.φ then return

n ≤ t∗ → Qx.TransModal+(n, φ)
5 if γ = φ⊗ ψ then return

n ≤ t∗ → (TransModal+(n, φ)⊗ TransModal+(n, ψ))
6 if γ = ¬φ then return n ≤ t∗ → ¬TransModal+(n, φ)
7 if γ = (φU[τ,τ ′]ψ) then return (n+ τ ′ ≤ t∗)→

(∃[t : n+ τ ≤ t ≤ n+ τ ′] (TransModal+(t, ψ) ∧
∀[t′ : n ≤ t′ < t] TransModal+(t′, φ)))

6. Empirical Results

We have tested TALplanner in the blocks world as well
as in the movie, gripper, logistics, mystery, mystery prime
and grid domains from Round 1 of the AIPS 1998 Plan-
ning Competition [1]. We compared the results to TLplan in
three of the domains: The blocks world, the logistics world,
and the movie world. For all of these domains, the general
setup (operators, predicates and control rules) and many of
the actual problems (initial state, goal, and objects in the
domain) have been taken from the TLplan distribution.

All tests were run on the same 333 MHz Pen-
tium II computer running Windows NT 4.0 SP3, us-
ing 256 MB of memory. For TLplan, we used the
precompiled version that can be downloaded from
http://www.lpaig.uwaterloo.ca/˜fbacchus.
For TALplanner, we used JDK 1.2 (http://java.
sun.com). In all cases, we made sure that the computer
was very lightly loaded and that it was never swapping.

Note that for this experiment, TALplanner tried different
operators in exactly the same order as TLplan, in order to
avoid random differences in the amount of time and mem-
ory needed by the planners.

For the standard blocks world, we created ten different
test scenarios using between 25 and 1000 blocks. In all
cases, TLplan used the world definition and control rules
from domains/Blocks/4OpsBlocksWorld.tlp in
the TLplan distribution, and TALplanner used the corre-
sponding TAL world definition and control rules seen in the
example scenario in Section 3.3.

Table 1 contains the results. The Worlds column con-
tains the number of worlds that were created by TLplan.
This is equal to the number of narratives that were added to
Open in TALplanner. Plan shows the length of the resulting
plan, and the remaining columns show times (in seconds)
and memory usage (in kilobytes).

For the logistics world, in which objects can be trans-
ported within cities by truck and between airports by air-
plane, we tested the 30 scenarios from the TLplan distri-
bution that were originally from [1]. TALplanner was al-
ways faster than TLplan, in several cases 30–75 times faster.
The movie world, which does not use control formulas,
gave similar results, mainly as a result of lazy evaluation
in TALplanner. Due to space limitations, the exact results
of these and additional domains will be presented in a forth-
coming report.

In each case, TALplanner outperformed TLplan, both
for modal and for non-modal control formulas. For the
smaller scenarios, TALplanner needs more memory than
TLplan, since it needs the Java Virtual Machine. How-
ever, TALplanner itself uses less memory than TLplan.
Therefore, TALplanner could handle larger scenarios than
TLplan, which could not handle the three largest scenarios

without swapping.
In comparing TALplanner with TLplan, we believe that

the primary reason for the speedup is simply due to various
code optimizations used in TALplanner. More interesting is
the comparison between the modal and non-modal versions
of TALplanner. Using modal control formulas was slightly
slower than non-modal formulas for the smallest scenarios
and for one of the largest scenarios. For most scenarios,
modal control formulas were faster than non-modal. We
conjecture that the reason for this is the use of optimization
techniques related to evaluating universally quantified con-
trol formulas where a node in the search space has many
children. In the non-modal version the same evaluation has
to be done for each child, whereas for the modal version
similar evaluations need only be done once. The non-modal
version also uses less memory than the modal version since
there is no need to store additional progressed formulas.

7. Conclusions

Bacchus [5] and Kabanza [11] have proposed a novel
progressive planning technique based on the use of a modal
tense logic to represent domain-dependent knowledge for
controlling search. The technique has proven to be ex-
tremely successful for several application domains. The
work presented in this paper, without claiming any novelty
in terms of the basic technique, verifies the results shown
by TLplan. We do this by introducing a new forward chain-
ing planner, TALplanner. Two versions were considered,
TALplan/modal which is based on the use of modal formu-
las and a progression algorithm, and TALplan/non-modal
which does not use modal formulas or a progression algo-
rithm. TALplan/modal is most similar to the work of Bac-
chus and Kabanza, while TALplan/non-modal is consider-
ably different in design. We showed how temporal modal-
ities could be emulated in TAL, a nonmonotonic temporal
logic for reasoning about action and change. Both versions
of TALplanner were empirically tested against TLplan and
in both cases and for all domains, TALplanner was shown
to be considerably faster and required less memory. The
novelty of our approach is the integration of TAL with the
forward chaining plan paradigm. Due to its considerable ex-
pressivity, TAL is an ideal candidate for continuing research
with TALplanner, especially in the context of planning in
incompletely specified dynamic environments with variable
time constraints for acting. We demonstrated this by ex-
tending the original algorithms so planning can be done us-
ing durative actions with internal state. We are currently
working on extensions to TALplanner related to the use of
nondeterministic plan operators, concurrent plan operators,
dependency and domain constraints, and incomplete initial
states.

Blocks Plan Worlds TLplan TALplan/modal TALplan/non-modal
length created time (s) memory (k) time (s) memory (k) time (s) memory (k)

1 25 16 344 0.110 3104 0.110 6640 0.060 6612
2 50 70 2295 1.963 5672 1.603 6792 1.302 6644
3 70 106 4361 7.501 8752 4.677 7516 4.406 6644
4 100 160 8945 37.254 14912 14.441 7772 14.060 6644
5 140 232 17829 185.497 27532 39.246 9372 41.940 7208
6 280 580 74297 4297.750 104464 394.196 21308 474.012 8536
7 460 580 178697 32303.100 178884 3208.159 39528 1899.992 9840
8 640 1228 365069 5862.197 68464 7679.733 14284
9 820 1908 463779 10487.159 95620 12837.629 18732
10 1000 2232 718281 25028.509 24264

Table 1. Blocks world results

8. Acknowledgments

This research is supported in part by the Wallenberg
Foundation, the Swedish Research Council for Engineering
Sciences (TFR) and the ECSEL/ENSYM graduate studies
program.

References

[1] AIPS98. Artificial Intelligence Planning Sys-
tems: 1998 Planning Competition. http://
ftp.cs.yale.edu/pub/mcdermott/
aipscomp-results.html, 1998.

[2] R. Alur, T. Feder, and T. Henzinger. The benefits of relax-
ing punctiality. In 10th ACM Symposium on Principles of
Distributed Computing, pages 139–152, 1991.

[3] F. Bacchus and F. Kabanza. Using temporal logic to control
search in a forward chaining planner. In M. Ghallab and
A. Milani, editors, New Directions in AI Planning, pages
141–153. ISO Press, 1996.

[4] F. Bacchus and F. Kabanza. Planning for temporally ex-
tended goals. Annals of Mathematics and Artificial Intelli-
gence, 22:5–27, 1998.

[5] F. Bacchus and F. Kabanza. Using temporal logics to ex-
press search control knowledge for planning. Artificial In-
telligence, 1998. Submitted for publication.

[6] P. Doherty. Reasoning about action and change using occlu-
sion. In Proceedings of the 11th European Conference on
Artificial Intelligence, pages 401–405, 1994.

[7] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnström.
TAL: Temporal Action Logics, language specification and
tutorial. Linköping Electronic Articles in Computer and
Information Science, 3(15), 1998. Submitted to ETAI.
http://www.ep.liu.se/ea/cis/1998/015/.

[8] P. Doherty and J. Kvarnström. Tackling the qualification
problem using fluent dependency constraints: Preliminary
report. In Proceedings of the 5th International Workshop on
Temporal Representation and Reasoning (TIME’98), 1998.

[9] E. A. Emerson. Handbook of Theoretical Computer Science,
volume B, chapter Temporal and Modal Logic. MIT, 1990.

[10] J. Gustafsson and P. Doherty. Embracing occlusion in speci-
fying the indirect effects of actions. In Proceedings of the
5th International Conference on Principles of Knowledge
Representation and Reasoning, pages 87–88, San Francisco,
1996. Morgan Kaufmann Publishers.

[11] F. Kabanza, M. Barbeau, and R. St-Denis. Planning control
rules for reactive agents. Artificial Intelligence, 95:67–113,
1997.

[12] L. Karlsson and J. Gustafsson. Reasoning about concurrent
interaction, 1998. Accepted for publication in Journal of
Logic and Computation.

[13] L. Karlsson, J. Gustafsson, and P. Doherty. Delayed effects
of actions. In Proceedings of the 13th European Conference
on Artificial Intelligence, 1998.

[14] H. Kautz and B. Selman. Blackbox: A new approach to the
application of theorem proving to problem solving. Sys-
tem available at http://www.research.att.com/
∼kautz.

[15] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopou-
los. Extending planning graphs to an ADL subset.
In European Conference on Planning, pages 273–285,
1997. System available at http://www.informatik.
uni-freburg.de/∼koehler/ipp.html.

[16] J. Kvarnström and P. Doherty. VITAL. An
on-line system for reasoning about action and
change using TAL, 1997. Available at http://
anton.ida.liu.se/vital/vital.html.

