
E�ient Simulation of Fork Programs on MultioreMahinesJörg Keller1, Christoph Keÿler2, and Bert Wesarg3

1 FernUniversität in Hagen, Dept. of Math. and Computer Siene, 58084 Hagen, Germanyjoerg.keller�fernuni-hagen.de
2 Linköpings Universitet, Dept. of Computer and Inf. Siene, 58183 Linköping, Swedenhrke�ida.liu.se

3 Tehn. Univ. Dresden, Center for Inf. Servies and High Performane Computing, 01062 Dresden, Germanybert.wesarg�tu-dresden.deAbstrat. The SB-PRAM projet resulted in the PRAM programming language Fork and in a om-plete tool hain from algorithms, libraries and a ompiler to a prototype hardware and a sequentialsimulator of that prototype. With the prototype beoming defunt, the neessity arose to parallelizethe simulator to be able to simulate larger Fork programs in a reasonable time on a multiore mahine.We present an approah to inrease the granularity of parallelism in the simulation and hene inreasethe speedup. The ompiler forwards strutural information of the Fork programming model via theode to the simulator. The simulator exploits this information at runtime to redue synhronizationoverhead. We report on preliminary experimental results with a syntheti benhmark that indiatethat our approah is advantageous.Key words: PRAM simulation, granularity of parallelism, multiore programming1 IntrodutionThe parallel random aess mahine (PRAM) is an important onept to study the inher-ent parallelism of problems and to devise parallel algorithms without onsideration of ortweaking to arhitetural partiulars of a target mahine. While PRAM algorithms wereonsidered unpratial for a long time, the SB-PRAM projet provided the programminglanguage Fork together with a ompiler, a runtime system and the PAD library of basialgorithms on top of the SB-PRAM mahine, a parallel arhiteture to e�iently exeuteFork programs. In addition, the SB-PRAM simulator program provides support for Forkprogram development and debugging. See [1℄ for a detailed introdution into all of theseissues.Yet, as typially happens with prototypes, the SB-PRAM hardware beame outdatedquite fast and �nally got disassembled in 2006. While the simulator remained, it is a sequen-tial ode and simulation of larger program instanes would take days. As teahing of parallelalgorithms and programming has beome popular again beause of multiore CPUs beingrather the rule than the exeption these days, and pratial assignments should go beyondtoy problems [2℄, we deided to provide a more powerful platform for Fork programming:a parallelized simulator program to emulate the SB-PRAM instrution set arhiteture ona ontemporary shared memory parallel mahine. While there are other PRAM languagessuh as ll [3℄, e [4℄ and XMTC [5℄, they either do not mention a simulator, or only providea sequential simulator, so that we ould hardly build on related work, exept for paralleldisrete event simulation in general [6℄.In a previous attempt to parallelize this simulator [7℄ we explored the inherent parallelismbetween the PRAM proessors but had to learn that this parallelism is very �ne-grained,down to the level where the synhronization overhead is overall dominant. We were mod-erately suessful in enlarging this granularity but ould only ahieve speedups on quitearti�ial program ode.In the present work we present a new approah to redue the synhronization overheadby exploiting strutural information available in the Fork programming model. Eah Fork

program maintains a logial partitioning of the proessors into groups. Initially all startedproessors run synhronously in a root group. Upon arrival of a fork statement or ontrol�ow statements suh as if with a ondition that depends on the proessor ID (e.g. by usingproessor-loal variables) the partiipating proessors are split into subgroups, two in thelatter ase, more in the former ase. At the end of the statement, the subgroups synhronizeand join again to form the original group. The (sub)groups form a tree starting with theroot group of all started proessors. Only the leaf groups (whih ontain disjoint subsetsof proessors) of this tree are ative. Fork only guarantees the synhroniity among theproessors of eah leaf group.We have instrumented the Fork ompiler to emit new instrutions to ommuniate withthe simulator in a one way fashion. These annotations signal the simulator when a groupsplits and when its subgroups will join again. With this information the simulator is apableto maintain the group tree by itself at runtime. The simulator uses this group tree toexeute leaf node groups with low overhead. All PRAM proessors in one leaf node groupare simulated sequentially on one ore round-robin instrution by instrution to maintainthe synhroniity property of the Fork language, therefore avoiding any synhronizationoverhead of this �ne-grained parallelism. Di�erent leaf node groups an be exeuted inparallel without any synhronization beause they are independent. Only in the ase ofgroup merges a synhronization is neessary. A side e�et of this group monitoring approahis the avoidane of busy waiting when subgroups join again, so that already a 1-threadedversion of our approah ahieves a speedup over the previous simulator. With multi-threadedversions, we ahieve a speedup over the previous simulator, and ahieve a small speedupover the 1-threaded version for frequent situations. We explore the performane advantageswith the help of a parameterizable syntheti benhmark.The remainder of this artile is organized as follows. In Set. 2 we brie�y summarizehallenges in the simulation of PRAM programs that motivate our simulator design. InSet. 3 we report on preliminary experimental results. Setion 4 onludes.2 Challenges in Parallel PRAM SimulationThe PRAMmodel assumes that all proessors are exeuting their instrutions synhronously,so this also is the semantis of the SB-PRAM instrution set arhiteture whih is the targetof the Fork ompiler. In Fork all proessors in the beginning exeute the same instrutionsin an SPMD style like in MPI, i.e. they form a synhronous proessor group. With thefork-statement, proessors an be split into subgroups by evaluating an expression whih isdiretly or indiretly dependent on the proessor IDs. A similar situation with two subgroupsappears when a group exeutes an if-statement with a ondition somehow dependent onthe proessor IDs. Other situations where a group splits exist, suh as a loop where thenumber of iterations is dependent on the proessor IDs. The proessors of eah subgroupare synhronous, while the di�erent subgroups are asynhronous. As a subgroup an besplit again, at any time the groups form a group tree of whih only the leaf node groups areurrently ative, and those leaves ontain a partitioning of all PRAM proessors.When a group has split into subgroups, the subgroups unite again into the previousgroup after they have exeuted their blok of instrutions, suh as then and else branhesin the ase of an if-statement. As the subgroups are asynhronous, they must pass a barrierto unite again. As the SB-PRAM was onsidered a single-user mahine, a busy-waiting hasbeen implemented.In order to simulate the SB-PRAM sequentially, the proessors are simulated round-robin, one instrution at a time. This guarantees the synhronous semantis but does notdiretly lead to a parallel simulation.

Note that there is also an asynhronous mode within Fork entered by the farm-statement.In this mode, all proessors exeute statements independently, i.e. they may beome asyn-hronous. The user is responsible for taking appropriate ation for oordination and avoid-ing rae onditions, as is the ase with other shared memory environments suh as POSIXthreads. Therefore, simulation on a multiore an be done by distributing the PRAM pro-essors onto the ores and simulating larger bloks of instrutions for eah PRAM proessorbefore swithing to the next. As the asynhronous mode does not provide major hallenges,we onentrate on the simulation of the synhronous mode.In a previous attempt to parallelize the simulation for the synhronous mode [7℄, we havesurveyed a number of possible approahes and �nally implemented the time-warp optimistisimulation tehnique to perform a parallel simulation of all proessors, taking aess toshared memory as the events to be ordered by the time-warp simulation. However, thegranularity of the available parallelism was so �ne that only a moderate speedup ould beahieved with a ombination of tehniques to oarsen that granularity, and on quite arti�ialbenhmarks.Therefore, we try a di�erent approah here: The proessors of eah leaf node group aresimulated sequentially as in the sequential simulator. The di�erent leaf node groups an besimulated in parallel without overhead on di�erent ores of our multiore platform as theyare asynhronous. The PRAM shared memory is realized by alloation on the heap of theshared memory in the multiore platform. Aess by PRAM proessors of eah group isserialized and hene the PRAM semantis is maintained. Aess by di�erent groups is notoordinated. The reasons are explained below. When a group is split into subgroups, thegroup tree representation in the simulator is extended, and the proessors of the group aresplit onto the subgroups. As long as there are more threads than ative leaf node groups,eah group is assigned to a thread of its own. If there are more groups than threads, we use arunqueue of ative groups served by the threads. When a group is joining again with anothergroup, it is taken out of the runqueue until the other group has arrived as well. Thus, thebusy waiting overhead is avoided. The threads are not terminated when groups join, butare re-used as we use a form of thread pooling. Also, there is no involuntary migration ofgroups between threads. One simulator thread exeutes a proessor group until it eithermerges with its siblings or it splits itself into subgroups. Therefore the thread overhead isrestrited to the split and merge of groups.Unfortunately, the overhead for maintaining the group tree inside the simulator is notnegligible in all ases. For example, if there are many leaf node groups that regularly mergeagain, then the threads regularly aess the runqueue so that its lok has ontention. Yet,in typial ode with some struture the overhead is small as the results in Set. 3 indiate.In order to perform the operations above, the simulator must know when groups splitand unite again. To ahieve this, we enhaned the Fork ompiler to instrument the generatedode to provide this information to the simulator. The instrumentation omes in the form ofadditional instrutions inserted by the ompiler. We assigned a new instrution opode toreate the instrumentation instrution, beause no existing instrution should be overloaded.This approah has the advantage that only the ompiler bakend had to be modi�ed. Theparallel simulator will not exeute these instrutions but at as desribed above.The PRAM instrution set omprises read-modify-write instrutions whih are used assynhronization primitives between proessor groups. These instrutions were simulated withnon-atomi instrutions in the sequential simulator. In the multi-threaded simulator theseinstrutions are implemented with atomi instrutions provided by the host arhiteture.Using atomi memory aess is not always required by the simulated ode, but there isurrently no information available whether the a�eted memory loation will be aessedby multiple groups or not. This an lead to performane regressions in the simulator.

While two subgroups are asynhronous, they still both may aess the same sharedvariable, suh as in the following example ode.sh int a;if (...private ondition...) { // subgroup 1a = ...;... = ... a ...;} else { // subgroup 2... = ... a ...;} Here subgroup 1 �rst writes into shared variable a, then a is read and the new valueis used in the seond assignment. Subgroup 2 reads a and uses it in the assignment. AsFork makes no assumption about the subgroups' progress relatively to eah other, two asesan our: either all proessors in subgroup 2 read the old value of a, or all proessorsin subgroup 2 read the new value of a. Typially, we assume that an algorithm does notdepend on whih ase atually ours; we all suh algorithms robust. Algorithms that arenot robust may lead to rae onditions depending on the simulation, so we do not onsiderthem further.Textbooks on PRAM algorithms suh as [8,9,10,11℄ do not enounter this problem, asthey do not treat hierarhial partitioning of proessors in detail and onsider all proessorsas one group exeuting one ode synhronously, even when if statements with privateonditions appear. Still, the algorithms presented there normally are robust.3 Experimental ResultsWe use a syntheti benhmark to explore the bene�ts of our implementation. Although theode is rather simple, it overs a wide range of PRAM algorithms. The pseudo-ode looksas follows:times (4) {fork (#subgroups) {do_work(load +/- groupdev);}do_work(load * loadratio);} First, the p PRAM proessors are split into an adjustable number of subgroups whihall have the same size (assuming that #subgroups divides p.) Eah subgroup then exe-utes routine do_work with an adjustable load modi�ed by variation groupdev. Then thesubgroups synhronize and the root group (onsisting of all p proessors) exeutes routinedo_work with the load saled by parameter loadratio. The whole benhmark is repeatedfour times to even out runtime e�ets from other proesses.The parameter load serves to model the amount of useful work in ontrast to the over-head of group splitting and joining. The parameter groupdev serves to model the runtimedi�erenes of di�erent subgroups. The parameter loadratio serves to model the fration ofthe simulation that is purely sequential beause all PRAM proessors form a single group.All experiments simulate p = 4096 PRAM proessors. We ompare the sequential sim-ulator with our approah using 1, 4 and 8 threads respetively, running on a quadoreproessor (AMD Phenom II X4 920 proessor, 4 × 2.8 GHz, 4 × 512 kB L2-ahe, 6MBshared L3-ahe.)

Fig. 1 depits a situation with a very low workload of 16, no load deviation, and astrong sequential part with a load ratio of 50%, i.e. a situation quite unomfortable for ourapproah. Still all versions ahieve a speedup of about 1.4 for up to 256 subgroups, althoughwe only see a small speedup of the multi-threaded versions over the single-threaded versionfor 2 and 4 subgroups, whih however is a frequent ase resulting from an if-statement (or twonested if-statements) with private ondition. For large numbers of subgroups, the overhead ingroup tree administration strongly inreases without providing appropriate bene�t beausethe large number of subgroups leads to negative ahe e�ets. The 8-threaded version is onlyslightly faster than the 4-threaded version in some situations, whih indiates that alreadyone thread per ore is able to keep that ore busy.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

si
m

ul
at

io
n

tim
e

[s
ec

]

#subgroups [#]

p = 4096, load = 16, loadratio = 50%, groupdev = 0%

strict sequential
group sequential
group 4 threads
group 8 threads

Fig. 1. Runtimes with low even workload and strong sequential part.In Fig. 2 the load inreases to 256. The situation is not really di�erent from the previousone, whih indiates that the group tree administration is not a bottlenek. In Fig. 3 wederease the load ratio to 1% and see a sharp inrease to a speedup of 2 over the sequentialsimulator, and a notable inrease in the speedup of the multi-threaded versions over thesingle-threaded version for 2, 4 and 8 subgroups. In Fig. 4 we let the load deviate by up to25%. We immediately notie that the runtime of the sequential simulator is inreasing withthe number of subgroups, beause the load is not balaned anymore, and groups waitingfor synhronization do a busy-wait. The speedup over the sequential version is larger thanin any previous �gure, beause the groups waiting for a join with other groups are simplytaken out of the run-queue until all groups partiipating in the join have arrived there.The speedup of the multi-threaded versions over the single threaded version for 2, 4 and 8subgroups is still small but visible.4 ConlusionsWe have presented a new approah to aelerating the exeution of Fork programs on mul-tiore proessors by exploiting the proessor group struture in Fork. Our experimental

 40

 45

 50

 55

 60

 65

 70

 75

 80

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

si
m

ul
at

io
n

tim
e

[s
ec

]

#subgroups [#]

p = 4096, load = 256, loadratio = 50%, groupdev = 0%

strict sequential
group sequential
group 4 threads
group 8 threads

Fig. 2. Runtimes with workload inreased ompared to Fig. 1.

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

si
m

ul
at

io
n

tim
e

[s
ec

]

#subgroups [#]

p = 4096, load = 256, loadratio = 1%, groupdev = 0%

strict sequential
group sequential
group 4 threads
group 8 threads

Fig. 3. Runtimes with sequential part dereased ompared to Fig. 2.

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

si
m

ul
at

io
n

tim
e

[s
ec

]

#subgroups [#]

p = 4096, load = 256, loadratio = 1%, groupdev = 25%

strict sequential
group sequential
group 4 threads
group 8 threads

Fig. 4. Runtimes with load deviation inreased ompared to Fig. 3.results indiate that already a single-threaded version shortens simulation time by a fatorof 1.5 to 2. The multi-threaded versions ahieve a small but notieable speedup over thesingle-threaded version for the important ase of a small number of subgroups.For future work, another aeleration ould be ahieved by having the instrution streamfor all proessors of one group only deoded one and only exeute the same instrution ondi�erent proessors with di�erent register ontents as in a SIMD style.It would also be nie to have a foreast on the simulation speedup to be expeted whenompiling the program. While this is possible in simple ases where the group tree strutureis quite regular and not depending on input data, the general ase would involve more orless a omplete runtime analysis of the parallel program and thus seems out of reah.Referenes1. Keller, J., Keÿler, C.W., Trä�, J.L.: Pratial PRAM Programming. Wiley & Sons (2001)2. Kessler, C.W.: A pratial aess to the theory of parallel algorithms. In: Pro. of ACM SIGCSE'04 Symposiumon Computer Siene Eduation. (2004)3. León, C., Sande, F., Rodríguez, C., Garía, F.: A PRAM oriented language. In: Pro. EUROMICRO PDP'95Workshop on Parallel and Distributed Proessing. (1995) 182�1914. Forsell, M.: e�a language for thread-level parallel programming on synhronous shared memory NOCs. WSEASTransations on Computers 3(3) (2004) 807�8125. Wen, X., Vishkin, U.: FPGA-based prototype of a PRAM-on-hip proessor. In: CF '08: Proeedings of the 5thonferene on Computing frontiers. (2008) 55�666. Fujimoto, R.M.: Parallel disrete event simulation. Communiations of the ACM 33(10) (1990) 30�537. Wesarg, B., Blaar, H., Keller, J., Kessler, C.: Emulating a PRAM on a parallel omputer. In: Pro. 21stWorkshop on Parallel Algorithms and Arhitetures (PARS 2007). (2007)8. Akl, S.G.: The Design and Analysis of Parallel Algorithms. Prentie Hall, Englewood Cli�s, NJ (1989)9. Gibbons, A., Rytter, W.: E�ient Parallel Algorithms. Cambridge University Press (1988)10. JáJá, J.: An Introdution to Parallel Algorithms. Addison-Wesley, Reading, MA (1992)11. Karp, R.M., Ramahandran, V.L.: A survey of parallel algorithms for shared�memory mahines. In van Leeuwen,J., ed.: Handbook of Theoretial Computer Siene, Vol. A. Elsevier (1990) 869�941

