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Lecture 5

Distributed shared memory [Culler et al.’98], [PPP 4.7]

Overview, terminology

Cache coherence and memory consistency

Cache coherence protocols

False Sharing

Shared memory consistency models [Gharachorloo/Adve’96]

Software DSM
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DSM Overview
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Caches in CC-NUMA architectures

Cache = small, fast memory (SRAM) between processor and main memory

contains copies of main memory words

cache hit = accessed word already in cache, get it fast.

cache miss = not in cache, load from main memory (slower)

Cache line size: from 16 bytes (Dash) ...

Memory page size: ... up to 8 KB (Mermaid)

Cache-based systems profit from

+ spatial access locality (access also other data in same cache line)

+ temporal access locality (access same location multiple times)

+ dynamic adaptivity of cache contents! suitable for applications with high (also dynamic) data locality
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Cache issues (1)

Mapping memory blocks! cache lines / page frames:

direct mapped: 8 j 9!i : B j 7!Ci, namely where i� j mod m.

fully-associative: any memory block may be placed in any cache line

set-associative

Replacement strategies (for fully- and set-associative caches)

LRU least-recently used

LFU least-frequently used

...
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Cache issues (2): Memory update strategies

Write-through

+ consistency

– slow, write stall (! write buffer)

Write-back

+ update only cache entry

+ write back to memory only when replacing cache line

+ write only if modified, marked by “dirty” bit for each Ci

– not consistent,

DMA access (I/O, other procs) may access stale values! must be protected by OS, write back on request
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Cache coherence and Memory consistency

Caching of (shared) variables leads to consistency problems.

A cache management system is called coherent

if a read access to a (shared) memory location x reproduces always

the value corresponding to the most recent write access to x.! no access to stale values

A memory system is consistent (at a certain time)

if all copies of shared variables in the main memory and in the caches

are identical.

Permanent cache-consistency implies cache-coherence.
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Cache coherence – formal definition

what does “most recent write access” to x mean?

Formally, 3 conditions must be fulfilled for coherence:

(a) Each processor sees its own writes and reads in program order.

P1 writes v to x at time t1, reads from x at t2 > t1,

no other processor writes to x between t1 and t2! read yields v

(b) The written value is eventually visible to all processors.

P1 writes to l at t1, P2 reads from l at t2 > t1,

no other processor writes to l between t1 and t2,

and t2� t1 sufficiently large, then P2 reads x.

(c) All processors see one total order of all write accesses.

(total store ordering)
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Cache coherence protocols

Inconsistencies occur when modifying only the copy of a shared variable in
a cache, not in the main memory and all other caches where it is held.

Write-update protocol

At a write access, all other copies in the system must be updated as well.

Updating must be finished before the next access.

Write-invalidate protocol

Before modifying a copy in a cache,

all other copies in the system must be declared as “invalid”.

Most cache-based SMPs use a write-invalidate protocol.

Updating / invalidating straightforward in bus-based systems (bus-snooping)

otherwise, a directory mechanism is necessary
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Bus-Snooping

For bus-based SMP with caches and write-through strategy.

All relevant memory accesses go via the central bus.

Cache 1

P1

M

...

Cache p

Pp

Cache-controller of each processor listens to addresses on the bus:

write access to main memory is recognized

and committed to the own cache.

– bus is performance bottleneck! poor scalability ! Exercise
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Write-back invalidation protocol (MSI protocol)

A block held in cache has one of 3 states:

M (modified)

only this cache entry is valid, all other copies + MM location are not.

S (shared)

cached on one or more processors, all copies are valid.

I (invalid)

this cache entry contains invalid values.
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MSI-protocol: State transitions

State transitions:

triggered by bus operations and local processor reads/writes

Bus read (BusRd)
read access caused a cache miss

Bus read exclusive (BusRdX)
write attempt to non-modifiable copy! must invalidate other copies

Write back (BusWr), due to replacement

Processor reads (PrRd)

Processor writes (PrWr)

M

I

S

PrRd/-

PrWr/-

PrRd/-
BusRd/-

PrWr/BusRdX

PrRd/BusRd

PrWr/BusRdX

Processor operation / Cache controller operation

Observed operation / Cache controller operation

BusRdX/-

BusRdX/Flush

BusRd/Flush

Flush = desired value put on the bus

Missing edges - no change of state

P

CacheCtrl

BusRd
BusRdX
BusWr

PrWr
PrRd
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MESI-protocol

MSI protocol:

2 bus operations (BusRd, BusRdX) required

if a processor first reads (! S), then writes (!M) a memory location,

even if no other processor works on this program.! generalization to MESI-protocol with new state

E (exclusive)

no other cache has a copy of this block,

and this copy is not modified.

Modifications in MSI-protocol:

+ PrRd to a non-cached address (BusRd):! E (not S)

+ PrWr to E-address: local change to M, write (no bus operation)

+ read access from another processor to E-address (BusRd/Flush):! S

MESI supported by Intel Pentium, MIPS R4400, IBM PowerPC, ...
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Directory-protocols for non-bus-based systems

No central medium:

(a)! no cache coherence (e.g. Cray T3E)

(b)! directory lookup

Directory keeps the copy set for each memory block

e.g. stored as bitvectors

1 presence bit per processor

status bits

e.g. dirty-bit for the status of the main memory copy

See [Culler’98, Ch. 8]
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DSM problem: False sharing

False sharing in cache-/page-based DSM systems

i

jP

x
y

x
y

P jP

... = x
*x = ...
... ...

*y = ...
...

Pi Pi  invalidates copy of Pj

Pj cannot write y
Pj requests page

Pi  sends page

Pj  receives page
Pj  invalidates copy of Pi

Pi  wants to read x:
Pi  requests page

Pj  sends page

Pi  receives page
Pi  reads x

(idle)

(idle)

Pi  writes x

Pj  writes yACK

ACK

Cache lines / pages treated as units ! sequentialization, thrashing
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DSM problem: False sharing (cont.)

How to avoid false sharing?

Smaller cache lines / pages! false sharing less probable, but! more administrative effort

Programmer or compiler gives hints for data placement! more complicated

Time slices for exclusive use:

each page stays for � d time units at one processor Mirage How to partly

avoid the performance penalty of false sharing?

Use a weaker memory consistency model
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Memory consistency models

Strict consistency

Sequential consistency

Causal consistency

Superstep consistency

“PRAM” consistency

Weak consistency

Release consistency / Barrier consistency

Lazy Release consistency

Entry consistency

Others (processor consistency, total/partial store ordering etc.)

[Culler et al.’98, Ch. 9.1], [Gharachorloo/Adve’96]
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Consistency models: Strict consistency

Strict consistency:

Read(x) returns the value that was most recently (! global time)

written to x.

realized in classical uniprocessors and SB-PRAM

in DSM physically impossible without additional synchronization

P1  � 3m distance �! P2

t1 : *x = ...

... t1+1ns: ... = x

Transport of x from P1 to P2 with speed 10c ???
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Consistency models: Sequential consistency

Sequential consistency [Lamport’79]

+ all memory accesses are ordered in some sequential order

+ all read and write accesses of a processor appear in program order

+ otherwise, arbitrary delays possible

M

P P P P P P

Not deterministic:

global timeP1

P2

W(x)=1

R(x)=1 R(x)=1

P1

P2

W(x)=1

R(x)=0 R(x)=1
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Sequential consistency (cont.)

Implementation in DSM:

Either,

+ No write operation starts before all previous writes are finished.

+ Broadcast updates.

or,

+ keep data on one “data server” processor only,

+ send all access requests to that server.

! not very efficient,

but “natural” from programmer’s perspective
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Consistency models: Causal consistency

Causal consistency [Hutto/Ahamad’90]

All processors must see write accesses

that causally depend on each other

in the same order.

Requires data dependency graph of the program.
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Consistency models: Superstep consistency

BSP Superstep consistency [K’00], [PPP 6.3]

+ BSP model:

Program execution is structured into barrier-separated supersteps.

+ Strict consistency for all shared variables immediately after barrier.

+ No writes are propagated during a superstep! deterministic
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Consistency models: “PRAM” consistency (a.k.a. FIFO-consistency)

“PRAM” (Pipelined RAM) consistency [Lipton/Sandberg’88]

+ Write accesses by a processor Pi

are seen by all others in issued order.

+ Write accesses by different Pi, Pj

may be seen by others in different order.

Weaker than causal consistency; writes by Pi can be pipelined

(causality of write accesses by different processors is ignored)

P1

P2

P3

P4

W(x)=1

W(x)=2R(x)=1

R(x)=2

R(x)=2R(x)=1

R(x)=1

FDA125 APP Topic VI: Distributed Shared Memory. 23 C. Kessler, IDA, Linköpings Universitet, 2007.

Consistency models: Weak consistency

Weak consistency [Dubois/Scheurich/Briggs’86], see also [PPP 6.3.2.3]

+ Classification of shared variables (and their accesses):

synchronization variables (locks, semaphores)! always consistent, atomic access

other shared variables! kept consistent by the user, using synchronizations

+ Accesses to synchronization variables are sequentially consistent

+ All pending writes committed before accessing a synchr. variable

+ Synchronization before a read access to obtain most recent value

P1

P2

W(x)=1

P3

S

S

SW(x)=2

R(x)=1

R(x)=1 R(x)=2

R(x)=2

W(x)=1P1

P2

P3

W(x)=2 S

S R(x)=1

Not weakly consistent
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Consistency models: Weak consistency in OpenMP

OpenMP implements weak consistency. Inconsistencies may occur due to

+ register allocation

+ compiler optimizations

+ caches with write buffers

time

data = ...

flag = 1;
do

... = data;
flag
new

new
data

Producer thread Consumer thread

while (flag==0)

Need explicit “memory fence” to control consistency: flush directive� write back register contents to memory� forbid code moving compiler optimizations� flush cache write buffers to memory� re-read flushed values from memory
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Consistency models: Weak consistency in OpenMP

!$omp flush ( shvarlist )

creates for the executing processor a consistent memory view

for the shared variables in shvarlist.

If no parameter: create consistency of all accessible shared variables.

time

data = ...

flag = 1;
omp flush(data)

omp flush(flag)

while (flag==0)

omp flush(data)

new
data

flag
new

do

Producer thread Consumer thread

... = data;

omp flush(flag)

A flush is implicitly done

at barrier, critical, end critical, end parallel,

and at end do, end section, end single

if no nowait parameter is given
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Consistency models: Release consistency

Release consistency [Gharachorloo et al.’90], Munin

+ Encapsulate critical section S by

Acquire(S) – acquiring access to synchronization variable

Release(S) – releasing access to synchronization variable

+ All pending Acquires of a processor Pi

must be finished before accessing a shared variable.

+ All accesses to shared variables must be finished before a Release.

+ Acquire and Release must be “PRAM”-consistent.

P1

P2

P3

W(x)=2W(x)=1 Rel(S)

Acq(S) R(x)=2 Rel(S)

R(x)=1

Acq(S)

.........
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Consistency models: Lazy Release consistency

Lazy Release consistency [Keleher, Cox, Zwaenepoel’92]

Release(S) does not commit writes to all copies in the system immediate-
ly.

Instead, possibly subsequent Acquire(S) by other processor

must check (and if necessary, fetch and update) its copy

before reading.

+ Saves network traffic:

copies not used in the future are not updated.
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Consistency models: Barrier consistency

Barrier-consistency

a special case of Release-consistency: Barrier = Acquire + Release

P1

P2

P3

Barrier

R(x)=2Barrier

Barrier R(x)=2

R(x)=2

R(x)=1

W(x)=2W(x)=1

synchronizednot yet synchronized



FDA125 APP Topic VI: Distributed Shared Memory. 29 C. Kessler, IDA, Linköpings Universitet, 2007.

Consistency models: Entry consistency

Entry consistency [Bershad/Zekauskas/Sawdon’93]

+ Associate shared data (regions/objects) with synchronization variables

(this binding may be changed during program execution)

+ Data is only consistent on an acquiring synchronization,

+ and only the data known to be guarded by the acquired object

is guaranteed to be consistent.
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Software DSM

Page-based DSM

emulate (coherent) caches of a CC-NUMA using MMU, OS, runtime system

single linear address space partitioned into pages of fixed size

pages may migrate dynamically over the network on demand.

Shared variable based DSM

manages individual variables! flexible; more overhead than direct page access

eliminates false sharing, no data layout problem

Examples: Munin [Bennett/Carter/Zwaenepoel’90], NestStep [K.’99]

Object-based DSM

manages individual shared objects ! more modular; encapsulation

access only via remote method invocation ! synchr. integrated

no linear address space

Example: Orca [Bal et al.’90], distributed Linda [Carriero/Gelernter’89]
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Software DSM Management

Central Server – non-replicated, non-migrating

central server may become performance bottleneck! distribute shared data (by hashing addresses) over multiple servers

Migration – non-replicated, migrating

susceptible to thrashing

Read-replication – replicated, non-migrating.

preferably for read-only data

Full replication – replicated, migrating

sequencer (! fair lock) used to establish global write FIFO order
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Write-Invalidate Protocol

Implementation: multiple-reader-single-writer sharing

At any time, a data item may either be:

accessed in read-only mode by one or more processors

read and written (exclusive mode) by a single processor

Items in read-only mode can be copied indefinitely to other processes.

Write attempt to read-only data x:

broadcast invalidation message to all other copies of x

await acknowledgements before the write can take place

Any processor attempting to access x are blocked if a writer exists.

Eventually, control is transferred from the writer

and other accesses may take place once the update has been sent.! all accesses to x processed on first-come-first-served basis.

Achieves sequential consistency.
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Write-invalidate protocol (cont.)

+ parallelism (multiple readers)

+ updates propagated only when data are read

+ several updates can take place before communication is necessary

– Cost of invalidating read-only copies before a write can occur

+ ok if read/write ratio is sufficiently high

+ for small read/write ratio: single-reader-single-writer scheme

(at most one process gets read-only access at a time)
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Write-update protocol

Write x:

done locally + broadcast new value to all who have a copy of x

these update their copies immediately.

Read x:

read local copy of x, no need for communication.! multiple readers! several processes may write the same data item at the same time

(multiple-reader-multiple-writer sharing)

Sequential consistency if broadcasts are totally ordered and blocking! all processors agree on the order of updates.! the reads between writes are well defined

+ Reads are cheap

– totally ordered broadcast protocols quite expensive to implement
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Finding the owner of a page / object

broadcast (ask all)

request may contain access mode, need for a copy

owner replies and potentially transfers ownership

– every processor must read the request (interrupt)

– high bandwidth consumption

page manager keeps track of who owns each page

send request to page manager,

page manager sends owner information back

– heavy load on page manager ! use multiple page managers

keep track of probable owner of each valid page [Li/Hudak’89]

send request to probable owner,

probable owner forwards if ownership has changed.

Periodically broadcast ownership info (after multiple ownership changes)
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Finding all copies

All copies must be invalidated if a page is written.

broadcast page number to all

every processor holding a copy invalidates it

requires reliable broadcast

copy set

owner or page manager keep for each page a set of copy holders

invalidaton request sent to all in the copy set
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Page / Cache line replacement

Replacement necessary if no free page frame available

LRU etc. not generally applicable with migration/replication

For replacement, prefer

0. invalid pages

1. private (non-shared) pages

save to local main memory/disk, no need for communication

2. replicated pages owned by others (! read-only)

no need for saving, another copy exists

inform the owner / page manager

3. replicated page owned by myself (abandon ownership)

inform new owner / page manager

4. non-replicated page: swap out to local disk as usual,

or to remote disk (maybe assisted by a free page frame manager)

FDA125 APP Topic VI: Distributed Shared Memory. 38 C. Kessler, IDA, Linköpings Universitet, 2007.

Writable copies

Multiple writers, multiple readers e.g. Munin

Programmer explicitly allows concurrent writing for some shared variables

and is responsible for their correct use

P1

P2

a[0]=

a[1]=

a[2]=

a[3]= a[n]=

a[n-1]=

...

...

P2P1

with sequential consistency:

with release consistency:

for (i=1; i<=n; i+=2)
   a[i] = a[i] + f[i];

for (i=0; i<n; i+=2)
   a[i] = a[i] + f[i];

barrier(b);

barrier(b+1);

barrier(b);

barrier(b+1);

a : [write-shared] array; a : [write-shared] array;

P1

P2 a[1]= a[3]=

...a[2]= a[n-1]=

... a[n]=

a[0]=

update
differences

barrier barrier


