PRAM model

Time, work, cost
Self-simulation and Brent's Theorem
Speedup and Amdahl's Law
NC
Scalability and Gustafssons Law
Fundamental PRAM algorithms
reduction
parallel prefix
list ranking
PRAM variants, simulation results and separation theorems.
Survey of other models of parallel computation
Asynchronous PRAM, Delay model, BSP, LogP, LogGP
FDA125 APP Lecture 2: Foundations of parallel algorithms. 3 C. Kessler, IDA, Linköpings Universitet, 2003,

Parallel computation models (1)

+ abstract from hardware and technology
+ specify basic operations, when applicable
+ specify how data can be stored
\rightarrow analyze algorithms before implementation independent of a particular parallel computer
\rightarrow focus on most characteristic (w.r.t. influence on time/space complexity) features of a broader class of parallel machines

Programming model
shared memory vs. message passing
degree of synchronous execution

Cost model
key parameters
cost functions for basic operations constraints

Literature

[PPP] Keller, Kessler, Träff: Practical PRAM Programming. Wiley Interscience, New York, 2000. Chapter 2.
[JaJa] JaJa: An introduction to parallel algorithms. Addison-Wesley, 1992.
[CLR] Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 30. MIT press, 1989.
[JA] Jordan, Alaghband: Fundamentals of Parallel Processing. Prentice Hall, 2003.

FDA125 APP Lecture 2: Foundations of paralle algorithms. 4
Parallel computation models (2)

Cost model: should

+ explain available observations
+ predict future behaviour
+ abstract from unimportant details \rightarrow generalization

Simplifications to reduce model complexity:
use idealized machine model
ignore hardware details: memory hierarchies, network topology, ...
use asymptotic analysis
drop insignificant effects
use empirical studies
calibrate parameters, evaluate model

RAM (Random Access Machine)
programming and cost model for the analysis of sequential algorithms

FDA125 APP Lecture 2: Foundations of paralle algoorithms. 7
C. Kessier, IDA, Linkopings Universitet, 2003

PRAM model

[PPP 2.2]

Parallel Random Access Machine
[Fortune/Wyllie'78] p processors

MIMD

common clock signal
arithm./jump: 1 clock cycle
shared memory
uniform memory access time latency: 1 clock cycle (!)
concurrent memory accesses sequential consistency
private memory (optional)
processor-local access only

The RAM model (2)

Algorithm analysis: Counting instructions
Example: Computing the global sum of N elements
$s=d(0)$
do $i=1, N-1$ $s=s+d(i)$ end do

$$
t=t_{\text {load }}+t_{\text {store }}+\sum_{i=2}^{N}\left(2 t_{\text {load }}+t_{\text {add }}+t_{\text {store }}+t_{\text {branch }}\right)=5 N-3 \in \Theta(N)
$$

\rightarrow arithmetic circuit model, directed acyclic graph (DAG) model
FDA125 APP Lecture 2: Foundations of paralle algorithms. 8
PRAM model: Variants for memory access conflict resolution

Exclusive Read, Exclusive Write (EREW) PRAM concurrent access only to different locations in the same cycle

Concurrent Read, Exclusive Write (CREW) PRAM
simultaneous reading from or single writing to same location is possible
Concurrent Read, Concurrent Write (CRCW) PRAM
simultaneous reading from or writing to same location is possible:
Weak CRCW
Common CRCW
Arbitrary CRCW
Priority CRCW
Combining CRCW
(global sum, max, etc.)

No need for ERCW ...

Given n numbers $x_{0}, x_{1}, \ldots, x_{n-1}$ stored in an array.
The global sum $\sum_{i=0}^{n-1} x_{i}$ can be computed in $\left\lceil\log _{2} n\right\rceil$ time steps on an EREW PRAM with n processors.

Parallel algorithmic paradigm used: Parallel Divide-and-Conquer

$\operatorname{ParSum}(n):$| | |
| :--- | :--- |
| ParSum(n/2) | |
| | |

$\stackrel{+}{+}$

Divide phase: trivial, time $O(1)$
Recursive calls: parallel time $T(n / 2)$
with base case: load operation, time $O(1) \quad \rightarrow \quad T(n)=T(n / 2)+O(1)$
Combine phase: addition, time $O(1)$
Use induction or the master theorem [CLR 4] $\rightarrow T(n) \in O(\log n)$

FDA125 APP Lecture 2: Foundations of parallel algorithms.
${ }^{11}$
C. Kessler, IDA, Linköpings Universitet, 2003

Global sum computation on EREW and Combining-CRCW PRAM (3)

Iterative parallel sum program in Fork

```
int sum(sh int a[], sh int n)
{
    int d, dd;
    int ID = rerank();
    d = 1;
    while (d<n) {
        dd = d; d= d*2; a(1)a(2)a(3)a(4)a(5)a(6) a(7) a(8)
        if (ID%d==0) a[ID] = a[ID] + a[ID+dd];
    }
}
```

On a Combining CRCW PRAM with addition as the combining operation, the global sum problem can be solved in a constant number of time steps using n processors.

[^0]Recursive parallel sum program in the PRAM progr. language Fork [PPP]

```
sync int parsum( sh int *d, sh int n)
{
    sh int s1, s2;
    sh int nd2 = n / 2;
    if (n==1) return d[0]; // base case
    $=rerank(); // re-rank processors within group
    if ($<nd2) // split processor group:
        s1 = parsum( d, nd2 );
    else s2 = parsum( &(d[nd2]), n-nd2 );
    return s1 + s2;
}
```


PRAM model: CRCW is stronger than CREW

Example:
Computing the logical OR of p bits


```
CRCW: time O(1)
    sh int a = 0;
    if (mybit == 1) a = 1; (else do nothing)
```

e.g. for termination detection
parallel work $w_{A}(n)$ of algorithm A on an input of size n
$=$ max. number of instructions performed by all procs during execution of A, where in each (parallel) time step as many processors are available as needed to execute the step in constant time.
parallel time $t_{A}(n)$ of algorithm A on input of size n
= maximum number of parallel time steps required under the same circumstances.

Work and time are thus worst-case measures.
$t_{A}(n)$ is sometimes called the depth of A
(cf. circuit model, DAG model of (parallel) computation)
$p_{i}(n)=$ number of processors needed in time step $i, 0 \leq i<t_{A}(n)$,
to execute the step in constant time. Then, $w_{A}(n)=\sum_{i=0}^{t_{A}(n)} p_{i}(n)$

DA125 APP Lecture 2: Foundations of parallea lgorithms. 16
c. Kessler, IDA, Linköpings Universitet, 200

Asymptotic analysis: Cost, cost optimality

Algorithm A needs $p_{A}(n)=\max _{1 \leq i \leq t_{A}(n)} p_{i}(n)$ processors.
Cost $c_{A}(n)$ of A on an input of size n
$=$ processor-time product: $\quad c_{A}(n)=p_{A}(n) \cdot t_{A}(n)$
A is cost-optimal if $c_{A}(n)=O\left(t_{S}(n)\right)$
with $S=$ optimal or currently best known sequential algorithm for the same problem

Work \leq Cost: $\quad w_{A}(n)=O\left(c_{A}(n)\right)$
A is cost-effective if $w_{A}(n)=\Theta\left(c_{A}(n)\right)$.

problem size n		${ }_{4}^{\text {time }}$ t parallel sum algorithm
\# processors p	${\underset{a}{(7)}}_{+}^{(}$	
time $t(p, n)$	${ }_{a(6)}^{+}$	
work $w(p, n)$	$+$	
$\operatorname{cost} c(p, n)=t \cdot p$		
Example:		+ idle idle idle + idle idle idle
seq. sum algorithm $s=a(1)$	$+\begin{aligned} & a^{(3)} \\ & +a^{(2)} \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { do } i=2, n \\ & s=s+a(i) \end{aligned}$	${ }_{p=1}^{a(1)}$	$\xrightarrow{a(1) a(2) a(3) a(4) a(5) a(6) a(7) a(8)} p p=n$
end do	$t(1, n)=t_{\text {seq }}(n)=O(n)$	$t(n, n)=O(\log n)$
$n-1$ additions	$w(1, n)=O(n)$	$w(n, n)=O(n)$
n loads	$c(1, n)=t(1, n) \cdot 1$	$c(n, n)=O(n \log n)$
	$=O(n)$	par. sum alg. not cost-effective!

DDA125 APP Lecture 2: Founcations of paraliel algorithms.
19
C. Kessler, IDA, Linkō̈pings Universitet, 2003.

Self-simulation and Brent's Theorem

Self-simulation (aka work-time scheduling in [JaJa'92])
A model of parallel computation is self-simulating
if a p-processor machine can simulate
one time step of a q-processor machine in $O(\lceil q / p\rceil)$ time steps.

All PRAM variants are self-simulating.

Proof idea for (EREW) PRAM with $p \leq q$ simulating processors:
Divide the q simulated processors in p chunks of size $\leq\lceil q / p\rceil$ assign a chunk to each of the p simulating processors map memory of simulated PRAM to memory of simulating PRAM step-by-step simulation, with $O(q / p)$ steps per simulated step take care of pending memory accesses in current simulated step extra space $O(q / p)$ for registers and status of the simulated machine

Making the parallel sum algorithm cost-optimal:
Instead of n processors, use only $n / \log _{2} n$ processors.
First, each processor computes sequentially the global sum of "its" $\log n$ local elements. This takes time $O(\log n)$.

Then, they compute the global sum of $n / \log n$ partial sums using the previous parallel sum algorithm.

Time: $O(\log n)$ for local summation, $O(\log n)$ for global summation Cost: $n / \log n \cdot O(\log n)=O(n)$ linear!

This is an example of a more general technique based on Brent's theorem.

DA125 APP Lecture 2: Foundations of parallel algorithms. 20
Kessler, IDA, Linköpings Universitet, 2003
Consequences of self-simulation

RAM = 1-processor PRAM simulates p-processor PRAM in $O(p)$ time steps.
\rightarrow RAM simulates A with cost $c_{A}(n)=p_{A}(n) t_{A}(n)$ in $O\left(c_{A}(n)\right)$ time. (Actually possible in $O\left(w_{A}(n)\right)$ time.)

Even with arb. many processors A cannot be simulated any faster than $t_{A}(n)$.
For cost-optimal $A, c_{A}(n)=\Theta\left(t_{S}(n)\right) \quad \rightarrow$ Exercise
p-processor PRAM can simulate one step of A requiring $p_{A}(n)$ processors in $O\left(p_{A}(n) / p\right)$ time steps

Self-simulation emulates virtual processors with significant overhead.
In practice, other mechanisms for adapting the granularity are more suitable.

How to avoid simulation of inactive processors where $c_{A}(n)=\omega\left(w_{A}(n)\right) ?$

Brent's theorem:

Any PRAM algorithm A

which runs in $t_{A}(n)$ time steps and performs $w_{A}(n)$ work can be implemented to run on a p-processor PRAM in

$$
O\left(t_{A}(n)+\frac{w_{A}(n)}{p}\right)
$$

time steps.

Proof: see [PPP p.41]

Algorithm design issue: Balance the terms for cost-effectiveness:
\rightarrow design A with $p_{A}(n)$ processors such that $w_{A}(n) / p_{A}(n)=O\left(t_{A}(n)\right)$

Note: Proof is non-constructive!
\rightarrow How to determine the active processors for each time step?
\rightarrow language constructs, dependence analysis, static/dynamic scheduling, ...

DDA125 APP Lecture 2: Foundations of paralle algorithms. 23
C. Kessler, IDA, Linköpings Universitet, 2003

Relative Speedup and Efficiency

Compare A with p processors to itself running on 1 processor:
The asymptotic relative speedup of a parallel algorithm A is the ratio

$$
\mathrm{SU}_{\mathrm{rel}}(p, n)=\frac{t_{A}(1, n)}{t_{A}(p, n)}
$$

$t_{S}(n) \leq t_{A}(1, n) \rightarrow \operatorname{SU}_{\text {rel }}(p, n) \geq \operatorname{SU}_{\mathrm{abs}}(p, n)$.
[PPP p. 44 typo!]
Preferably used in papers on parallelization to "nice" performance results.

The relative efficiency of parallel algorithm A is the ratio

$$
\mathrm{EF}(p, n)=\frac{t_{A}(1, n)}{p \cdot t_{A}(p, n)}
$$

$\mathrm{EF}(p, n)=\mathrm{SU}_{\text {rel }}(p, n) / p \quad \in[0,1]$

Absolute Speedup

A parallel algorithm for problem P
S asymptotically optimal or best known sequential algorithm for P.
$t_{A}(p, n)$ worst-case execution time of A with $p \leq p_{A}(n)$ processors
$t_{S}(n)$ worst-case execution time of S
The absolute speedup of a parallel algorithm A is the ratio

$$
\mathrm{SU}_{\mathrm{abs}}(p, n)=\frac{t_{S}(n)}{t_{A}(p, n)}
$$

If S is an optimal algorithm for P, then $\mathrm{SU}_{\text {abs }}(p, n)=\frac{t_{S}(n)}{t_{A}(p, n)} \leq p \frac{t_{S}(n)}{c_{A}(n)} \leq p$ for any fixed input size n, since $t_{S}(n) \leq c_{A}(n)$.

A cost-optimal parallel algorithm A for a problem P has linear absolute speedup.
This holds for n sufficiently large.
"Superlinear" speedup $>p$ may exist only for small n.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 24
C. Kessler, IDA, Linköpings Universitet, 2003

Speedup curves

Speedup curves measure the utility of parallel computing, not speed.

Most papers on parallelization show only relative speedup
(as $S U_{a b s} \leq S U_{r e l}$, and best seq. algorithm needed for $S U_{a b s}$)

Speedup anomaly:
An implementation on p processors may execute faster than expected.
Superlinear speedup
speedup function that grows faster than linear, i.e., in $\omega(p)$
Possible causes:

- cache effects
- search anomalies

Real-world example: move scaffolding

Speedup anomalies may occur only for fixed (small) range of p.

Theorem:
There is no absolute superlinear speedup for arbitrarily large p.

Proof of Amdahl's Law

$$
S U_{r e l}=\frac{T(1)}{T(p)}=\frac{T(1)}{T_{A^{s}}+T_{A} p(p)}
$$

Assume perfect parallelizability of the parallel part A^{p},
that is, $T_{A} p(p)=(1-\beta) T(p)=(1-\beta) T(1) / p$:

$$
S U_{\text {rel }}=\frac{T(1)}{\beta T(1)+(1-\beta) T(1) / p)}=\frac{p}{\beta p+1-\beta} \leq 1 / \beta
$$

Remark:

For most parallel algorithms the sequential part is not a fixed fraction.

Amdahl's Law

Consider execution (trace) of parallel algorithm A:
sequential part A^{s} where only 1 processor is active parallel part A^{p} that can be sped up perfectly by p processors
\rightarrow total work $w_{A}(n)=w_{A^{s}}(n)+w_{A^{p}}(n)$

Amdahl's Law

If the sequential part of A is a fixed fraction of the total work irrespective of the problem size n, that is, if there is a constant β with

$$
\beta=\frac{w_{A^{s}}(n)}{w_{A}(n)} \leq 1
$$

the relative speedup of A with p processors is limited by

$$
\frac{p}{\beta p+(1-\beta)} \leq 1 / \beta
$$

FDA125 APP Lecture 2: Foundations of parallel algorithms. 28
NC

Recall complexity class P : P set of all problems solvable on a RAM in polynomial time

Can all problems in \mathcal{P} be solved fast on a PRAM?
"Nick's class" $\mathfrak{N c}$ C:
$\mathcal{N} \mathcal{C}=$ set of problems solvable on a PRAM in polylogarithmic time $O\left(\log ^{k} n\right)$ for some $k \geq 0$ using only $n^{O(1)}$ processors (i. e. a polynomial number) in the size n of the input instance.

By self-simulation: $\mathcal{N} \subset \subseteq P$.

Are the problems in \mathfrak{N} © just the well-parallelizable problems?
Counterexample: Searching for a given element in an ordered array sequentially solvable in logarithmic time (thus in $\mathcal{N C}$)
cannot be solved significantly faster in (EREW)-parallel [PPP 2.5.2]

Are \mathfrak{N}. -algorithms always a good choice?
Time $\log ^{3} n$ is faster than time $n^{1 / 4}$ only for ca. $n>10^{12}$.

Is $\mathcal{N} \subset C=P$?
For some problems in P no polylogarithmic PRAM algorithm is known
\rightarrow likely that $\mathcal{N}, C \neq P$
\rightarrow P-completeness [PPP p. 46]

FDA125 APP Lecture 2: Foundations of parallel algorithms.
31
C. Kessler, IDA, Linkopings Universitet, 2003

Example: Cost-optimal parallel sum algorithm on SB-PRAM

	$n=10,000$				
Processors	Clock cycles	Time	$\mathrm{SU}_{\text {rel }}$	$\mathrm{SU}_{\mathrm{abs}}$	EF
Sequential	460118	1.84			
1	1621738	6.49	1.00	0.28	1.00
4	408622	1.63	3.97	1.13	0.99
16	105682	0.42	15.35	4.35	0.96
64	29950	0.12	54.15	15.36	0.85
256	10996	0.04	147.48	41.84	0.58
1024	6460	0.03	251.04	71.23	0.25
$n=100,000$					
Processors	Clock cycles	Time	$\mathrm{SU}_{\text {rel }}$	$\mathrm{SU}_{\text {abs }}$	EF
Sequential	4600118	18.40			
1	16202152	64.81	1.00	0.28	1.00
4	4054528	16.22	4.00	1.13	1.00
16	1017844	4.07	15.92	4.52	0.99
64	258874	1.04	62.59	17.77	0.98
256	69172	0.28	234.23	66.50	0.91
1024	21868	0.09	740.91	210.36	0.72

Parallel algorithm A runs on a "real" parallel machine N with fixed size p.

Sequential algorithm S for same problem runs on sequential machine M
Measure execution times $T_{A}^{N}(p, n), T_{S}^{M}(n)$ in seconds
absolute, machine-uniform speedup of A :

$$
\mathrm{SU}_{\mathrm{abs}}(p, n)=\frac{T_{S}^{M}(n)}{T_{A}^{M}(p, n)}
$$

parallelization slowdown of $A: \quad \mathrm{SL}(n)=\frac{T_{A}^{M}(1, n)}{T_{S}^{M}(n)}$
Hence, $\operatorname{SU}_{\mathrm{abs}}(p, n)=\frac{\mathrm{SU}_{\mathrm{rel}}(p, n)}{\mathrm{SL}(n)}$
absolute, machine-nonuniform speedup $=\frac{T_{S}^{M}(n)}{T_{A}^{N}(n)}$
Used in the 1990's to disqualify parallel processing by comparing to newer superscalars

FDA125 APP Lecture 2: Foundations of paralle algorithms. 32
C. Kessler, IDA, Linkopings Universitet, 2003.

Scalability

For machine N with $p \leq p_{A}(n)$,
we have $t_{A}(p, n)=O\left(c_{A}(n) / p\right)$ and thus $\operatorname{SU}_{\mathrm{abs}}(p, n)=p \frac{T_{S}^{M}(n)}{c_{A}^{N}(n)}$.
\rightarrow linear speedup for cost-optimal A
\rightarrow "well scalable" (in theory) in range $1 \leq p \leq p_{A}(n)$
\rightarrow For fixed n, no further speedup beyond $p_{A}(n)$
For realistic problem sizes (small n, small p): often sublinear!

- communication costs (non-PRAM) may increase more than linearly in p
- sequential part may increase with p - not enough work available
\rightarrow less scalable
What about scaling the problem size n with p to keep speedup?
measured efficiency of parallel algorithm A on machine M for problem size n

$$
\mathrm{EF}(p, n)=\frac{T_{A}^{M}(1, n)}{p \cdot T_{A}^{M}(p, n)}=\frac{\mathrm{SU}_{\mathrm{rel}}(p, n)}{p}
$$

Let A solve a problem of size n^{\prime} on M with p^{\prime} processors with efficiency ε.

The isoefficiency function for A is a function of p, which expresses the increase in problem size required for A to retain a given efficiency ε.

If isoefficiency-function for A linear $\rightarrow A$ well scalable
Otherwise (superlinear): A needs large increase in n to keep same efficiency.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 35
Proof of Gustafssons Law

Yields better speedup predictions for data-parallel algorithms.

Gustafssons Law

Revisit Amdahl's law:

assumes that sequential work A^{s} is a constant fraction β of total work.
\rightarrow when scaling up $n, w_{A^{s}}(n)$ will scale linearly as well!

Gustafssons Law

[Gustafsson’88]
Assuming that the sequential work is constant (independent of n), given by seq. fraction α in an unscaled (e.g., size $n=1$ (thus $p=1$)) problem such that $T_{A^{s}}=\alpha T_{1}(1), T_{A^{p}}=(1-\alpha) T_{1}(1)$,
and that $w_{A} p(n)$ scales linearly in n,
the scaled speedup for $n>1$ is predicted by

$$
S U_{r e l}^{s}(n)=\frac{T_{n}(1)}{T_{n}(n)}=\alpha+(1-\alpha) n=n-(n-1) \alpha .
$$

The seq. part is assumed to be replicated over all processors.

DDA125 APP Lecture 2: Foundations of parallel algorithms. 36
. Kessle, IDA, Linköpings Universitet, 2003
Fundamental PRAM algorithms
reduction $\sqrt{ }$ see parallel sum algorithm
prefix-sums
list ranking

Oblivious (PRAM) algorithm:
control flow (\rightarrow execution time) does not depend on input data

Oblivious algorithms can be represented as arithmetic circuits whose shape only depends on the input size.

Examples: reduction, (parallel) prefix, pointer jumping;
sorting networks, e.g. bitonic-sort [CLR'90 ch. 28], \rightarrow Lab, mergesort
Counterexamples: (parallel) quicksort

Given: a set $S \quad$ (e.g., the integers)
a binary associative operator \oplus on S,
a sequence of n items $x_{0}, \ldots, x_{n-1} \in S$
compute the sequence y of prefix sums defined by

An important building block of many parallel algorithms! [Blelloch'89]
typical operations \oplus :
integer addition, maximum, bitwise AND, bitwise OR
Example:
bank account: initially $0 \$$, daily changes x_{0}, x_{1}, \ldots
\rightarrow daily balances: $(0,) x_{0}, x_{0}+x_{1}, x_{0}+x_{1}+x_{2}, \ldots$

FDA125 APP Lecture 2: Foundations of parallel algorithms.
Parallel prefix sums (1)

Naive parallel implementation:
apply the definition,

$$
y_{i}=\bigoplus_{j=0}^{i} x_{j} \text { for } 0 \leq i<n
$$

and assign one processor for computing each y_{i}
\rightarrow parallel time $\Theta(n)$, work and cost $\Theta\left(n^{2}\right)$

But we observe:

a lot of redundant computation (common subexpressions)

Idea: Exploit associativity of \oplus...

Sequential prefix sums computation
$\{$
int i;
nt ps; // i'th prefix sum
if $(\mathrm{n}>0) \mathrm{ps}=\mathrm{y}[0]=\mathrm{x}[0]$;
for (i=1; i<n; i++) \{
Po

$$
\mathrm{y}[\mathrm{i}]=\mathrm{ps} ;
$$

\}
\}
Task dependence graph:
linear chain of dependences

\rightarrow seems to be inherently sequential - how to parallelize?

DA125 APP Lecture 2: Foundations of parallel algorithms. 40
C. Kessler, IDA, Linköpings Universitet, 200

Parallel prefix sums (2)

Algorithmic technique: parallel divide\&conquer
We consider the simplest variant, called Upper/lower parallel prefix:
recursive formulation:
N-prefix is computed as

Parallel time: $\log n$ steps, work: $n / 2 \log n$ additions, cost: Θ (nlogn) Not work-optimal! ... and needs concurrent read

Rework lower-upper prefix sums algorithm for exclusive read:
iterative formulation in data-parallel pseudocode:
real a : $\operatorname{array}[0 . . N-1]$;
int stride;
stride $\leftarrow 1$;
while stride $<N$ do
forall i : $[0 . . N-1]$ in parallel do

if $i \geq$ stride then

 $a[i] \leftarrow a[i-$ stride $]+a[i] ;$stride := stride * 2 ;
(* finally, sum in $a[N-1]^{*}$)

Odd/even parallel prefix $P^{\text {oddeven }}(n)$:

EREW, $2 \log n-2$ time steps, work $2 n-\log n-2$, cost $\Theta(n \log n)$
Not cost-optimal! But may use Brent's theorem...

FDA125 APP Lecture 2: Foundations of parallel algorithms. 44
C. Kessler, IDA, Linkopings Universitet, 2003

Towards List Ranking

Parallel list: (unordered) array of list items (one per proc.), singly linked
Problem: for each element, find the end of its linked list.

Algorithmic technique: recursive doubling, here: "pointer jumping" [Wyllie'79]

The algorithm in pseudocode:

```
forall }k\mathrm{ in [1..N] in parallel do
    chum [k]}\leftarrow\mathrm{ next [k];
    while chum [k]\not= nul
        and chum[chum[k]]}\not=\mathrm{ null do
        chum [k]}\leftarrow\mathrm{ chum[chum[k]];
    od
```

od
lengths of chum lists halved in each step
$\Rightarrow\lceil\log N\rceil$ pointer jumping steps

Extended problem: compute the rank = distance to the end of the list

Pointer jumping
[Wyllie'79]

EREW

1 step:
to my own distance value, I add distance of my \rightarrow next that I splice out of the list

Every step + doubles \#lists

+ halves lengths
$\rightarrow\left\lceil\log _{2} n\right\rceil$ steps
Not work-efficient!

CREW is more powerful than EREW

Example problem:

Given a directed forest,
compute for each node a pointer to the root of its tree.

CREW: with pointer-jumping technique in $\left\lceil\log _{2}\right.$ max. depth \rceil steps
e.g. for balanced binary tree: $O(\log \log n)$; an $O(1)$ algorithm exists

EREW: Lower bound $\Omega(\log n)$ steps

per step, one given value can be copied to at most 1 other location
e.g. for a single binary tree:
after k steps, at most 2^{k} locations can contain the identity of the root
A $\Theta(\log n)$ EREW algorithm exists.

NULL-checks can be avoided by marking list end by a self-loop. Implementation in Fork:

```
sync wyllie( sh LIST list[], sh int length )
{
    LIST *e; // private pointer
    int nn;
    e = list[$$]; // $$ is my processor index
    if (e->next != e) e->rank = 1; else e->rank = 0;
    nn = length;
    while (nn>1) {
        e->rank = e->rank + e->next->rank;
        e->next = e->next->next;
        nn = nn>>1; // division by 2
    }
}
```

Also for parallel prefix on a list!
\rightarrow Exercise

FDA125 APP Lecture 2: Foundations of parallel algorithms. 48
C. Kessler, IDA, Linköpings Universitet, 2003

Simulating a CRCW algorithm with an EREW algorithm

A p-processor CRCW algorithm can be no more than $O(\log p)$ times faster than the best p-processor EREW algorithm for the same problem.

Step-by-step simulation
[Vishkin'83]
For Weak/Common/Arbitrary CRCW PRAM:
handle concurrent writes with auxiliary array A of pairs.
CRCW processor i should write x_{i} into location l_{i} :
EREW processor i writes $\left\langle l_{i}, x_{i}\right\rangle$ to $A[i]$
Sort A on p EREW processors by first coordinates
in time $O(\log p) \quad$ [Ajtai/Komlos/Szemeredi'83], [Cole'88]
Processor j inspects write requests $A[j]=\left\langle l_{k}, x_{k}\right\rangle$ and $A[j-1]=\left\langle l_{q}, x_{q}\right\rangle$
and assigns x_{k} to l_{k} iff $l_{k} \neq l_{q}$ or $j=0$.
For Combining (Maximum) CRCW PRAM: see [PPP p.66/67]

EREW \prec CREW \prec CRCW
Common CRCW \prec Priority CRCW
Arbitrary CRCW \prec Priority CRCW
where \prec : "strictly weaker than" (transitive)

See [PPP p.68/69] for more separation results.

FDA125 APP Lecture 2: Foundations of parallel algorithms.
Broadcasting with selective reduction (BSR)

BSR: generalization of a Combine CRCW PRAM
[Akl/Guenther'89]

1 BSR write step:

Each processor can write a value to all memory locations (broadcast)
Each memory location computes a global reduction (max, sum, ...)
over a specified subset of all incoming write contributions (selective reduction)

FDA125 APP Lecture 2: Foundations of parallel algorithms. 52
C. Kessier, IDA, Linkōpings Universitet, 2003

Asynchronous PRAM

No common clock
No uniform memory access time
Sequentially consistent shared memory

Idealized multicomputer: point-to-point communication costs time $t_{m s g}$.

Cost of communicating a larger block of n bytes:

time $t_{\text {msg }}(n)=$ sender overhead + latency + receiver overhead $+n /$ bandwidth

$$
=: \quad t_{\text {startup }}+n \cdot t_{\text {transfer }}
$$

Assumption: network not overloaded; no conflicts occur at routing
$t_{\text {startup }}=$ startup time (time to send a 0-byte message)
accounts for hardware and software overhead
$t_{\text {transfer }}=$ transfer rate, send time per word sent depends on the network bandwidth.
FDA125 APP Leeture 2: Foundations of parallel algorithms. 55 C. Kessler, IDA, Linkëpings Universitet, 2003.

BSP example: Global maximum computation (non-optimal algorithm)

Compute maximum of n numbers $A[0, \ldots, n-1]$ on $\operatorname{BSP}(p, L, g, s)$:
// $A[0 . . n-1]$ distributed block-wise across p processors step
// local computation phase
$m \leftarrow-\infty$;
for all $A[i]$ in my local partition of A \{
$m \leftarrow \max (m, A[i]) ;$
// communication phase:
if myPID $\neq 0$

$$
\text { send }(m, 0)
$$

else $\quad / /$ on P_{0} :
for each $i \in\{1, \ldots, p-1\}$
recv (m_{i}, i);
step
if $\mathrm{myPID}=0$
for each $i \in\{1, \ldots, p-1\}$ $m \leftarrow \max \left(m, m_{i}\right) ;$

Local work:

$$
\Theta(n / p)
$$

Communication:

$$
h=p-1
$$

$$
\text { (} P_{0} \text { is bottleneck) }
$$

$$
t_{\text {step }}=w+h g+L
$$

$$
=\Theta\left(\frac{n}{p}+p g+L\right)
$$

Bulk-synchronous parallel programming
[Valiant'90] [McColl'93]
BSP computer $=$ abstract message passing architecture (p, L, g, s)

BSP program = sequence of supersteps, separated by (logical) barriers

FDA125 APP Lecture 2: Foundations of parallele algorithms.
56
C. Kessler, IDA, Linkopings Universitet, 2003

LogP model (1)

LogP model
[Culler et al. 1993]
for the cost of communicating small messages (a few bytes)

4 parameters:
latency L
overhead o
gap g (models bandwidth)
processor number P
abstracts from network topology

$\xrightarrow{\text { time }}$
gap $g=$ inverse network bandwidth per processor:
Network capacity is L / g messages to or from each processor.
L, o, g typically measured as multiples of the CPU cycle time.
transmission time for a small message:
$2 \cdot o+L$ if the network capacity is not exceeded

The LogGP model [Culler et al. '95] extends LogP by parameter $G=$ gap per word, to model block communication

Communication of an n-word-block:
with the LogGP-model:

$$
t_{n}^{\prime}=o+(n-1) G+L+o
$$

Parallel computation models
Shared memory: PRAM, PRAM variants
Message passing: Delay model, BSP, LogP, LogGP
parallel time, work, cost
Parallel algorithmic paradigms (up to now)
Parallel divide-and-conquer
(includes reduction and pointer jumping / recursive doubling)
Data parallelism
Fundamental parallel algorithms
Global sum
Prefix sums
List ranking
Broadcast

59
59 C. Kessler, IDA, Linköpings Universitet, 2003.
Summary

With example parameters $P=4, o=2 \mu s, g=3 \mu s, L=5 \mu s$

it takes at least $18 \mu s$ to broadcast 1 byte from $P 0$ to $P 1, P 2, P 3$

Remark: for determining time-optimal broadcast trees in LogP, see
[Papadimitriou/Yannakakis'89], [Karp et al.'93]

[^0]: syncadd(\&s, a[ID]); // procs ranked ID in 0...n-1

