
FDA125 APP Lecture 2: Foundations of parallel algorithms. 1 C. Kessler, IDA, Linköpings Universitet, 2003.

Foundations of parallel algorithms

PRAM model

Time, work, cost

Self-simulation and Brent’s Theorem

Speedup and Amdahl’s Law

NC

Scalability and Gustafssons Law

Fundamental PRAM algorithms
reduction

parallel prefix

list ranking

PRAM variants, simulation results and separation theorems.

Survey of other models of parallel computation

Asynchronous PRAM, Delay model, BSP, LogP, LogGP

FDA125 APP Lecture 2: Foundations of parallel algorithms. 2 C. Kessler, IDA, Linköpings Universitet, 2003.

Literature

[PPP] Keller, Kessler, Träff: Practical PRAM Programming.

Wiley Interscience, New York, 2000. Chapter 2.

[JaJa] JaJa: An introduction to parallel algorithms.

Addison-Wesley, 1992.

[CLR] Cormen, Leiserson, Rivest: Introduction to Algorithms,

Chapter 30. MIT press, 1989.

[JA] Jordan, Alaghband: Fundamentals of Parallel Processing.

Prentice Hall, 2003.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 3 C. Kessler, IDA, Linköpings Universitet, 2003.

Parallel computation models (1)

+ abstract from hardware and technology

+ specify basic operations, when applicable

+ specify how data can be stored! analyze algorithms before implementation

independent of a particular parallel computer! focus on most characteristic (w.r.t. influence on time/space complexity)

features of a broader class of parallel machines

Programming model

shared memory vs.
message passing

degree of synchronous execution

Cost model

key parameters

cost functions for basic operations

constraints

FDA125 APP Lecture 2: Foundations of parallel algorithms. 4 C. Kessler, IDA, Linköpings Universitet, 2003.

Parallel computation models (2)

Cost model: should

+ explain available observations

+ predict future behaviour

+ abstract from unimportant details! generalization

Simplifications to reduce model complexity:

use idealized machine model

ignore hardware details: memory hierarchies, network topology, ...

use asymptotic analysis

drop insignificant effects

use empirical studies

calibrate parameters, evaluate model

FDA125 APP Lecture 2: Foundations of parallel algorithms. 5 C. Kessler, IDA, Linköpings Universitet, 2003.

Flashback to DALG, Lecture 1: The RAM model

RAM (Random Access Machine) [PPP 2.1]

programming and cost model for the analysis of sequential algorithms

ALU

register 1

register 2
....

PC

CPU

M[3]

M[2]

M[1]

M[0]

.....

data memory

store
load

clock

program memory

current instruction

FDA125 APP Lecture 2: Foundations of parallel algorithms. 6 C. Kessler, IDA, Linköpings Universitet, 2003.

The RAM model (2)

Algorithm analysis: Counting instructions

Example: Computing the global sum of N elements

t = tload+tstore+ N

∑
i=2

(2tload+ tadd+ tstore+ tbranch)= 5N�32Θ(N)

s = d(0)
do i = 1, N-1

s = s + d(i)
end do

s

s

s

s

s

s

s

d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7] d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

+

+

+

+

+

+

+

+

+

+

+ +

+

+

! arithmetic circuit model, directed acyclic graph (DAG) model

FDA125 APP Lecture 2: Foundations of parallel algorithms. 7 C. Kessler, IDA, Linköpings Universitet, 2003.

PRAM model [PPP 2.2]

Parallel Random Access Machine [Fortune/Wyllie’78]

p processors

MIMD

common clock signal

arithm./jump: 1 clock cycle

shared memory

uniform memory access time

latency: 1 clock cycle (!)

concurrent memory accesses

sequential consistency

private memory (optional)

processor-local access only

......
p-10 1 2 3P P P PP

Shared Memory

M0 M1 M2 M3 p-1M

CLOCK

FDA125 APP Lecture 2: Foundations of parallel algorithms. 8 C. Kessler, IDA, Linköpings Universitet, 2003.

PRAM model: Variants for memory access conflict resolution

Exclusive Read, Exclusive Write (EREW) PRAM

concurrent access only to different locations in the same cycle

Concurrent Read, Exclusive Write (CREW) PRAM

simultaneous reading from or single writing to same location is possible

Concurrent Read, Concurrent Write (CRCW) PRAM

simultaneous reading from or writing to same location is possible:

Weak CRCW

Common CRCW

Arbitrary CRCW

Priority CRCW

Combining CRCW
(global sum, max, etc.)

No need for ERCW ...

......
p-10 1 2 3P P P PP

*a=0; *a=1; nop; *a=0;

?

t: *a=2;

M0 M1 M2 M3 Mp-1

Shared Memory

a

CLOCK

FDA125 APP Lecture 2: Foundations of parallel algorithms. 9 C. Kessler, IDA, Linköpings Universitet, 2003.

Global sum computation on EREW and Combining-CRCW PRAM (1)

Given n numbers x0;x1; :::;xn�1 stored in an array.

The global sum
n�1
∑
i=0

xi can be computed in dlog2 ne time steps
on an EREW PRAM with n processors.

Parallel algorithmic paradigm used: Parallel Divide-and-Conquer

t

ParSum(n/2) ParSum(n/2)

ParSum(n):

++

d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

+ + + +

++

Divide phase: trivial, time O(1)
Recursive calls: parallel time T(n=2)

with base case: load operation, time O(1)
Combine phase: addition, time O(1) ! T(n) = T(n=2)+O(1)

Use induction or the master theorem [CLR 4]! T(n) 2O(logn)

FDA125 APP Lecture 2: Foundations of parallel algorithms. 10 C. Kessler, IDA, Linköpings Universitet, 2003.

Global sum computation on EREW and Combining-CRCW PRAM (2)

Recursive parallel sum program in the PRAM progr. language Fork [PPP]

sync int parsum(sh int *d, sh int n)
{
sh int s1, s2;
sh int nd2 = n / 2;
if (n==1) return d[0]; // base case
$=rerank(); // re-rank processors within group
if ($<nd2) // split processor group:

s1 = parsum(d, nd2);
else s2 = parsum(&(d[nd2]), n-nd2);
return s1 + s2;

} Global sum
 traced time period: 6 msecs
434 sh-loads, 344 sh-stores
78 mpadd, 0 mpmax, 0 mpand, 0 mpor

P0

P1

P2

P3

P4

P5

P6

P7

7 barriers, 0 msecs = 15.4% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 93 sh loads, 43 sh stores, 15 mpadd, 0 mpmax, 0 mpand, 0 mpor

7 barriers, 0 msecs = 14.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 48 sh loads, 43 sh stores, 9 mpadd, 0 mpmax, 0 mpand, 0 mpor

7 barriers, 0 msecs = 14.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 48 sh loads, 43 sh stores, 9 mpadd, 0 mpmax, 0 mpand, 0 mpor

7 barriers, 0 msecs = 14.4% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 49 sh loads, 43 sh stores, 9 mpadd, 0 mpmax, 0 mpand, 0 mpor

7 barriers, 0 msecs = 14.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 48 sh loads, 43 sh stores, 9 mpadd, 0 mpmax, 0 mpand, 0 mpor

7 barriers, 0 msecs = 14.4% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 49 sh loads, 43 sh stores, 9 mpadd, 0 mpmax, 0 mpand, 0 mpor

7 barriers, 0 msecs = 14.4% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 49 sh loads, 43 sh stores, 9 mpadd, 0 mpmax, 0 mpand, 0 mpor

7 barriers, 0 msecs = 13.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 50 sh loads, 43 sh stores, 9 mpadd, 0 mpmax, 0 mpand, 0 mpor

Fork95

trv

FDA125 APP Lecture 2: Foundations of parallel algorithms. 11 C. Kessler, IDA, Linköpings Universitet, 2003.

Global sum computation on EREW and Combining-CRCW PRAM (3)

Iterative parallel sum program in Fork

int sum(sh int a[], sh int n)
{
int d, dd;
int ID = rerank();
d = 1;
while (d<n) {
dd = d; d = d*2;
if (ID%d==0) a[ID] = a[ID] + a[ID+dd];

}
}

+

+

+

+ + +

+

a(1) a(2) a(3) a(4) a(5) a(6) a(7) a(8)

idle idle idle

idle idle idle

idle

idleidleidleidle

idle

idleidle

idleidle

idle

t

On a Combining CRCW PRAM with addition as the combining operation,

the global sum problem can be solved in a constant number of time steps

using n processors.

syncadd(&s, a[ID]); // procs ranked ID in 0...n-1

FDA125 APP Lecture 2: Foundations of parallel algorithms. 12 C. Kessler, IDA, Linköpings Universitet, 2003.

PRAM model: CRCW is stronger than CREW

Example:

Computing the logical OR of p bits

OR

time O(log p)

time O(1)

OR

OR

1

0 0

OR OR

1

OR

OR

0 11 0 0

1 1 0 1

11

(else do nothing)

CRCW:

sh int a = 0;

......
p-10 1 2 3P P P P

Shared Memory

P

a

nop; *a=1; nop; *a=1;

?

*a=1;t:

M0 M1 M2 M3 Mp-1

CLOCK

CREW:

if (mybit == 1) a = 1;

e.g. for termination detection

FDA125 APP Lecture 2: Foundations of parallel algorithms. 13 C. Kessler, IDA, Linköpings Universitet, 2003.

Analysis of parallel algorithms

(a) asymptotic analysis! estimation based on model and pseudocode operations! results for large problem sizes, large # processors

(b) empirical analysis! measurements based on implementation! for fixed (small) problem and machine sizes

FDA125 APP Lecture 2: Foundations of parallel algorithms. 14 C. Kessler, IDA, Linköpings Universitet, 2003.

Asymptotic analysis: Work and Time

parallel work wA(n) of algorithm A on an input of size n

= max. number of instructions performed by all procs during execution of A,

where in each (parallel) time step as many processors are available

as needed to execute the step in constant time.

parallel time tA(n) of algorithm A on input of size n

= maximum number of parallel time steps required under the same circum-
stances.

Work and time are thus worst-case measures.

tA(n) is sometimes called the depth of A

(cf. circuit model, DAG model of (parallel) computation)

pi(n) = number of processors needed in time step i, 0� i < tA(n),
to execute the step in constant time. Then, wA(n) = tA(n)

∑
i=0

pi(n)

FDA125 APP Lecture 2: Foundations of parallel algorithms. 15 C. Kessler, IDA, Linköpings Universitet, 2003.

Asymptotic analysis: Work and time optimality, work efficiency

A is work-optimal if wA(n) = O(tS(n))

where S= optimal or currently best known sequential algorithm

for the same problem

A is work-efficient if wA(n) = tS(n) �O(logk(tS(n))) for some constant k� 1.

A is time-optimal if any other parallel algorithm for this problem

requires Ω(tA(n)) time steps.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 16 C. Kessler, IDA, Linköpings Universitet, 2003.

Asymptotic analysis: Cost, cost optimality

Algorithm A needs pA(n) = max1�i�tA(n) pi(n) processors.

Cost cA(n) of A on an input of size n

= processor-time product: cA(n) = pA(n) � tA(n)

A is cost-optimal if cA(n) = O(tS(n))

with S= optimal or currently best known sequential algorithm

for the same problem

Work � Cost: wA(n) = O(cA(n))

A is cost-effective if wA(n) = Θ(cA(n)).

FDA125 APP Lecture 2: Foundations of parallel algorithms. 17 C. Kessler, IDA, Linköpings Universitet, 2003.

Asymptotic analysis for global sum computation

problem size n

processors p

time t(p;n)
work w(p;n)
cost c(p;n) = t � p
Example:
seq. sum algorithm
s = a(1)
do i = 2, n
s = s + a(i)

end do

n�1 additions
n loads
O(n) other

+

+

+

+

+

+++

a(2)

+

a(3)

+

a(4)

+

a(6)

+

+

a(8)

+

a(5)

a(7)

a(1)

time

p=1

t
time

a(1) a(2) a(3) a(4) a(5) a(6) a(7) a(8)

p=n

t

idle idle idle

idle idle idle

idle

idleidleidleidle

idle

idleidle

idleidle

idle

cost c = t * p

parallel sum algorithm

t(1;n) = tseq(n) = O(n)
w(1;n) = O(n)
c(1;n) = t(1;n) �1= O(n)

t(n;n) = O(logn)
w(n;n) = O(n)
c(n;n) = O(nlogn)
par. sum alg. not cost-effective!

FDA125 APP Lecture 2: Foundations of parallel algorithms. 18 C. Kessler, IDA, Linköpings Universitet, 2003.

Trading concurrency for cost-effectiveness

Making the parallel sum algorithm cost-optimal:

Instead of n processors, use only n= log2 n processors.

First, each processor computes sequentially the global sum of

“its” logn local elements. This takes time O(logn).
Then, they compute the global sum of n= logn partial sums

using the previous parallel sum algorithm.

Time: O(logn) for local summation, O(logn) for global summation

Cost: n= logn�O(logn) = O(n) linear!

This is an example of a more general technique based on Brent’s theorem.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 19 C. Kessler, IDA, Linköpings Universitet, 2003.

Self-simulation and Brent’s Theorem

Self-simulation (aka work-time scheduling in [JaJa’92])

A model of parallel computation is self-simulating

if a p-processor machine can simulate

one time step of a q-processor machine in O(dq=pe) time steps.

All PRAM variants are self-simulating.

Proof idea for (EREW) PRAM with p� q simulating processors:

Divide the q simulated processors in p chunks of size � dq=pe

assign a chunk to each of the p simulating processors

map memory of simulated PRAM to memory of simulating PRAM

step-by-step simulation, with O(q=p) steps per simulated step

take care of pending memory accesses in current simulated step

extra space O(q=p) for registers and status of the simulated machine

FDA125 APP Lecture 2: Foundations of parallel algorithms. 20 C. Kessler, IDA, Linköpings Universitet, 2003.

Consequences of self-simulation

RAM = 1-processor PRAM simulates p-processor PRAM in O(p) time steps.! RAM simulates A with cost cA(n) = pA(n)tA(n) in O(cA(n)) time.

(Actually possible in O(wA(n)) time.)

Even with arb. many processors A cannot be simulated any faster than tA(n).
For cost-optimal A, cA(n) = Θ(tS(n)) ! Exercise

p-processor PRAM can simulate one step of A requiring pA(n) processors

in O(pA(n)=p) time steps

Self-simulation emulates virtual processors with significant overhead.

In practice, other mechanisms for adapting the granularity are more suitable.

How to avoid simulation of inactive processors where cA(n) = ω(wA(n)) ?

FDA125 APP Lecture 2: Foundations of parallel algorithms. 21 C. Kessler, IDA, Linköpings Universitet, 2003.

Brent’s Theorem

Brent’s theorem: [Brent’74]

Any PRAM algorithm A

which runs in tA(n) time steps and performs wA(n) work

can be implemented to run on a p-processor PRAM in

O

�
tA(n)+ wA(n)

p

�

time steps.

Proof: see [PPP p.41]

Algorithm design issue: Balance the terms for cost-effectiveness:! design A with pA(n) processors such that wA(n)=pA(n) = O(tA(n))

Note: Proof is non-constructive!! How to determine the active processors for each time step?! language constructs, dependence analysis, static/dynamic scheduling, ...

FDA125 APP Lecture 2: Foundations of parallel algorithms. 22 C. Kessler, IDA, Linköpings Universitet, 2003.

Absolute Speedup

A parallel algorithm for problem P

S asymptotically optimal or best known sequential algorithm for P.

tA(p;n) worst-case execution time of A with p� pA(n) processors

tS(n) worst-case execution time of S

The absolute speedup of a parallel algorithm A is the ratio

SUabs(p;n) = tS(n)

tA(p;n)

If S is an optimal algorithm for P, then SUabs(p;n) = tS(n)

tA(p;n) � p
tS(n)

cA(n) � p

for any fixed input size n, since tS(n)� cA(n).
A cost-optimal parallel algorithm A for a problem P has linear absolute speedup.

This holds for n sufficiently large.

“Superlinear” speedup > p may exist only for small n.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 23 C. Kessler, IDA, Linköpings Universitet, 2003.

Relative Speedup and Efficiency

Compare A with p processors to itself running on 1 processor:

The asymptotic relative speedup of a parallel algorithm A is the ratio

SUrel(p;n) = tA(1;n)

tA(p;n)

tS(n)� tA(1;n) ! SUrel(p;n)� SUabs(p;n). [PPP p.44 typo!]

Preferably used in papers on parallelization to “nice” performance results.

The relative efficiency of parallel algorithm A is the ratio

EF(p;n) = tA(1;n)

p� tA(p;n)

EF(p;n) = SUrel(p;n)=p 2 [0;1]

FDA125 APP Lecture 2: Foundations of parallel algorithms. 24 C. Kessler, IDA, Linköpings Universitet, 2003.

Speedup curves

Speedup curves measure the utility of parallel computing, not speed.

p

S

(superlinear)

linear

sublinear

saturation

ideal speedup:
S = p

decreasing

trivially parallel
(e.g., matrix product, LU
decomposition, ray tracing)! close to ideal S= p

work-bound algorithms! linear SU2Θ(p), work-optimal

tree-like task graphs
(e.g., global sum / max)! sublinear SU2Θ(p= log p)

communication-bound! sublinear SU= 1= f n(p)

Most papers on parallelization show only relative speedup

(as SUabs� SUrel, and best seq. algorithm needed for SUabs)

FDA125 APP Lecture 2: Foundations of parallel algorithms. 25 C. Kessler, IDA, Linköpings Universitet, 2003.

Speedup anomalies

Speedup anomaly:

An implementation on p processors may execute faster than expected.

Superlinear speedup

speedup function that grows faster than linear, i.e., in ω(p)

Possible causes:� cache effects� search anomalies

Real-world example: move scaffolding

Speedup anomalies may occur only for fixed (small) range of p.

Theorem:

There is no absolute superlinear speedup for arbitrarily large p.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 26 C. Kessler, IDA, Linköpings Universitet, 2003.

Amdahl’s Law

Consider execution (trace) of parallel algorithm A:

sequential part As where only 1 processor is active

parallel part Ap that can be sped up perfectly by p processors! total work wA(n) = wAs(n)+wAp(n)

Amdahl’s Law

If the sequential part of A is a fixed fraction of the total work

irrespective of the problem size n, that is, if there is a constant β with

β = wAs(n)

wA(n) � 1

the relative speedup of A with p processors is limited by

p
βp+(1�β) � 1=β

FDA125 APP Lecture 2: Foundations of parallel algorithms. 27 C. Kessler, IDA, Linköpings Universitet, 2003.

Proof of Amdahl’s Law

SUrel = T(1)

T(p) = T(1)

TAs+TAp(p)

Assume perfect parallelizability of the parallel part Ap,

that is, TAp(p) = (1�β)T(p) = (1�β)T(1)=p:

SUrel = T(1)

βT(1)+(1�β)T(1)=p) = p
βp+1�β

� 1=β

P0

ß T(1)

P0

P1
P2
P3

p

(1-ß) T(1)

(1-ß)T(1)/p
Remark:

For most parallel algorithms the sequential part is not a fixed fraction.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 28 C. Kessler, IDA, Linköpings Universitet, 2003.

NC

Recall complexity class P :

P = set of all problems solvable on a RAM in polynomial time

Can all problems in P be solved fast on a PRAM?

“Nick’s class” N C :

N C = set of problems solvable on a PRAM in

polylogarithmic time O(logkn) for some k� 0

using only nO(1) processors (i. e. a polynomial number)

in the size n of the input instance.

By self-simulation: N C � P .

FDA125 APP Lecture 2: Foundations of parallel algorithms. 29 C. Kessler, IDA, Linköpings Universitet, 2003.

NC - Some remarks

Are the problems in N C just the well-parallelizable problems?

Counterexample: Searching for a given element in an ordered array

sequentially solvable in logarithmic time (thus in N C)

cannot be solved significantly faster in (EREW)-parallel [PPP 2.5.2]

Are N C -algorithms always a good choice?

Time log3 n is faster than time n1=4 only for ca. n> 1012.

Is N C = P ?

For some problems in P no polylogarithmic PRAM algorithm is known! likely that N C 6= P! P -completeness [PPP p. 46]

FDA125 APP Lecture 2: Foundations of parallel algorithms. 30 C. Kessler, IDA, Linköpings Universitet, 2003.

Speedup and Efficiency w.r.t. other sequential architectures

Parallel algorithm A runs on a “real” parallel machine N

with fixed size p.

Sequential algorithm S for same problem runs on sequential machine M

Measure execution times TN
A (p;n), TM

S (n) in seconds

absolute, machine-uniform speedup of A: SUabs(p;n) = TM
S (n)

TM
A (p;n)

parallelization slowdown of A: SL(n) = TM
A (1;n)

TM
S (n)

Hence, SUabs(p;n) = SUrel(p;n)

SL(n)

absolute, machine-nonuniform speedup = TM
S (n)

TN
A (n)

Used in the 1990’s to disqualify parallel processing by comparing to newer
superscalars

FDA125 APP Lecture 2: Foundations of parallel algorithms. 31 C. Kessler, IDA, Linköpings Universitet, 2003.

Example: Cost-optimal parallel sum algorithm on SB-PRAM

n= 10;000
Processors Clock cycles Time SUrel SUabs EF
Sequential 460118 1.84

1 1621738 6.49 1.00 0.28 1.00
4 408622 1.63 3.97 1.13 0.99

16 105682 0.42 15.35 4.35 0.96
64 29950 0.12 54.15 15.36 0.85

256 10996 0.04 147.48 41.84 0.58
1024 6460 0.03 251.04 71.23 0.25

n= 100;000
Processors Clock cycles Time SUrel SUabs EF
Sequential 4600118 18.40

1 16202152 64.81 1.00 0.28 1.00
4 4054528 16.22 4.00 1.13 1.00

16 1017844 4.07 15.92 4.52 0.99
64 258874 1.04 62.59 17.77 0.98

256 69172 0.28 234.23 66.50 0.91
1024 21868 0.09 740.91 210.36 0.72

FDA125 APP Lecture 2: Foundations of parallel algorithms. 32 C. Kessler, IDA, Linköpings Universitet, 2003.

Scalability

For machine N with p� pA(n),
we have tA(p;n) = O(cA(n)=p) and thus SUabs(p;n) = p

TM
S (n)

cN
A(n) .! linear speedup for cost-optimal A! “well scalable” (in theory) in range 1� p� pA(n)! For fixed n, no further speedup beyond pA(n)

For realistic problem sizes (small n, small p): often sublinear!

- communication costs (non-PRAM) may increase more than linearly in p

- sequential part may increase with p – not enough work available! less scalable

What about scaling the problem size n with p to keep speedup?

FDA125 APP Lecture 2: Foundations of parallel algorithms. 33 C. Kessler, IDA, Linköpings Universitet, 2003.

Isoefficiency [Rao,Kumar’87]

measured efficiency of parallel algorithm A on machine M for problem size n

EF(p;n) = TM
A (1;n)

p�TM
A (p;n) = SUrel(p;n)

p

Let A solve a problem of size n0 on M with p0 processors with efficiency ε.

The isoefficiency function for A is a function of p, which

expresses the increase in problem size required for A

to retain a given efficiency ε.

If isoefficiency-function for A linear! A well scalable

Otherwise (superlinear): A needs large increase in n to keep same efficiency.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 34 C. Kessler, IDA, Linköpings Universitet, 2003.

Gustafssons Law

Revisit Amdahl’s law:

assumes that sequential work As is a constant fraction β of total work.! when scaling up n, wAs(n) will scale linearly as well!

Gustafssons Law [Gustafsson’88]

Assuming that the sequential work is constant (independent of n),

given by seq. fraction α in an unscaled (e.g., size n= 1 (thus p= 1)) problem

such that TAs = αT1(1), TAp = (1�α)T1(1),
and that wAp(n) scales linearly in n,

the scaled speedup for n> 1 is predicted by

SUs
rel(n) = Tn(1)

Tn(n) = α+(1�α)n = n� (n�1)α:

The seq. part is assumed to be replicated over all processors.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 35 C. Kessler, IDA, Linköpings Universitet, 2003.

Proof of Gustafssons Law

Scaled speedup for p= n> 1:

SUs
rel(n) = Tn(1)

Tn(n)= TAs+wAp(n)

TAs+TAp

assuming
perfect parallelizability
of Ap up to p= n processors

SUs
rel(n) = α+(1�α)n

1= n� (n�1)α.
1

(1−α) T(1)n

αT(1) 1

Pn-1

P1
P2
P3

P0

T(1)(1−α)

n

n=1:

p

P0

1

P0

1

n>1:

P1
P2
P3

P1
P0

P0

Yields better speedup predictions for data-parallel algorithms.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 36 C. Kessler, IDA, Linköpings Universitet, 2003.

Fundamental PRAM algorithms

reduction

p

see parallel sum algorithm

prefix-sums

list ranking

Oblivious (PRAM) algorithm: [JaJa 4.4.1]

control flow (! execution time) does not depend on input data.

Oblivious algorithms can be represented as arithmetic circuits

whose shape only depends on the input size.

Examples: reduction, (parallel) prefix, pointer jumping;

sorting networks, e.g. bitonic-sort [CLR’90 ch. 28],! Lab, mergesort

Counterexamples: (parallel) quicksort

FDA125 APP Lecture 2: Foundations of parallel algorithms. 37 C. Kessler, IDA, Linköpings Universitet, 2003.

The Prefix-sums problem

Given: a set S (e.g., the integers)

a binary associative operator � on S,

a sequence of n items x0; : : : ;xn�1 2 S

compute the sequence y of prefix sums defined by

yi = iM
j=0

xj for 0� i < n

An important building block of many parallel algorithms! [Blelloch’89]

typical operations �:

integer addition, maximum, bitwise AND, bitwise OR

Example:

bank account: initially 0$, daily changes x0, x1, ...! daily balances: (0,) x0, x0+x1, x0+x1+x2, ...

FDA125 APP Lecture 2: Foundations of parallel algorithms. 38 C. Kessler, IDA, Linköpings Universitet, 2003.

Sequential prefix sums computation

void seq_prefix(int x[], int n, int y[])
{
int i;
int ps; // i’th prefix sum
if (n>0) ps = y[0] = x[0];
for (i=1; i<n; i++) {
ps += x[i];
y[i] = ps;

}
}

Task dependence graph:
linear chain of dependences

+

+

+

+

+

+

xx x x x x x

y

1 2 3 4 5 6 7

1 2 3 4 5 6 7y y y y y y

! seems to be inherently sequential — how to parallelize?

FDA125 APP Lecture 2: Foundations of parallel algorithms. 39 C. Kessler, IDA, Linköpings Universitet, 2003.

Parallel prefix sums (1)

Naive parallel implementation:

apply the definition,

yi = iM

j=0

xj for 0� i < n

and assign one processor for computing each yi! parallel time Θ(n), work and cost Θ(n2)

But we observe:

a lot of redundant computation (common subexpressions)

Idea: Exploit associativity of � ...

FDA125 APP Lecture 2: Foundations of parallel algorithms. 40 C. Kessler, IDA, Linköpings Universitet, 2003.

Parallel prefix sums (2)

Algorithmic technique: parallel divide&conquer

We consider the simplest variant, called Upper/lower parallel prefix:

recursive formulation:

N–prefix is computed as

PrefixPrefixN/2 N/2

x

.....

..........

.....

xx

x x + x
N/2 N

x xi i
i=1 i=1

1 1 2

N1 2

Parallel time: logn steps, work: n=2 logn additions, cost: Θ(nlogn)

Not work-optimal! ... and needs concurrent read

FDA125 APP Lecture 2: Foundations of parallel algorithms. 41 C. Kessler, IDA, Linköpings Universitet, 2003.

Parallel prefix sums (3)

Rework lower-upper prefix sums algorithm for exclusive read:

1a 3 5 7 9 11
0 2 6 8 10 12

13
14
15

0
2

4
4 6 8 10 12 14

131197531

1a 3 5 7 9 11
0

13 15
0

2 4 6 8 10 12 14
1211109876543210 0

1a 3 5 7 9 11
0

13 15
0

2 4 6 8 10 12 14
0 0 876543210 0 0 0

a a a a a a a a a a a a a0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15a a a

1a 3 5 7 9 11
0

13 15
0

2 4 6 8 10 12 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0

iterative formulation
in data-parallel pseudocode:

real a : array[0::N�1];
int stride;

stride 1;
while stride < N do

forall i : [0::N�1] in parallel do

if i �stride then
a[i] a[i�stride] + a[i];

stride := stride * 2;

(* finally, sum in a[N�1] *)

FDA125 APP Lecture 2: Foundations of parallel algorithms. 42 C. Kessler, IDA, Linköpings Universitet, 2003.

Parallel prefix sums (4)

Odd/even parallel prefix Poddeven(n):

odd/evenP (n/2)

x x x x x x1 2 3 4 5 6

1 2 3 4 5 6y y y y y y

+ +

+

+ + +

+ +

+

+

+

+

x x x x x x1 2 3 4 5 6 x x

1 2 3 4 5 6y y y y y y y y7 8

7 8

P

= P

(4)

(4)

oe

ul

....

....

...

...

+ + + +

++++

EREW, 2logn�2 time steps, work 2n� logn�2, cost Θ(nlogn)

Not cost-optimal! But may use Brent’s theorem...

FDA125 APP Lecture 2: Foundations of parallel algorithms. 43 C. Kessler, IDA, Linköpings Universitet, 2003.

Parallel prefix (3)

Ladner/Fischer parallel prefix [Ladner/Fischer’80]

combines advantages of upper-lower and odd-even parallel prefix

EREW, time logn steps, work 4n�4:96n0:69+1, cost Θ(nlogn)

can be made cost-optimal using Brent’s theorem:

The prefix-sums problem can be solved on a n-processor EREW PRAM

in Θ(logn) time steps and cost Θ(n).

FDA125 APP Lecture 2: Foundations of parallel algorithms. 44 C. Kessler, IDA, Linköpings Universitet, 2003.

Towards List Ranking

Parallel list: (unordered) array of list items (one per proc.), singly linked

Problem: for each element, find
the end of its linked list.

Algorithmic technique:
recursive doubling, here:
“pointer jumping” [Wyllie’79]

The algorithm in pseudocode:

forall k in [1::N] in parallel do
chum[k] next[k];
while chum[k] 6= null

and chum[chum[k]] 6= null do
chum[k] chum[chum[k]];

od
od

lengths of chum lists halved in each step) dlogNe pointer jumping steps

next
chum

next
chum

next next next next next next next
chum chum chum chum chum chum chum

nextnextnextnextnextnextnext
chum chum chum chum chum chum chum

next
chum

next next next next next next next
chum chum chum chum chum chum chum

next
chum

next next next next next next next
chum chum chum chum chum chum chum

next
chum

next next next next next next next
chum chum chum chum chum chum chum

FDA125 APP Lecture 2: Foundations of parallel algorithms. 45 C. Kessler, IDA, Linköpings Universitet, 2003.

List ranking

Extended problem: compute the rank = distance to the end of the list

1 1 1 1 1 1

3 24 4 4 1

22 1222

123456

Pointer jumping

[Wyllie’79]

EREW

1 step:
to my own
distance value,
I add distance
of my!next
that I splice
out of the list

Every step
+ doubles #lists
+ halves lengths! dlog2 ne steps

Not work-efficient!

FDA125 APP Lecture 2: Foundations of parallel algorithms. 46 C. Kessler, IDA, Linköpings Universitet, 2003.

List ranking (2): Pointer jumping

NULL-checks can be avoided by marking list end by a self-loop.

Implementation in Fork:

sync wyllie(sh LIST list[], sh int length)
{
LIST *e; // private pointer
int nn;

e = list[$$]; // $$ is my processor index
if (e->next != e) e->rank = 1; else e->rank = 0;
nn = length;
while (nn>1) {
e->rank = e->rank + e->next->rank;
e->next = e->next->next;
nn = nn>>1; // division by 2

}
}

Also for parallel prefix on a list! ! Exercise

FDA125 APP Lecture 2: Foundations of parallel algorithms. 47 C. Kessler, IDA, Linköpings Universitet, 2003.

CREW is more powerful than EREW

Example problem:

Given a directed forest,

compute for each node a pointer to the root of its tree.

CREW: with pointer-jumping technique in dlog2 max. depthe steps

e.g. for balanced binary tree: O(loglogn); an O(1) algorithm exists

EREW: Lower bound Ω(logn) steps

per step, one given value can be copied to at most 1 other location

e.g. for a single binary tree:

after k steps, at most 2k locations can contain the identity of the root

A Θ(logn) EREW algorithm exists.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 48 C. Kessler, IDA, Linköpings Universitet, 2003.

Simulating a CRCW algorithm with an EREW algorithm

A p-processor CRCW algorithm can be no more than O(log p) times faster

than the best p-processor EREW algorithm for the same problem.

Step-by-step simulation [Vishkin’83]

For Weak/Common/Arbitrary CRCW PRAM:

handle concurrent writes with auxiliary array A of pairs.

CRCW processor i should write xi into location l i:

EREW processor i writes hl i;xii to A[i]

Sort A on p EREW processors by first coordinates

in time O(log p) [Ajtai/Komlos/Szemeredi’83], [Cole’88]

Processor j inspects write requests A[j] = hlk;xki and A[j�1] = hlq;xqi

and assigns xk to lk iff lk 6= lq or j = 0.

For Combining (Maximum) CRCW PRAM: see [PPP p.66/67]

FDA125 APP Lecture 2: Foundations of parallel algorithms. 49 C. Kessler, IDA, Linköpings Universitet, 2003.

Simulation summary

EREW � CREW � CRCW

Common CRCW � Priority CRCW

Arbitrary CRCW � Priority CRCW

where �: “strictly weaker than” (transitive)

See [PPP p.68/69] for more separation results.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 50 C. Kessler, IDA, Linköpings Universitet, 2003.

PRAM Variants [PPP 2.6]

Broadcasting with selective reduction (BSR) PRAM

Distributed RAM (DRAM)

Local memory PRAM (LPRAM)

Asynchronous PRAM

Queued PRAM (QRQW PRAM)

Hierarchical PRAM (H-PRAM)

Message passing models:

Delay model, BSP, LogP, LogGP! Lecture 4

FDA125 APP Lecture 2: Foundations of parallel algorithms. 51 C. Kessler, IDA, Linköpings Universitet, 2003.

Broadcasting with selective reduction (BSR)

BSR: generalization of a Combine CRCW PRAM [Akl/Guenther’89]

1 BSR write step:

Each processor can write a value to all memory locations (broadcast)

Each memory location computes a global reduction (max, sum, ...)

over a specified subset of all incoming write contributions (selective re-
duction)

FDA125 APP Lecture 2: Foundations of parallel algorithms. 52 C. Kessler, IDA, Linköpings Universitet, 2003.

Asynchronous PRAM

Asynchronous PRAM [Cole/Zajicek’89] [Gibbons’89] [Martel et al’92]

P 2PP0 1 Pp-1

M M M
0 1 2 p-1

M

.......

.......

.......

processors

atomic_incr

store_sh
load_sh fetch&incr

store_pr load_pr

private memory modules

SHARED MEMORY

NETWORK

No common clock

No uniform memory access time

Sequentially consistent shared memory

FDA125 APP Lecture 2: Foundations of parallel algorithms. 53 C. Kessler, IDA, Linköpings Universitet, 2003.

Delay model

Idealized multicomputer: point-to-point communication costs time tmsg.

Cost of communicating a larger block of n bytes:

time

ts startup time

tw word transfer time

size

time tmsg(n) = sender overhead + latency + receiver overhead + n/bandwidth=: tstartup + n� ttransfer

Assumption: network not overloaded; no conflicts occur at routing

tstartup = startup time (time to send a 0-byte message)

accounts for hardware and software overhead

ttransfer = transfer rate, send time per word sent

depends on the network bandwidth.

FDA125 APP Lecture 2: Foundations of parallel algorithms. 54 C. Kessler, IDA, Linköpings Universitet, 2003.

BSP model

Bulk-synchronous parallel programming [Valiant’90] [McColl’93]

BSP computer = abstract message passing architecture (p;L;g;s)

superstep

P0 P3 P5 P6 P7 P8 P9P1 P2 P4

using local data only

global barrier

next barrier

local computation

communication phase
(message passing)

time MIMD

SPMD

h-relation models
communication
pattern / volume

hi [words] = comm.
fan-in, fan-out of Pi

h= max1�i�phi

tstep= w+hg+L

BSP program = sequence of supersteps, separated by (logical) barriers

FDA125 APP Lecture 2: Foundations of parallel algorithms. 55 C. Kessler, IDA, Linköpings Universitet, 2003.

BSP example: Global maximum computation (non-optimal algorithm)

Compute maximum of n numbers A[0; :::;n�1] on BSP(p;L;g;s):
// A[0::n�1] distributed block-wise across p processors
step

// local computation phase:
m �∞;
for all A[i] in my local partition of A f

m max (m; A[i]);
// communication phase:
if myPID 6= 0

send (m, 0);
else // on P0:

for each i 2 f1; :::; p�1g

recv (mi, i);
step

if myPID = 0
for each i 2 f1; :::; p�1g

m max(m; mi);

Local work:
Θ(n=p)

Communication:
h= p�1
(P0 is bottleneck)

tstep= w+hg+L= Θ

�

n
p

+ pg+L

�
FDA125 APP Lecture 2: Foundations of parallel algorithms. 56 C. Kessler, IDA, Linköpings Universitet, 2003.

LogP model (1)

LogP model [Culler et al. 1993]

for the cost of communicating small messages (a few bytes)

4 parameters:

latency L
overhead o
gap g (models bandwidth)
processor number P

abstracts from network topology

0

1

P

P

time

o

o

g

L

send

recv

g

gap g = inverse network bandwidth per processor:

Network capacity is L=g messages to or from each processor.

L, o, g typically measured as multiples of the CPU cycle time.

transmission time for a small message:

2 �o+L if the network capacity is not exceeded

FDA125 APP Lecture 2: Foundations of parallel algorithms. 57 C. Kessler, IDA, Linköpings Universitet, 2003.

LogP model (2)

Example: Broadcast on a 2-dimensional hypercube

P0

P1

P2

P3

With example parameters P= 4, o= 2µs, g= 3µs, L = 5µs

P3

P2

P1

P0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

recv send

recv

recv

17 18

sendsend Remark: gap constraint does not apply to recv; send sequences

it takes at least 18µs to broadcast 1 byte from P0 to P1;P2;P3

Remark: for determining time-optimal broadcast trees in LogP, see

[Papadimitriou/Yannakakis’89], [Karp et al.’93]

FDA125 APP Lecture 2: Foundations of parallel algorithms. 58 C. Kessler, IDA, Linköpings Universitet, 2003.

LogP model (3): LogGP model

The LogGP model [Culler et al. ’95] extends LogP by parameter

G = gap per word, to model block communication

Communication of an n-word-block:

with the LogP-model: with the LogGP-model:

o

o

L

o

o

L

o

o

L

GGGG

o

o GGGG

o

o
sender

receiver

time

g g g g
o

o

L

g

tn = (n�1)g+L+2o t0n = o+(n�1)G+L+o

FDA125 APP Lecture 2: Foundations of parallel algorithms. 59 C. Kessler, IDA, Linköpings Universitet, 2003.

Summary

Parallel computation models

Shared memory: PRAM, PRAM variants

Message passing: Delay model, BSP, LogP, LogGP

parallel time, work, cost

Parallel algorithmic paradigms (up to now)

Parallel divide-and-conquer

(includes reduction and pointer jumping / recursive doubling)

Data parallelism

Fundamental parallel algorithms

Global sum

Prefix sums

List ranking

Broadcast

