TDDC78/TANA77/FDA125; Parallel computer architecture concepts.

Parallel computing — Motivation (1)

Supercomputing / High-Performance Computing

Large-scale computational problems in science and engineering:

- very large number of (floatingpoint) operations (FLOPs)
- would take too long time on a desktop PC or uniprocessor server
- Example: Weather prediction

Navier-Stokes equations

e.g. global weather prediction with cell size 1 mile \times 1 mile \times 1 mile, 200 FLOPs/cell/time step, 10-day forecast with 10-minute time step takes ca. 10^{15} FLOPs

- ightarrow takes about 10 days on a 1-GigaFLOP/s computer
- ightarrow takes a few minutes on a 1-TeraFLOP/s computer
- Example: Quantum chromodynamics,
- e.g., computing the mass of the proton: 1017 FLOPs
- ightarrow about 1 year on a uniprocessor server
- ightarrow 1 day on a 1-TeraFLOP/s computer

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

C. Kessler, IDA, Linköpings Universitet, 2007.

Parallel computing — Motivation (3)

Moore's Law (technology observation, holds since the 1970's):

#gates / chip area grow exponentially (ca. 40...50% / year)

BUT we observe (\approx 2003):

- current processor design, clock rate approaching physical limits complexity, production cost, leakage currents, heat/power problem
- limited instruction-level parallelism in programs

The only way to high-performance computing is parallel computing!

exploit additional (thread-level) parallelism

Will even affect mainstream computing platforms (e.g., desktop processors)

Dual-core, Quad-core, ..., Multi-core

Hardware-multithreading

So, what are parallel computers? How to program them?

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

C. Kessler, IDA, Linköpings Universitet, 2007

Parallel computing — Motivation (2)

More "Grand Challenges" in large-scale scientific computing:

- Computational chemistry
- e.g., molecular dynamics simulations
- Computational physics, particle physics, astrophysics
 e.g., galaxy simulation with 10¹¹ stars → ca. 1 CPU year per iteration
- Virtual Reality, graphics rendering, special effects
- Bioinformatics [CACM 47(11),
- e.g., simulating 100 μ s of protein folding \approx 10 25 machine instructions \to 3 years on a PetaFLOPS system or 10 6 centuries on a 3.2 GHz PC
- IBM BlueGene, [IBM Systems J. 40(2), 2001]

• :

TDDC78/TANA77/FDA125: Parallel computer architecture concepts. 4

C. Kessler, IDA, Linkōpings Universitet, 2007

Parallel computer

A parallel computer is a computer consisting of

- + two or more processors
- that can cooperate and communicate to solve a large problem faster,
- + one or more memory modules,
- + an interconnection network

that connects processors with each other and/or with the memory modules.

Multiprocessor: tightly connected processors, e.g. shared memory

Multicomputer: more loosely connected, e.g. distributed memory

Parallel architecture concepts

Classification of parallel computer architectures:

- by control structure
- by memory organization
- by interconnection topology
- by degree of synchronous execution

TDDC78/TANA77/FDA125: Parallel computer architecture concepts C. Kessler, IDA, Linköpings Universitet, 2007

Parallel architecture concepts (2)

Classification by memory structure

Vector computers

SIMD

(shared) memory

(interleaved memory banks)

- SIMD distributed memory

- 2. Distributed memory systems (b) Multicomputer (a) Array computers
- MMD (b1) distributed (local) memory (b2) distributed m. with global

address space (NCC-NUMA)

- 3. Shared memory systems
- (b) CC-NUMA (a) UMA (SMP)
- MIMD distributed shared memory MIMD shared memory

Parallel architecture concepts (1)

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

Classification by control structure [Flynn'72]

SISD single instruction stream, single data stream

SIMD single instruction stream, multiple data streams

One clock, one program memory, one program counter.

- + vector processors
- + VLIW processors
- array computers

MIMD multiple instruction streams, multiple data streams

Each processor has its own program counter

- + synchronous: central clock, central program memory (PRAM)
- + asynchronous: local clock, local program memory

SPMD single program, multiple data

Run the same program on each processor but on different data

Vector processor architecture (1)

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

C. Kessler, IDA, Linköpings Universitet, 2007

ct. assembly line manufacturing of cars etc. Principle: SIMD + pipelining

- + Idea: partition "deep" arithmetic circuits (e.g., floatingpoint-adder into d > 1 horizontal layers, called stages, of about equal depth Reduce clock cycle time such that each stage needs one cycle
- + Intermediate results of stage k are forwarded to stage k+1
- + The operands and result(s) are vectors, sequences (arrays) of floats
- + Stage k works on l-th vector + All stages work simultaneously, but on different components of the vectors
- + First result available after d cycles, is needed to fill the pipeline a startup phase of d-1 cycles component in cycle k+l

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

Vector processor architecture (2)

- + A vector operation, e.g. $C[1:N] \leftarrow A[1:N] + B[1:N]$ (elementwise addition) takes N+d-1 cycles (compared to $N\times d$ cycles without pipelining)
- + Condition: All component computations of a vector operation must be of same operation type and independent of each other
- + Scalar operations take *d* cycles no improvement.
- + Programs must be vectorized (by the programmer or compiler)
- + Some vector supercomputers: Cray 1, CDC Cyber 205, Fujitsu VP 100
- + Vector nodes in massively parallel supercomputers:

Suprenum VX, NEC SX, Intel i860, Cray SV1 node

- + Problem: Memory bandwidth must match the high CPU speed
- + In modern microprocessors, pipelining is applied at sub-instruction level.

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

11

C. Kessler, IDA, Linköpings Universitet, 2007.

Distributed memory architectures

- + scalable → "MPP"
- + fast, exclusive access to own local memory
- (b) Multicomputer

+ now out of fashion

+ e.g., MasPar MP1/2, Transputer networks

communication to neighbor PEs

- + MIMD, asynchronous
- + may consist of standard PC components
- + very successful
- + e.g., Cray T3E, IBM SP, PC clusters
- + access to remote variables only via explicit message passing
- + data structures of the user program (large arrays!)
 must be distributed across the processors

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

6

C. Kessler, IDA, Linköpings Universitet, 2007

C. Kessler, IDA, Linköpings Universitet, 2007

VLIW processors

VLIW: (very long instruction word)

- + multiple functional units working in parallel
- + single stream of long instruction words with explicitly pararallel subinstructions
- + requires static scheduling (→ compiler)

Compare to a superscalar processor:

- + multiple functional units
- + single stream of ordinary instructions (sequential program code, SISD)
- + multiple issue: k-way superscalar = up to k > 1 subsequent instructions may start execution simultaneously
 - Unit 1

 Unit 2

 Unit 1

 Unit 2

 Unit 1

 Unit 2

 Unit 3

 Unit 10

 Unit 10
- + dynamic instruction dispatcher maps instructions to available units

TDDC78/TANA77/FDA128: Parallel computer architecture concepts.

12 C. Kessler, IDA, Unicipings Universitet, 2007

Interconnection networks (1)

etwork

(a) Array computers (Systolic arrays)

+ SIMD, synchronous (common clock signal)

+ channel-based, synchronous

- = physical interconnection medium (wires, switches)
- + communication protocol
- (a) connecting processors with each other (DMS)
- (b) connecting processors with memory modules (SMS)

direct / static interconnection networks

direct networks with hardware routers

 \rightarrow offload processors from most communication work

switched / dynamic interconnection networks

Interconnection networks (2): simple topologies

sud linear array P - P - P - PP P P P 1 wire - bus saturation with many processors e.g. Ethernet ring PPPP e.g. Token Ring

Fat Tree = bandwidth-reinforced tree (e.g., TMC CM-5, SGI Altix 3700 Bx2)

C. Kessler, IDA, Linköpings Universitet, 2007

Interconnection networks (4): Hypercube

k-dimensional hypercube C_k has 2^k nodes

connect corresponding (= same index) prefix 0 resp. 1 to node indices nodes of the subhypercubes C $_{k extstyle{lem}{l}}$

- each node has degree k (= number of direct neighbors)
- + \forall (p_i, p_j) \exists path of length ≤ k hops

shortest path $p_i \rightarrow^* p_j$ has length $HD(p_i, p_j) = \#$ 1-bits in $i \oplus j$ (Hamming-distance)

+ routing: indices of neighbor nodes differ in 1 bit

Examples: Intel iPSC (1990); extended hypercube in SGI Origin 3000

Interconnection networks (3): fat tree

Example: SGI NUMAlink TM

dual fat tree

© 2003 SGI ture. White Paper, SGI, 2003 www.sgi.com bal Shared-Memory Architec-The SGI AltixTM 3000 Glo-Source: M. Woodacre et al.:

Fig. 3. 512-processor dual "fat tree" interconnect topology

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

[PPP] p.86-88

C. Kessler, IDA, Linköpings Universitet, 2007

Interconnection networks (5): Butterfly network

 $B_I = Switch$

Butterfly-network topology

 $+ B_k$ connects 2^k inputs to 2^k outputs using $k2^{k-1}$ switches

+ path from each entry to each exit (and vice versa) is unique

- + routing: j-th stage switches according to target index bit k-j
- + scalable: path length is k (logarithmic in # processors)

Example: SB-PRAM, Univ. Saarbrücken 2001

Interconnection networks (6): Crossbar

Crossbar

n input lines connected to n output lines by matrix of n^2 switches

status: either connected or open

- + very flexible (permutations, broadcast)
- + high throughput
- expensive (chip area, wiring)
- not scalable (typ. $n \le 32$)
- e.g. Alliant FX-8

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

The state of the s

Interconnection network topologies (8): Graph-theoretic properties

node degree

= max. # neighbors

diameter

= max. distance in hops,

where 1 hop = 1 switch-stage oder 1 interprocessor connection

bandwidth

connectivity

node connectivity, edge connectivity $\,\rightarrow\,$ fault tolerance

= max. #bytes/sec. for one connection

throughput

= max. #bytes/sec. for all simultaneously active connections

fault tolerance

= max. damage if a switch / processor fails

scalability

= asymptotic behaviour of node degree, diameter, ... for $p \to \infty$ "massively parallel": currently about $p \ge 64$

embeddability

= map the communication structure of the program (= virtual network) suitably to the physical network topology: minimize latency, contention

Interconnection networks (7): hybrid networks

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

Hybrid networks as combinations of multiple network types

(hierarchical networks)

+ Hyper-Crossbar (e.g. CP-PACS),

+ Ring of crossbars(e.g. Convex/HP Exemplar)

+ Ring of rings (e.g. KSR-1)

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

8

C. Kessler, IDA, Linköpings Universitet, 2007

Interconnection network topologies (9): Other issues

Routing deterministic or randomized usually not accessible / not visible to the programmer

 ← packet switching
 ion fixed packet format, variable route
 (cf. mail system)

+ 256 Application PEs

up to 2 floatingpoint operations per cycle (multiply&add DEC (Compaq) Alpha 21164 (EV5) RISC microprocessors at 300 MHz

ightarrow 600 MFLOPS peak performance per proc.

- + 13 Command PEs (log in, compile, edit)
- + 3 OS PEs (used by the operating system)
- + overall peak performance: 160.8 GFLOPS
- + 45.6 GB of memory
- + Interconnection network is a 3-D torus
- + Hardware / system support for shared address space
- + Short connections:
- e.g. 256 nodes as $4 \times 8 \times 8$ torus \Rightarrow largest distance 2+4+4=10 hops
- + low blocking, high bandwidth, fault tolerance

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

C. Kessler, IDA, Linköpings Universitet, 2007

23

Example: Monolith

Monolith www.nsc.liu.se/systems/monolith

- 200 dual-processor PCs mounted in a rack each with 2 Intel Xeon 2.2 GHz, 2 GB main memory, 80 GB disk memory
- → 400 processors (396 for users)
- → theoretical peak performance: 1.8 TFlops (achieved on LINPACK: 0.96 TFlops)
- 7 TB common main disk storage
- SCI (scalable coherent interface) network with own MPI impl. (ScaMPI). point-to-point message latency: 4.5µs for small messages point-to-point message bandwidth: 260 MB/s for large messages
- allocate processors using PBS batch queue system
- fastest supercomputer in Sweden 2002-2004: first entry in TOP500 in Nov 2002: rank 51, Nov 2003: rank 103

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

Example: Beowulf-class PC clusters

Characteristics:

- off-the-shelf (PC) nodes also (chip-)SMP ("constellation") Pentium, Itanium, Opteron, Alpha;
- commodity interconnect G-Ethernet, Myrinet, Infiniband, SCI
- Open Source Unix Linux, BSD
- Message passing computing (HPF) MPI, PVM

Advantages:

- best price-performance ratio
- + low entry-level cost
- + vendor independent
- + scalable (today: 64..8192)
- + rapid technology tracking

T. Sterling: The scientific workstation of the future may be a pile of PCs

Communications of the ACM 39(9), Sept. 1996

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

24

C. Kessler, IDA, Linköpings Universitet, 2007

Message passing

two-sided: sender executes send, receiver executes recv

usually: non-blocking send, blocking receive \rightarrow partial synchronization

sender sends access request, receiver's DMA handler executes it

one-sided (DRMA): direct remote memory access

TDDC78/TANA77/FDA125: Parallel C. Kessler, IDA, Linköpings Universitet, 2007

Message passing (software interface): Classification

Addressing:

two-sided, direct (sender names receiver explicitly; receiver may name sender)

two-sided, indirect (via named channels/ports or mailboxes)

one-sided (no explicit receive operation)

(DRMA = direct remote memory access)

Blocking:

synchronous asynchronous rendezvous (sender waits in send() until receive() completed) (sender waits in send() until receiver receives) (sender injects msg into comm.-system and continues)

Buffering:

buffered unbuffered (sender writes message to system buffer, continues) (sender responsible for buffering in a user data structure)

TDDC78/TANA77/FDA125: Parallel computer architecture concepts 27 C. Kessler, IDA, Linköpings Universitet, 2007

Overview of shared and virtual shared memory systems

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

26

C. Kessler, IDA, Linköpings Universitet, 2007

Shared memory architectures

NUMA = non-uniform memory access time VSM = virtual shared memory DSM = distributed shared memory COMA = cache-only memory architecture CC-NUMA = cache-coherent NUMA UMA = uniform memory access time e.g., Alliant FX8, SB-PRAM, Tera MTA e.g., Stanford DASH, SGI Origin e.g., Cray T3E (SHMEM) e.g., KSR1, KSR2

Cache issues (1) TDDC78/TANA77/FDA125: Parallel computer architecture concepts 28 C. Kessler, IDA, Linköpings Universitet, 2007

Cache = small, fast memory (SRAM) between processor and main memory contains copies of main memory words

cache hit = accessed word already in cache, get it fast

cache miss = not in cache, load from main memory (slower)

Memory page size: ... up to 8 KB (Mermaid) Cache line size: from 16 bytes (Dash) ...

Cache-based systems profit from

- + spatial access locality (access also other data in same cache line)
- + temporal access locality (access same location multiple times)
- + dynamic adaptivity of cache contents
- ightarrow suitable for applications with high (also dynamic) data locality

TDDC78/TANA77/FDA125: Parallel computer architecture concepts. 29 C. Kessler, IDA, Linköpings Universitet, 2007

Cache issues (2)

Mapping memory blocks → cache lines / page frames:

- direct mapped: $\forall j \exists ! i : B_j \mapsto C_i$, namely where $i \equiv j \mod m$.
- fully-associative: any memory block may be placed in any cache line
- set-associative

Replacement strategies (for fully- and set-associative caches)

- LRU least-recently used
- LFU least-frequently used

C. Kessler, IDA, Linköpings Universitet, 2007

Cache coherence and Memory consistency

Caching of shared variables leads to consistency problems

A cache management system is called coherent

if a read access to a (shared) memory location x reproduces always the value corresponding to the most recent write access to x.

→ no access to stale values

A memory system is consistent (at a certain time)

if all copies of shared variables in the main memory and in the caches are identical.

Permanent cache-consistency implies cache-coherence.

For performance reasons, weaker consistency models have been developed [Gharachorloo/Adve'96]

Cache issues (3): Memory update strategies

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

C. Kessler, IDA, Linköpings Universitet, 2007

(still considering single-processor system with cache)

Write-through

Write-through

- + consistency
- slow, write stall (→ write buffer)

Write-back

- + update only cache entry
- + write back to memory only when replacing cache line
- + write only if modified, marked by "dirty" bit for each C,
- not consistent,
- DMA access (I/O, other procs) may access stale values
- ightarrow must be protected by OS, write back on request

TDDC78/TANA77/FDA125. Parallel computer architecture concepts. 32 C. Kessler, IDA, Linköpings Universitet, 2000

Cache coherence protocols

Inconsistencies occur when modifying only the copy of a shared variable in a cache, not in the main memory and all other caches where it is held.

Write-update protocol

At a write access, all other copies in the system must be updated as well. Updating must be finished before the next access.

Write-invalidate protocol

Before modifying a copy in a cache,

all other copies in the system must be declared as "invalid".

Most cache-based SMPs use a write-invalidate protocol.

Updating / invalidating straightforward in bus-based systems (bus-snooping) otherwise, a directory mechanism is necessary

Cache-based SMP: Bus-Snooping

For bus-based SMP with caches and write-through strategy.

All relevant memory accesses go via the central bus.

Cache-controller of each processor listens to addresses on the bus:

- write access to main memory is recognized and committed to the own cache.
- bus is performance bottleneck ightarrow poor scalability

TDDC/78/TANA77/FDA125: Parallel computer architecture concepts.

35 C. Kessler, IDA, Linköpings Universitet, 2007.

DSM problem: False sharing

False sharing in cache- or page-based DSM systems

CC-NUMA: Directory-protocols for non-bus-based systems

No central medium:

- (a) \rightarrow no cache coherence (e.g. Cray T3E)
- (b) → directory lookup

Directory keeps the copy set for each cache line / memory block e.g. stored as bitvectors

- 1 presence bit per processor
- status bits

e.g. dirty-bit for the status of the main memory copy

See e.g. [Culler'98, Ch. 8]

TDDC78TAWA77FDA128: Parallel computer architecture concepts.

DSM problem: False sharing (cont.)

How to avoid false sharing?

Smaller cache lines / pages

- ightarrow false sharing less probable, but
- → more administrative effort

Programmer or compiler gives hints for data placement

→ more complicated

Time slices for exclusive use:

each page stays for $\geq d$ time units at one processor

Mirage

f false sharing?

How to reduce performance penalty of false sharing?

Use weaker consistency models

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

C. Kessler, IDA, Linköpings Universitet, 2007.

SGI 3800 - Node structure

User Guide to Compute Resources at NSC: The Origin 3000

C. Kessler, IDA, Linköpings Universitet, 2007

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

Example: SGI 3800 - Hardware structure

CC-NUMA architecture

- 128 MIPS 14000 RISC processors:
- 500 MHz, 4-way superscalar,
- 2 floatingpoint units
- ightarrow 1 GFLOPS peak performance
- ightarrow total: 128 GFLOPS peak performance
- 1 GByte main memory
- → aggregate: 128 GB main memory
- 8 MByte cache memory (Level-2, off-chip)
- → aggregate: 1 GB cache
- Cache line size 128 bytes
- Latency from memory to cache: 290...440 ns (dep. on where memory is)

TDDC78/TANA77/FDA125: Parallel computer architecture concepts C. Kessler, IDA, Linköpings Universitet, 2007.

SGI 3800 - Programming environment

- + Trusted IRIX MLS (Multi Level Security) operating system
- + LSF batch queue system
- + MPI, PVM, SHMEM and OpenMP for parallelization
- + C, C++, Fortran 77, Fortran 90
- + Linear algebra packages

BLAS 1, 2, 3, EISPACK, LINPACK, LAPACK, FFT, ...

- + lsload, lsmon, xlsmon tools display load information
- + perfex performance analysis tool, speedshop profiling
- + vampir MPI program execution and performance visualized

+ dbx, (totalview) debuggers

+ SecurID cards required for access

Superscalar/VLIW processor technology has reached its limits

- limited instruction-level parallelism in applications
- ightarrow no gain in adding even more functional units
- limited clock frequency, due to power consumption / heat dissipation
- limited chip area that can be reached within one clock cycle
- but "Moore's Law" will continue for exponential growth of chip area

Consequence

- → increase throughput by multiprocessing on chip
- ightarrow put (L2-cache) memory on chip

Strategies for chip multiprocessors:

- Hardware multithreading
- Multi-core processors
- Processor-in-memory (PIM)

DMS/NUMA SMP SMP

Hardware multithreading divides a physical CPU in 2 (or more) virtual CPUs

- OS and application see a dual-processor SMP system
- Each thread (virtual CPU) has its own context: private register set, PC, status register
- The virtual CPUs share the functional units

Multithreading techniques:

- Coarse-grain multithreading (e.g., switch on LOAD / cache miss)
- Cycle-by-cycle interleaving (e.g. SBPRAM)
- SMT/Hyperthreading (e.g. Intel Xeon (2002), later Pentium 4)

TDDC78/TANA77/FDA125: Parallel computer architecture concepts 43 C. Kessler, IDA, Linköpings Universitet, 2007.

Multi-Core Processors

Two or more complete processor cores (plus caches) fit on one chip

- typically: separate L1 caches, shared L2 cache and bus interface
- often combined with hardware multithreading in each core
- often several of these on a blade server

Examples

Intel CoreDuo/Xeon, HP PA-8800, IBM/Sony/Toshiba CELL, ... (virtually any new desktop/server processor after 2005) IBM POWER4/POWER5, AMD Opteron/Athlon, Sun Ultrasparc T1 Niagara,

By ca. 2012, expect hundreds of cores per processor chip!

Multithreading and Simultaneous Multithreading / Hyperthreading

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

Multiple threads share the functional units of a single processor

Chip multiprocessors (3): Processor-in-memory (PIM)

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

 \uparrow chip density $> 10^9$ gates/mm²,

 \rightarrow clock rate,

→ wire delays

Trend:

Idea: Put also memory modules and a scalable network on a chip

NUMA architecture

TDDC78/TANA77/FDA125: Parallel computer architecture concepts. 45

C. Kessler, IDA, Linköpings Universitet, 2007

Summary: Current categories of supercomputer architectures

MPP's – massively parallel multiprocessors typically: MIMD, distributed memory, special hardware, $p\gg 64$

Cray T3E, IBM SP-2, Cray XD1, ...

 \rightarrow expensive

Clusters - NOW, COW, Beowulf cluster

MIMD, distributed memory, $p \le 512$ and more \rightarrow replaced classical MPPs

SMS - shared memory multiprocessors

typically: MIMD, cache-based, $p \le 256$

symmetric SMS (SMP): bus / crossbar network, $p \le 64$

SMP servers

"scalable" CC-NUMA: SGI Origin 3000, SUN Enterprise 4000, ...

Chip multiprocessors (multithreaded, multicore)

Constellations - Clusters with few but heavyweight nodes

TOP-500 list (1) http://www.top500.org/

					-					
10	9	ω	7	6	ū	4	w	2		Rank
Oak Ridge National Laboratory United States	GSIC Center, Tokyo Institute of Technology Japan	NASA/Ames Research Center/NAS United States	Commissariat a l'Energie Atomique (CEA) France	NNSA/Sandla National Laboratories United States	Barcelona Supercomputing Center Spain	DOE/NNSA/LLNL United States	IBM Thomas J. Watson Research Center United States	NNSA/Sandia National Laboratories United States	DOE/NNSA/LLNL United States	
laguar - Cray XT3, 2.6 GHz dual 10424 Core Cray Inc.	TSUBAME Grid Cluster - Sun Fire x4600 Cluster, Opteron 2.4/2.6 GHz and ClearSpeed Accelerator, Infiniband NEC/Sun	Columbia - SGI Altix 1.5 GHz, Voltaire Infiniband SGI	Tera-10 - NovaScale 5160, Itanium2 1.6 GHz, Quadrics Bull SA	Thunderbird - PowerEdge 1850, 3.6 GHz, Infiniband Dell	MareNostrum - BladeCenter JS21 Cluster, PPC 970, 2.3 GHz, Myrinet IBM	ASC Purple - eServer pSeries p5 575 1.9 GHz IBM	BGW - eServer Blue Gene Solution	Red Storm - Sandia/ Cray Red Storm, Opteron 2.4 GHz dual core Cray Inc.	BueGene/L - eServer Bue Gene Solution IBM	
10424	11088	10160	9968	9024	10240	12208	40960	26544	131072	
2006	2006	2004	2006	2006	2006	2006	2005	2006	2005	
2006 43480	2006 47380	2004 51870	2006 52840	2006 53000	2006 62630	2006 75760	2005 91290	2006 101400 127411	2005 280600 367000	Rmax
54204.8	82124.8	60960	63795.2	64972.8	94208	92781	114688	127411	367000	Rpeak

List of the world-wide 500 most powerful supercomputer installations

- updated and published twice a year (June and November)
- sorted according to runtime of the LINPACK benchmark program

November 2006:

No swedish supercomputer in the TOP500 :-(

fastest in Linköping: Monolith (Rank 51 when introduced 2002)

÷

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

Summary: Currently successful concepts in supercomputer architectures

C. Kessler, IDA, Linköpings Universitet, 2007

use off-the-shelf components wherever possible!

- standard processors (Itanium, Opteron, PowerPC, ...)
- ightarrow participate in the steady improvements in microprocessor technology
- → cheaper than self-designed processors (esp., time-to-market!)
- simple, scalable interconnection networks, standard protocols
- ightarrow flexible machine sizes, easy upgrading
- hardware multithreading
- memory hierarchy to speed up memory access (caches)
 exploits spatial and temporal locality in memory accesses of the program
- system support for a shared address space or (virtual) shared memory
- standard languages, standard programming environments
 Fortran, C, PVM / MPI, pthreads, HPF / OpenMP
- standard OS UNIX-derivates, Linux

TDDC78TANA77/FDA125.Parallel computer architecture concepts. 48 C. Kessler, IDA, Linköpings Universitet, 2007

Top-500 list (2)

- + ranking based on system performance on a real application program takes also memory bandwidth, cache sizes, compiler etc. into account, is more fair than ranking by pure peak performance
- LINPACK = solving a 1000×1000 dense linear equation system is a good-natured, regular application:
- high degree of parallelism,
- + $O(n^3)$ computation on $O(n^2)$ data
- + much more computation than communication
- high data locality
- \Rightarrow ranking says nothing about performance on irregular applications!

TDDC78/TANA77/FDA125: Parallel computer architecture concepts C. Kessler, IDA, Linköpings Universitet, 2007

TOP-500 list (3): Performance development

Grid computing TDDC78/TANA77/FDA125: Parallel computer architecture concepts 5

C. Kessler, IDA, Linköpings Universitet, 2007

+ distributed computing over a wide-area network

- + multiple administrative domains participate
- + often for special-purpose applications

Computational grids

clusters of clusters, VPN backbone → virtual supercomputer center central access control mechanism, scheduler

Peer-to-Peer computing

file-sharing or cycle-sharing self-organizing networks of end-user devices internet-based, no central administration

Data grids

distributed database (usually for special-purpose data)

Web services

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

TOP-500 list (4): Trends in parallel architectures

C. Kessler, IDA, Linköpings Universitet, 2007

Computational grids

52

C. Kessler, IDA, Linkopings Universitet, 2007

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

- connect multiple parallel machines to a huge virtual supercomputer
- coordinated use of geographically distributed resources
- heterogeneous hardware but uniform software layer e.g. MPI, RPC
- users have access to massive computation power on demand don't care about where the work is done pay for service instead of investment
- ightarrow analogy to electrical power grid
- requires performance-portable parallel programs good-natured task farming applications
- actual execution platform (structure, processors, network, parameters...) not visible to the end user
- Some projects: Legion, GLOBUS, Condor, NorduGrid, SweGrid, ...

TDDC78/TANA77/FDA125: Parallel computer architecture concepts

Peer-to-peer computing

- Internet as interconnection network
- gather unused cycles in millions of end-user PCs/workstations:
 run a task of a supercomputing application as screensaver
- Example: SETI@home, 2002: \approx 400000 machines, average 26 TFlops (search for extraterrestrial intelligence)
- "Peer-to-peer computing" (P2P)
 comp. equivalent to P2P file sharing systems (Napster, Gnutella, ...)
- highly heterogeneous and dynamic
- commercial aspects versus voluntary cooperation
- security problem (application security vs. host security)

TDDC78/TANA77/FDA125: Parallel computer architecture concepts.

C. Kessler, IDA, Linköpings Universitet, 2007

Summary: Parallel computer architecture concepts

C. Kessler, IDA, Linköpings Universitet, 2007

For solving large problems in high-performance computing, we need parallel computer systems with thousands to millions of processors.

Parallel computer architecture classification:

- control organization: SIMD, MIMD
- memory organization: shared memory, distributed memory
- interconnection topology

Parallel computer architecture classes considered:

- SIMD and instruction-level parallelism: pipelining, VLIW
- MIMD shared memory (SMP, CC-NUMA, multithreading, CMP)
- MIMD distributed memory, message passing (Beowulf clusters)
- MIMD distributed, loosely coupled (computational grids, comp. P2P)