
1

Christoph Kessler, IDA,
Linköpings universitet, 2007.

FDA125 Advanced Parallel Programming

Run-Time Parallelization
and Thread-Level Speculation

Christoph Kessler, IDA

2FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Goal of run-time parallelization

Typical target: irregular loops

for (i=0; i<n; i++)
a[i] = f (a[g(i)], a[h(i)], ...);

Array index expressions g, h... depend on run-time data

Iterations cannot be statically proved independent
(and not either dependent with distance +1)

Principle:
At runtime, inspect g, h ... to find out the real dependences
and compute a schedule for partially parallel execution

Can also be combined with speculative parallelization

3FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Overview

Run-time parallelization of irregular loops

DOACROSS parallelization

Inspector-Executor Technique (shared memory)

Inspector-Executor Technique (message passing)

Privatizing DOALL Test *

Speculative run-time parallelization of irregular loops *

LRPD Test *

General Thread-Level Speculation

Hardware support *

* = not yet covered in this lecture. See the references.
Christoph Kessler, IDA,
Linköpings universitet, 2007.

FDA125 Advanced Parallel Programming

Runtime parallelization

DOACROSS Parallelization

5FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

DOACROSS Parallelization

Useful if dependence distances are unknown, but often > 1

Allow independent subsequent loop iterations to overlap

Bilateral synchronization

Simple example for shared memory:

for (i=0; i<n; i++)
a[i] = f (a[g(i)], ...);

sh flag done[n]; // flag array, initialized to 0 (not done);

forall (i=0; i<n; i++) { // spawn n threads, one per iteration
if (g(i)<i) wait until done[g(i)]);
a[i] = f (a[g(i)], ...);
set(done[i]);

}

A kind of run-time
software pipelining Christoph Kessler, IDA,

Linköpings universitet, 2007.

FDA125 Advanced Parallel Programming

Runtime parallelization

Inspector-Executor Technique

2

7FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (1)

Compiler generates 2 pieces of customized code for such loops:

Inspector

calculates values of index expression
by simulating whole loop execution

typically, based on sequential version of the source loop
(some computations could be left out)

computes implicitly the real iteration dependence graph

computes a parallel schedule as (greedy) wavefront traversal of the
iteration dependence graph in topological order

all iterations in same wavefront are independent

schedule depth = #wavefronts = critical path length

Executor

follows this schedule to execute the loop

8FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (2)

Source loop:

for (i=0; i<n; i++)
a[i] = f (a[g(i)], a[h(i)], ...);

Inspector:

int wf[n]; // wavefront indices
int depth = 0;
for (i=0; i<n; i++)

wf[i] = 0; // init.
for (i=0; i<n; i++) {

wf[i] = max (wf[g(i)], wf[h(i)], ...) + 1;
depth = max (depth, wf[i]);

}

Inspector considers only flow dependences (RAW),
anti- and output dependences to be preserved by executor

9FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (3)

Example:

for (i=0; i<n; i++)
a[i] = ... a[g(i)] ...;

Executor:

float aold[n]; // buffer array
aold[1:n] = a[1:n];
for (w=0; w<depth; w++)

forall (i, 0, n, #) if (wf[i] == w) {
a1 = (g(i) < i)? a[g(i)] : aold[g(i)];
... // similarly, a2 for h etc.
a[i] = f (a1, a2, ...);

}

122010wf[i]

543210i

yesyesyesnoyesnog(i)<i ?

011202g(i)

22

1

00 2

1 5

3 4

iteration (flow) dependence graph

10FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (4)

Problem: Inspector remains sequential – no speedup

Solution approaches:
Re-use schedule over subsequent iterations of an outer loop
if access pattern does not change

amortizes inspector overhead across repeated executions

Parallelize the inspector using doacross parallelization
[Saltz,Mirchandaney’91]

Parallelize the inspector using sectioning [Leung/Zahorjan’91]

compute processor-local wavefronts in parallel, concatenate

trade-off schedule quality (depth) vs. inspector speed

Parallelize the inspector using bootstrapping [Leung/Z.’91]

Start with suboptimal schedule by sectioning,
use this to execute the inspector refined schedule

11FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (5) - DMS

Global address space (GAS) languages for DMS
(HPF, UPC, NestStep, Co-Array Fortran, ...)

Compiler must insert necessary Send / Recv operations
to move data from owning to reading processor

Necessary even for (irregular) parallel loops (iterations are statically
asserted to be independent, e.g. by user directive)

Can use inspector-executor method for run-time scheduling of
communication in irregular loops

Inspector:

determines communication map + reverse map (schedule):
Who has to send which owned elements to whom

allocate buffer for received elements; adapt access functions

Executor:

communicates according to schedule

executes loop
12FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (5) - DMS

Example:

forall (i, 0, 12, #)
y[i] = y[i] + a [ip[i]] * x[i]

y[1:n], a[1:n], ip[1:n], x[1:n]
aligned and block-distributed across 3 processors P0, P1, P2

Compiler applies owner-computes rule

P2P1P1P2P2P1P0P0P2P1P1P0owner of a [ip[i]]

94510843010651ip[i]

P2P2P2P2P1P1P1P1P0P0P0P0owner of y[i]

11109876543210i

3

13FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (6) - DMS

Inspector step 1:
construct communication map
(here, in parallel)

lb[0:1]a[4], a[5]P1P2

lb[2]a[8]P2

lb[0:1]a[0], a[3]P0P1

lb[2]a[10]P2

lb[0:1]a[5], a[6]P1P0

local buffer area
(private)

datasourcedest

14FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (7) - DMS

Inspector step 2:
construct reverse communication map
(communication schedule)

lb[2]a[9]P1P2

lb[2]a[10]P0P2

lb[0:1]a[4], a[5]P2P1

lb[0:1]a[5], a[6]P0P1

lb[0:1]a[0], a[3]P1P0

remote buffer areadatadestsource

15FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (8) - DMS

P2P1P1P2P2P1P0P0P2P1P1P0owner of a [ip[i]]

a
+1

lb
+1

lb
+0

a
+2

lb
+2

a
+0

lb
+1

lb
+0

lb
+2

lb
+1

lb
+0

a
+1

accesstable [i]
= where to find a[ip[i]]

in local memory

94510843010651ip[i]

P2P2P2P2P1P1P1P1P0P0P0P0owner of y[i]

11109876543210i

Inspector, step 3:

Construct modified access functions
(represented as local table of pointers)

Remark: Communication maps and address tables can be reused
if ip[:] does not change between subsequent executions of the source loop.

16FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (9) – DMS

Executor:

// send data according to reverse communication map:
for each Pj in dest

send requested a[:] elements to Pj
// receive data according to communication map:
for each Pi in source

recv a[:] elements, write to respective lb entries
// Remark: the above part can be skipped in subsequent
// executions of the executor if ip[] and a[] do not change.

// execute loop with modified access function:
forall (i, 0, 12, #)

y[i] = y[i] + *(accesstable[i]) * x[i];

17FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Some references on run-time parallelization

R. Cytron: Doacross: Beyond vectorization for multiprocessors. Proc. ICPP-1986

D. Chen, J. Torrellas, P. Yew: An Efficient Algorithm for the Run-time Parallelization of DOACROSS
Loops, Proc. IEEE Supercomputing Conference, Nov. 2004, IEEE CS Press, pp. 518-527

R. Mirchandaney, J. Saltz, R. M. Smith, D. M. Nicol, K. Crowley:
Principles of run-time support for parallel processors,
Proc. ACM ICS-88 Int. Conf. on Supercomputing, July 1988, pp. 140-152.

J. Saltz and K. Crowley and R. Mirchandaney and H. Berryman:
Runtime Scheduling and Execution of Loops on Message Passing Machines,
Journal on Parallel and Distr. Computing 8 (1990): 303-312.

J. Saltz, R. Mirchandaney: The preprocessed doacross loop.
Proc. ICPP-1991 Int. Conf. on Parallel Processing.

S. Leung, J. Zahorjan: Improving the performance of run-time parallelization.
Proc. ACM PPoPP-1993, pp. 83-91.

Lawrence Rauchwerger, David Padua:
The Privatizing DOALL Test: A Run-Time Technique for DOALL Loop Identification and Array Privatization.
Proc. ACM ICS-94 Int. Conf. on Supercomputing, July 1994, pp. 33-45.

Lawrence Rauchwerger, David Padua:
The LRPD Test: Speculative Run-Time Parallelization of Loops with Privatization and Reduction
Parallelization. Proc. ACM SIGPLAN PLDI-95, 1995, pp. 218-232.

Christoph Kessler, IDA,
Linköpings universitet, 2007.

FDA125 Advanced Parallel Programming

Thread-Level Speculation

4

19FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Speculative execution

For automatic parallelization of sequential code where
dependences are hard to analyze statically

Works on a task graph
constructed implicitly and dynamically

Speculate on:
control flow, data independence, synchronization, values
We focus on thread-level speculation (TLS) for CMP/MT processors.
Speculative ILP is not considered here.

Task:

statically: Connected, single-entry subgraph of the control-
flow graph

Basic blocks, loop bodies, loops, or entire functions

dynamically: Contiguous fragment of dynamic instruction
stream within static task region, entered at static task entry

20FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Speculative execution of tasks

Speculation on inter-task control flow

After having assigned a task,
predict its successor task and start it speculatively

Speculation on data independence

For inter-task memory data (flow) dependences

conservatively: await write (memory synchronization, message)

speculatively: hope for independence and continue (execute the
load)

Roll-back of speculative results on mis-speculation (expensive)

When starting speculation, state must be buffered

Squash an offending task and all its successors, restart

Commit speculative results when speculation resolved to correct

Task is retired

21FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

TLS Example

Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

Exploiting module-level
speculative parallelism
(across function calls)

22FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Data dependence problem in TLS

Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

23FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Selecting Tasks for Speculation

Small tasks:
too much overhead (task startup, task retirement)

low parallelism degree

Large tasks:

higher misspeculation probability

higher rollback cost

many speculations ongoing in parallel may saturate the
resources

Load balancing issues
avoid large variation in task sizes

Traversal of the program’s control flow graph (CFG)

Heuristics for task size, control and data dep. speculation

24FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

TLS Implementations

Software-only speculation

for loops [Rauchwerger, Padua ’94, ’95]

...

Hardware-based speculation

Typically, integrated in cache coherence protocols

Used with multithreaded processors / chip multiprocessors
for automatic parallelization of sequential legacy code

If source code available, compiler may help e.g. with
identifying suitable threads

5

25FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Some references on speculative execution /
parallelization

T. Vijaykumar, G. Sohi: Task Selection for a Multiscalar Processor.
Proc. MICRO-31, Dec. 1998.

J. Martinez, J. Torrellas: Speculative Locks for Concurrent Execution of Critical
Sections in Shared-Memory Multiprocessors. Proc. WMPI at ISCA, 2001.

F. Warg and P. Stenström: Limits on speculative module-level parallelism in
imperative and object-oriented programs on CMP platforms. Pr. IEEE PACT 2001.

P. Marcuello and A. Gonzalez: Thread-spawning schemes for speculative
multithreading. Proc. HPCA-8, 2002.

J. Steffan et al.: Improving value communication for thread-level speculation.
HPCA-8, 2002.

M. Cintra, J. Torrellas: Eliminating squashes through learning cross-thread
violations in speculative parallelization for multiprocessors. HPCA-8, 2002.

Fredrik Warg and Per Stenström: Improving speculative thread-level parallelism
through module run-length prediction. Proc. IPDPS 2003.

F. Warg: Techniques for Reducing Thread-Level Speculation Overhead in Chip
Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

T. Ohsawa et al.: Pinot: Speculative multi-threading processor architecture
exploiting parallelism over a wide range of granularities. Proc. MICRO-38, 2005.

