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Run-Time Parallelization
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Goal of run-time parallelization

Typical target:  irregular loops

for ( i=0; i<n; i++)
a[i]  =  f ( a[ g(i) ], a[ h(i) ], ... );

Array index expressions g, h... depend on run-time data

Iterations cannot be statically proved independent
(and not either dependent with distance +1)

Principle:
At runtime, inspect g, h ... to find out the real dependences
and compute a schedule for partially parallel execution

Can also be combined with speculative parallelization
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Overview

Run-time parallelization of irregular loops

DOACROSS parallelization

Inspector-Executor Technique (shared memory)

Inspector-Executor Technique (message passing)

Privatizing DOALL Test *

Speculative run-time parallelization of irregular loops *

LRPD Test *

General Thread-Level Speculation

Hardware support *

* = not yet covered in this lecture. See the references.
Christoph Kessler, IDA, 
Linköpings universitet, 2007.
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DOACROSS Parallelization

Useful if dependence distances are unknown, but often > 1

Allow independent subsequent loop iterations to overlap

Bilateral synchronization

Simple example for shared memory:

for ( i=0; i<n; i++)
a[i]  =  f ( a[ g(i) ], ... );

sh flag done[n];   // flag array, initialized to 0 (not done);

forall ( i=0; i<n; i++) {    // spawn n threads, one per iteration
if (g(i)<i)   wait until done[ g(i) ] );
a[i]  =  f ( a[ g(i) ], ... );
set( done[i] );

}

A kind of run-time
software pipelining Christoph Kessler, IDA, 

Linköpings universitet, 2007.
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Inspector-Executor Technique (1)

Compiler generates 2 pieces of customized code for such loops:  

Inspector

calculates values of index expression 
by simulating whole loop execution

typically, based on sequential version of the source loop
(some computations could be left out)

computes implicitly the real iteration dependence graph

computes a parallel schedule as (greedy) wavefront traversal of the 
iteration dependence graph in topological order

all iterations in same wavefront are independent

schedule depth = #wavefronts = critical path length

Executor

follows this schedule to execute the loop
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Inspector-Executor Technique (2)

Source loop:

for ( i=0; i<n; i++)
a[i]  =  f ( a[ g(i) ], a[ h(i) ], ... );

Inspector:

int wf[n];  // wavefront indices
int depth = 0;
for (i=0; i<n; i++)

wf[i] = 0;   // init.
for (i=0; i<n; i++) {

wf[i] = max ( wf[ g(i) ], wf[ h(i) ], ... ) + 1;
depth = max ( depth, wf[i] );

}

Inspector considers only flow dependences (RAW),
anti- and output dependences to be preserved by executor

9FDA125, C. Kessler, IDA, Linköpings universitet, 2007.

Inspector-Executor Technique (3)

Example:     

for (i=0; i<n; i++)
a[i] = ... a[ g(i) ] ...;

Executor:

float aold[n];  // buffer array
aold[1:n] = a[1:n];
for (w=0; w<depth; w++)

forall (i, 0, n, #)  if (wf[i] == w)  {
a1 = (g(i) < i)? a[g(i)] : aold[g(i)];
...  // similarly, a2 for h etc.
a[i] =  f ( a1, a2, ... );

}
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Inspector-Executor Technique (4)

Problem: Inspector remains sequential – no speedup

Solution approaches:
Re-use schedule over subsequent iterations of an outer loop
if access pattern does not change

amortizes inspector overhead across repeated executions

Parallelize the inspector using doacross parallelization
[Saltz,Mirchandaney’91]

Parallelize the inspector using sectioning [Leung/Zahorjan’91]

compute processor-local wavefronts in parallel, concatenate

trade-off schedule quality (depth) vs. inspector speed

Parallelize the inspector using bootstrapping [Leung/Z.’91]

Start with suboptimal schedule by sectioning, 
use this to execute the inspector refined schedule
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Inspector-Executor Technique (5) - DMS

Global address space (GAS) languages for DMS
(HPF, UPC, NestStep, Co-Array Fortran, ...)

Compiler must insert necessary Send / Recv operations
to move data from owning to reading processor

Necessary even for (irregular) parallel loops  (iterations are statically
asserted to be independent, e.g. by user directive)

Can use inspector-executor method for run-time scheduling of 
communication in irregular loops

Inspector: 

determines communication map + reverse map (schedule):
Who has to send which owned elements to whom

allocate buffer for received elements;  adapt access functions

Executor:

communicates according to schedule

executes loop
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Inspector-Executor Technique (5) - DMS

Example:

forall (i, 0, 12, #)
y[i]  =  y[i] + a [ ip[i] ] * x[i]

y[1:n],  a[1:n],  ip[1:n],  x[1:n]   
aligned and block-distributed across 3 processors P0, P1, P2

Compiler applies owner-computes rule

P2P1P1P2P2P1P0P0P2P1P1P0owner of a [ ip[i] ]

94510843010651ip[i]

P2P2P2P2P1P1P1P1P0P0P0P0owner of y[i]

11109876543210i
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Inspector-Executor Technique (6) - DMS

Inspector step 1: 
construct communication map
(here, in parallel)

lb[0:1]a[4], a[5]P1P2

lb[2]a[8]P2

lb[0:1]a[0], a[3]P0P1

lb[2]a[10]P2

lb[0:1]a[5], a[6]P1P0

local buffer area 
(private)

datasourcedest
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Inspector-Executor Technique (7) - DMS

Inspector step 2: 
construct reverse communication map
(communication schedule)

lb[2]a[9]P1P2

lb[2]a[10]P0P2

lb[0:1]a[4], a[5]P2P1

lb[0:1]a[5], a[6]P0P1

lb[0:1]a[0], a[3]P1P0

remote buffer areadatadestsource
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Inspector-Executor Technique (8) - DMS

P2P1P1P2P2P1P0P0P2P1P1P0owner of a [ ip[i] ]
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lb
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lb
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lb
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lb
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lb
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accesstable [i]
= where to find a[ip[i]]

in local memory

94510843010651ip[i]

P2P2P2P2P1P1P1P1P0P0P0P0owner of y[i]

11109876543210i

Inspector, step 3:

Construct modified access functions
(represented as local table of pointers)

Remark:   Communication maps and address tables can be reused
if ip[:] does not change between subsequent executions of the source loop.
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Inspector-Executor Technique (9) – DMS

Executor:   

// send data according to reverse communication map:
for each Pj in dest

send requested a[:] elements to Pj
// receive data according to communication map:
for each Pi in source

recv a[:] elements, write to respective lb entries
// Remark:  the above part can be skipped in subsequent
//       executions of the executor if ip[] and a[] do not change.

// execute loop with modified access function:
forall (i, 0, 12, #) 

y[i] = y[i] + *( accesstable[i] ) * x[i];
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Speculative execution

For automatic parallelization of sequential code where 
dependences are hard to analyze statically

Works on a task graph
constructed implicitly and dynamically

Speculate on:
control flow, data independence, synchronization, values
We focus on thread-level speculation (TLS) for CMP/MT processors. 
Speculative ILP is not considered here.

Task:

statically: Connected, single-entry subgraph of the control-
flow graph

Basic blocks, loop bodies, loops, or entire functions

dynamically: Contiguous fragment of dynamic instruction 
stream within static task region, entered at static task entry
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Speculative execution of tasks 

Speculation on inter-task control flow

After having assigned a task, 
predict its successor task and start it speculatively

Speculation on data independence

For inter-task memory data (flow) dependences 

conservatively: await write (memory synchronization, message)

speculatively: hope for independence and continue (execute the 
load)

Roll-back of speculative results on mis-speculation  (expensive)

When starting speculation, state must be buffered

Squash an offending task and all its successors, restart

Commit speculative results when speculation resolved to correct

Task is retired
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TLS Example

Source:  F. Warg: Techniques for Reducing Thread-Level Speculation Overhead 
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

Exploiting module-level
speculative parallelism
(across function calls)
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Data dependence problem in TLS

Source:  F. Warg: Techniques for Reducing Thread-Level Speculation Overhead 
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.
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Selecting Tasks for Speculation

Small tasks:
too much overhead (task startup, task retirement)

low parallelism degree

Large tasks:

higher misspeculation probability

higher rollback cost

many speculations ongoing in parallel may saturate the 
resources

Load balancing issues
avoid large variation in task sizes

Traversal of the program’s control flow graph (CFG)

Heuristics for task size, control and data dep. speculation
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TLS Implementations

Software-only speculation

for loops   [Rauchwerger, Padua ’94, ’95]

...

Hardware-based speculation

Typically, integrated in cache coherence protocols

Used with multithreaded processors / chip multiprocessors
for automatic parallelization of sequential legacy code

If source code available, compiler may help e.g. with 
identifying suitable threads
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