Static Clustering and Scheduling

Notions of Clustering, Scheduling, Granularity Clustering, Scheduling for Delay Model Clustering, Scheduling for LogP Model

Example

Mapping to distributed systems

- Two principle approaches:
- Distribute the data
 - Each array element δ[k] is assigned to a processor
 - Computation follows
- 2. Cluster/Schedule the computations
 - Each computation is scheduled individually
 - Consumed array elements $\delta \cdot [k-1] \delta \cdot [k] \delta \cdot [k+1]$ and produced array elements $\delta \cdot [k]$ become local variables of the tasks
 - Minimize overall execution time for a cost model
 - Clustering: for arbitrary many processors
 - Scheduling: for P processors

Problem

- Given a task Graph
 - Derived from a data parallel program
 - Directly programmed
- Different concrete target machines modeled by cost model
 - Number of processors
 - Performance of processors
 - Net performance (latency, bandwidth)
- Minimize execution time automatically for different instances

Definition Clustering

- Given a task graph *T*=(*N,E*) and cost functions representing maximum costs for
 - Computation $c: N \to \mathbb{N}$
 - Communication $L: E \to \mathbb{N}$
- A clustering C is a relation $N \to (\mathbb{N}, \mathbb{N})$ where
 - C is complete in N (each node gets a starting time t(v) and a processor number p(v))
 - $(u,v) \in E \land (t,p) \in C(v)$ ⇒ $\exists (t',p') \in C(u): t'+c(u)+L(u,v) \le t \lor \exists (t',p) \in C(u): t'+c(u) \le t$ (starting times obey precedence relation and communication delay)
- Completion time T(C)=max $\{t + c(v): (t, p) \in C(v) \text{ for any } v\}$

Definition Scheduling

- Given a task graph TG=(N,E) and cost functions representing maximum costs c and L
- A schedule S is a relation $N \to (\mathbb{N}, P)$ where
 - S is complete in N (each node gets a starting time t(v) and a processor number $p(v) \in [1...P]$
 - $(u,v) \in E \land (t,p) \in S(v) \Rightarrow$ $\exists (t',p') \in S(u): t' + c(u) + L(u,v) \le t \lor$ $\exists (t',p) \in S(u): t' + c(u) \le t$ (starting times obey precedence relation and communication delay)
- Completion time: $T(S)=\max \{t + c(v): (t, p) \in S(v) \text{ for any } v\}$

Optimization

- An optimum clustering C_{OPT} of a task graph TG is a clustering with $T(C_{\mathrm{OPT}}) \leq T(C)$ for all other clusterings C of TG
- An optimum schedule S_{OPT} of a task graph TG and a number of processors P is a schedule with $T(S_{\text{OPT}}) \leq T(S)$ for all other schedules S of TG and P
- It is NP hard to find the optimum clustering and optimum schedule, resp., for a general task graph TG (even for the simplest cost models, e.g. uniform computation costs, no communication costs)

Optimization NP hard

- In practice ok?
 - Sometimes exponential solutions are exactable if handy for practical relevant cases (minimum distribution configuration – ILP solver)
 - Unfortunately not for clustering and scheduling
- Find special cases allowing optimum solutions
- Find approximation schemata
- Find approximations with constant factor approximations
- Heuristics are ultima ratio!

7

Example: Work opt. prefix sums

```
right[0...n]=n;
for (i=1;i<n;i*=2) {
forall (p=0;p<n;p++) in paralle]{
    if ((p+1) mod i = 0)
        right[p]=right[p-i/2]+right[p];
}
for (i=n;i<0;i/=2) {
forall (p=0;p<n;p++) in paralle]{
    if ((p+1) mod i=(i/2) & p>i)
        right[p]=right[p-i/2]+right[p];
}
if (p=1) mod i=(i/2) & p>i)
right[p]=right[p-i/2]+right[p];
}
```

Example: Task graph prefix sums

10

Clustering depicted as Gantt-Chart

Send/Receive Task Graphs

Cluster Receive Task Graphs

- Order all u_i non-increasingly in $c(u_i) + L(u_i, v)$
- Let $p(u_1) = p(v)$
- Stepwise add the first remaining task u_i to p(v) until:

$$\sum_{j \in [1...i]} c(u_j) \ge c(u_{j+1}) + L(u_{i+1}, v)$$

Optimum solution!

Observation

- If min $c(u_i) \ge \max L(u_i, v)$ only $p(u_1) = p(v)$
- All other tasks computed in parallel
- In general: parallel computation always pays
- Property of a task graph and cost functions under a certain cost model: granularity

14

Definition Granularity

- Ratio computation / communication costs
- In order to enable quantitative conclusions, we define:
 - Granularity G(v) of a task v: $G(v) = \min(G_{in}(v), G_{out}(v))$ $G_{in}(v) = \min_{u_i \in Pred(v)} : C(u_i) / \max_{u_i \in Pred(v)} L(u_i, v)$ $G_{out}(v) = \min_{u_i \in Succ(v)} : C(u_i) / \max_{u_i \in Succ(v)} L(u_i, v)$
 - \blacksquare Granularity G(TG) of a task graph TG=(N,E) : $G(TG)=\min_{v\in N}:G(v)$
- Task graph TG is coarse grained iff $G(TG) \ge 1$
- Task graph TG is fine grained iff G(TG) < 1

Coarse Granularity Clustering

- For any coarse grained task graph TG a clustering C(TG) with constant performance: $T(C) \le 2 \ T(C_{\mathrm{OPT}})$ can be found in polynomial time
- Constructive: layer-wise
 - each task v to a separate processor
 - $\quad \text{at starting time } t(v) \max_{u_i \in \mathit{Pred}(v)} t(u_i) + c(u_i) + L(u_i, v)$
- Proof (sketch):
 - $T(C_{\mathrm{OPT}}) \geq \sum_{v \in \text{Longest Path in } TG} c(v)$
 - $= \text{ As each } c(v) \geq \max_{u_i \in \mathit{Pred}(v)} L(u_i, v) \text{ communications are smaller than } \Sigma_{v \in \mathsf{Longest Path in } \mathit{TG}} c(v)$

16

Optimum Clustering Coarse Trees

 Layer-wise, apply algorithm for receive graphs from the leaves to the root

Generalize on all task graphs

- For each output node of a *TG* generate tree of predecessors
- Introduces a lot of redundancy
- Find optimum clustering of each tree individually
- Unfortunately exponential if TG contains sub-structures like
- Trees have exponential many nodes

17

v ...

Linear Clustering

- Computing two tasks in direct precedence relation on the same processor cannot increase the overall computation time
- Any clustering constructed by merging the tasks of two processors only if all tasks are on a path in TG is called linear
- Any linear clustering C of a coarse grained TG guarantees $T(C) \le 2 T(C_{OPT})$
- If *TG* is coarse grained the optimum clustering is a linear one

Optimum is Linear Clustering

Proof by iteration over stepwise separation of independent tasks on a processor

Linear clustering I

Linear clustering II

19

Non-Linear clustering

Heuristic: cluster longest path

- Computation dominated by longest (most expensive) path
- Idea: save communications on the longest (most expensive) path by computing its task on the same processor
- Iteratively *TG* remove the longest path from the until its empty
- Usually saves time and processors (both not guaranteed)

Longest Path Linear clustering

Min. Processor Linear Clustering

- Linear clustering is a node disjoined path covering Π
- Obviously $|\Pi| = P$
- Minimal path cover of TG=(N,E) is maximum matching in bipartite graph: $M=(\{x_v | v \in N\} \cup \{y_v | v \in N\}, \{(x_u,y_v) | (u,v) \in E\}$
- Computable in polynomial time $O(|N/^{1/2} + |E/)$

26

Example

Example

27

28

Linear clustering performance

- Any linear clustering C of TG guarantees $T(C) \le (1+1/G(TG)) \ T(C_{\mathrm{OPT}})$
- Proof (sketch):
 - $T(C_{\text{OPT}}) \ge \sum_{v \in \text{Longest Path in } TG} c(v)$
 - As each 1/G $c(v) \ge \max_{u_i \in Pred(v)} L(u_i, v)$ communications are smaller than 1/G(TG) $\Sigma_{v \in \text{Longest Path in } TG}$ c(v)
- Linear clustering cannot increase the overall computation time
- Bad idea if communications are expensive

Lower Bound Optimum Clustering

- Lower bound $t_{\min}(v)$ for t(v) in C_{OPT} :
 - Layer-wise in TG, begin in first layer $t_{\min}(v)$ =0
 - ullet Compute all transitive predecessors Anc(v) of v
 - Assume they where direct predecessors
 - Order all $u_i \in Anc(v)$ non-increasingly in $t_{\min}(u_i) + c(u_i) + L(u_i, v)$
 - Compute $t_{\min}(v, x)$ for the x first u_i in that order:
 - Reorder $u_1...u_x$ by non-decreasing minimum starting times $t_{\min}\left(u_i\right)$
 - $c_{\min}(v,x) = \max_{i \in [1...x]} t_{\min}(u_i) + \sum_{k \in [i...x]} c(u_k)$
 - $t_{\min}(v, x) = \max \left(c_{\min}(v, x), t_{\min}(u_{x+1}) + c(u_{x+1}) + L(u_{x+1}, v) \right)$
 - $\blacksquare \ \ \mathsf{Compute} \ t_{\min}(v)$
 - $t_{\min}(v) = \min_{x \in [1...|Anc(v)|]} t_{\min}(v,x)$

Fine Granularity Clustering

- Use lower bound $t_{\min}(v)$ for t(v) in C_{OPT} for fine grained task graphs clustering
 - Compute each v on a separate processor p(v)
 - Let X be the smallest x making $t_{min}(v,x)=t_{min}(v)$
 - Set $p(u_i) = p(v)$ the first X non-increasingly in $t_{\min}(u_i) + c(u_i) + L(u_i, v)$ ordered predecessors
 - Receive results from other predecessors
 - Compute all tasks earliest
- For any task graph TG a this clustering C(TG) guarantees: $T(C) \le 2 T(C_{OPT})$

31

Example: L=2, c=1

32

Example: L=2, c=1

Example Schedule: L=2, c=1

Contains a lot of redundant computations

34

Obvious simplifications

 Only schedule output and sending tasks

35

 Compute each task sending its results only once. **Proof obligations**

- t_{\min} (ν) is a lower bound for the optimum: Show that no task can be scheduled before t_{\min} (ν)
- $T(C) \le 2 \ T(C_{\rm OPT})$ guaranteed: Show that each task can be scheduled before $2 \ t_{\rm min} \ (v)$

Brent Schedule

- Reduce the number of processors by greedy packing
- Layer-wise schedule computations
 - Let t(p) be the completion time of computations on processor p (initially t(p)=0 for all processors)
 - Schedule task v on a processor p until t(p) value larger $(\sum_{v \in Layer} c(v)) / P$
- Layer-wise schedule communications (if necessary)

Schedule a layer

38

Schedule a layer

Schedule a layer

37

41

40

Performance of Brent Schedule

- Obviously requires P processors as each does work $(\Sigma_{v \in \mathit{Layer}} \, c(v)) \, / \, P$ or more
- Error $\leq \max_{v \in Layer} c(v)$
- Schedule of each layer $T(S) \le 2 T(S_{OPT})$ since:
 - $T(S_{\mathrm{OPT}}) \ge \sum_{v \in Longest \ Path \ \text{in } TG} c(v) = \max_{v \in Layer} c(v)$
 - $T(S_{\text{OPT}}) \ge (\sum_{v \in TG} c(v)) / P = (\sum_{v \in Layer} c(v)) / P$
- Ignoring communication costs and assuming uniform computation costs in the layers: $T(S) \le 2 \ T(S_{\mathrm{OPT}})$
- Communication cost additionally $1/G \max_{v \in Laver} c(v)$
- With uniform communication cost: $T(S) \le (2+1/G(TG)) T(S_{OPT})$

Generalization for LogP

- Somewhat harder as communication costs processor time
- Makes it impossible to simply generalize results on delay model
- Correct, but too conservative to set:
 - $\qquad \textbf{Computation} \ \ c_{\text{LogP}} = c + 2o + (odg(v) + idg(v) 2) \max(g, o)$
 - Communication $L_{\text{LogP}}(u, v) = L$

Send/Receive graphs (revisited)

- Optimum polynomial time solutions for delay model
- NP hard to find the optimum LogP schedule
- There is an $/N/^2$ algorithm computing a receive graph schedule with performance guarantee $T(S_{\text{LogP}}) \leq (10/3 1/3P)) \ T(S_{\text{LogP-OPT}})$
- There is an $/N/^2 \max(\log/N/,P^2)$ algorithm computing a send graph schedule with performance guarantee $T(S_{\text{LogP}}) \leq (7/3 1/3P)) \ T(S_{\text{LogP-OPT}})$

Receive graph schedule (sketch)

- Compute a schedule allowing exactly k receive operations for k = 1...n and choose then the minimum one:
 - Order al u_i non-increasingly in $c(u_i)$
 - Schedule first *k* on *P* processors by longest processing time minimizing heuristic (greedy)
 - Schedule remaining (if any) on last processor
 - Schedule v on last processor
 - Schedule communications to last processor from first k tasks scheduled of first P-1 processors

Performance (proof sketch)

- Join of k items, must be received sequentially and compute the final task $2o+L+(k-1)\max(g,o)+c(v) \leq T(S_{\mathrm{OPT}}(k))$
- Schedule tasks on P processors: T(k)=(4/3-1/3P) $T(S_{\mathrm{OPT}}(k))$ $T(S(k)) \leq T(k) + T(S_{\mathrm{OPT}}(k))$
- Schedule last n-k tasks on processor P sequential and hence optimal $T(S(k)) = (4/3 1/3P) T(S_{OPT}(k)) + 2 T(S_{OPT}(k))$
- Overall schedule selects minimum T(S(k)): $T(S) = (10/3 1/3P) T(S_{OPT}(k))$

Generalization of Granularity

- Generalize from delay model
- $L(u,v) = 2o + L + (odg(u) + idg(v) 2) \max(g,o)$
- Granularity G(v) of a task v: $G(v) = \min(G_{in}(v), G_{out}(v))$ $G_{in}(v) = \min_{u_i \in Pred(v)} c(u_i) / \max_{u_i \in Pred(v)} L(u_i, v)$ $G_{out}(v) = \min_{u_i \in Succ(v)} c(u_i) / \max_{u_i \in Succ(v)} L(u_i, v)$
- Granularity G(TG) of a task graph TG = (N, E): $G(TG) = \min_{v \in N} : G(v)$
- Task graph TG is coarse grained iff $G(TG) \ge 1$
- Task graph TG is fine grained iff G(TG) < 1

Coarse Granularity

Computations dominate:

- Brent schedule computations
- · All to all communication between two layers
- Sparse out unnecessary communication

Performance:

 $4 T_{OPT}(G) \ge T_{LooP}$

Fine Granularity

Communication dominates

- Delay communication until computation dominates
 - Allow imbalanced computation
 - Allow redundant computation
- Bundle communication
 - LogP model with communication functions
 - $L_{max}(n) < n L_{max}(1)$
- Within the remaining freedom
 - Balance computations
 - Eliminate unnecessary redundant computation

Results

- Balanced Trees $(3+\epsilon) T(S_{OPT}) \ge T(S)$
- Balanced task graphs $(4+\epsilon) T(S_{OPT}) \ge T(S)$
- Affine Index computations $(4+\epsilon) \ T(S_{OPT}) \ge T(S)$

Conclusion

- Only approximations of the optimum
 - Compilers can give good results
 - Sometimes not good enough
 - Therefore programmers must be able to find better solutions for specific problems "by hand"
- Good news: "easy" new results