Example

1. for (t=1;t<T;t++) {
]] 2. forall (k=1;i<D;k++) in parallel {
Static Clustering and Scheduling 3. s1[k]l= f(8[k -11,8[k], &k +11)

4. }
Notions of Clustering, Scheduling, Granularity OO O O
XIX X
XIX X
XIX X

OO
Clustering, Scheduling for Delay Model SEREXRTREXEXREKEXK
Clustering, Scheduling for LogP Model RIS R XX X KK
RKE XX XK X 3 XK

Q00,0 =

Mapping to distributed systems Problem

= Two principle approaches: = Given a task Graph

L = Derived from a data parallel program
. = Directly programmed

2. Cluster/Schedule _the_ computatl_on_s_ modeled by cost model
= Each computation is scheduled individually
= Consumed array elements &'[k-1] &'[k] &([k+1] and = Number of processors
pro_duced array elements 3*1[k] become local = Performance of processors
variables of the tasks = Net performance (latency, bandwidth)

= Minimize overall execution time for a cost model
Clustering: for arbitrary many processors = Minimize execution time automatically for

Scheduling: for P processors different instances

= Different concrete target machines -

Definition Clustering Definition Scheduling
= Given a task graph T=(N,E) and cost functions = Given a task graph TG=(N,E) and cost functions
representing maximum costs for representing maximum costs cand L
» Computation ¢:N — 11 = A schedule Sis a relation N - (IN, P) where
. Commu_nlcatlop LE- “ = Sis complete in N (each node gets a starting time t(V)
= A clustering C is a relation N - (I, N) where and a processor number p(V) 0 [1...P]
= Cis complete in N (each node gets a starting time t(v) = (UV) OEO(E, p) 0Sv) O
and a processor number p(V)) O, p’) O Su): " +c(u)+L(u,v) <t O
= (W) OEO(® p)OCV) O O, p) OSu):t' +c(u) <t
A, p’) O Cu): t' +c (u)+L(u,y <t O (starting times obey precedence relation and
ae, p) OC(u):t' +c(u) < t communication delay)
(starting times obey precedence relation and = Completion time:
communication delay) T(S9=max {t + c(V): (t, p) O V) for any v}

= Completion time T(C)=max {t + c(V): (t, p) J C(v) for any v}

Optimization

= An optimum clustering Cqpr of a task graph TG is a
clustering with
T(Cgpr) < T(C) for all other clusterings C of TG

= An optimum schedule S, of a task graph TG and a
number of processors P is a schedule with
T(Sopr) < T(S for all other schedules Sof TG and P

= It is NP hard to find the optimum clustering and
optimum schedule, resp., for a general task graph
TG (even for the simplest cost models, e.g. uniform
computation costs, no communication costs)

Example: Work opt. prefix sums

1. right[0..n]=n;

2. for (i=lji<n;i*=2) {

3 forall (p=0;p<n;p++) in parallel{
4 if ((p+1) mod i = 0)

5. right[pl=right[p-i/2]+right[p];
6 }

7.}

s. for (i=n;i<0;i/=2) {

9 forall (p=0;p<n;p++) in parallel{
10. if ((p+1) mod i=(i/2) & p>i)

1. right[pl=right[p-i/2]+right[p];
12. 3

1.} 9

Clustering depicted as Gantt-Chart

30

’
36
i !

|17 |17

" |7

Optimization NP hard

= In practice ok?

= Sometimes exponential solutions are exactable if handy
for practical relevant cases (minimum distribution
configuration — ILP solver)

= Unfortunately not for clustering and scheduling
Find special cases allowing optimum solutions
Find approximation schemata

Find approximations with constant factor
approximations

Heuristics are ultima ratio!

Example: Task graph prefix sums

Send/Receive Task Graphs

Send Graph

Receive Graph

Cluster Receive Task Graphs

= Order all y;non-increasingly in
c(u) + L(u V)

= Let p(uy)= p(v)

= Stepwise add the

first remaining task u; to p(v)
until:

T o) = cU L) + LU, ,v) @

= Optimum solution!

Definition Granularity

= Ratio computation / communication costs

= In order to enable quantitative conclusions,
we define:
= Granularity G(v) of a task v:
G(V) =mi r‘l(Gin (V)-Gout (V))
Gin (v) = mi Nuiopred): c(u;)/maXycereaqy L(Y; V)
Gout (V) = MiNyzgicow: C(U;)/MaXyaaiccw L(U; V)
= Granularity G(TG) of a task graph TG= (N ,E) :
G(TG) = minyay: G(v)
= Task graph TG is coarse grained iff G(TG) > 1
= Task graph TG is fine grained iff G(TG) < 1

15

Optimum Clustering Coarse Trees

= Layer-wise, apply algorithm for receive
graphs from the leaves to the root

Observation

= If min c(y;) > max L(u;,v)
only p(uy)=p(v)

= All other tasks
computed in parallel A

= In general:
parallel computation always pays

= Property of a task graph and cost functions
under a certain cost model: granularity

Coarse Granularity Clustering

= For any coarse grained task graph TG a clustering
C(TG) with constant performance:
T(C) <2T(Copr)
can be found in polynomial time
= Constructive: layer-wise
= each task v to a separate processor
= at starting time t(v) maxyoprea t(U;)+e(U;)+L(Y; V)
= Proof (sketch):

= T(COPT) 2 zanongaPammTe C(V)
= As each c(v) > max e L(U; ,v) cOmmunications are
smaller than 2, ;| yges paninte V)

Generalize on all task graphs

= For each output node of a TG generate tree
of predecessors

= Introduces a lot of redundancy

= Find optimum clustering of each tree
individually ()

= Unfortunately exponential
if TG contains sub-structures like

= Trees have exponential
many nodes)

Linear Clustering

= Computing two tasks in direct precedence
relation on the same processor cannot
increase the overall computation time

= Any clustering constructed by merging the
tasks of two processors only if all tasks are
on a path in TG is called linear

= Any linear clustering C of a coarse grained
TG guarantees T(C) < 2 T(Cgpr)

s If TG is coarse grained the optimum
clustering is a linear one

Linear clustering I

Non-Linear clustering

Optimum is Linear Clustering

Proof by iteration over
stepwise separation of independent tasks on a processor

¥ Y|
% N
Q Q u ~Ju
X X
Q Non-linear 2 linear
cluster clusters

Linear clustering II

Heuristic: cluster longest path

= Computation dominated by longest (most
expensive) path

= Idea: save communications on the longest
(most expensive) path by computing its task
on the same processor

= Iteratively TG remove the longest path from
the until its empty

= Usually saves time and processors (both not
guaranteed)

20

22

24

Longest Path Linear clustering

Example
OO0

bipartite graph
B D2OOEEOEE v

LEOEO® OREWEEDE(E X

Linear clustering performance

= Any linear clustering C of TG guarantees
T(C) < (I+VG(TG)) T(Copr)
= Proof (sketch):
= T(COPT) > Zv[Longest Pathin TG C(V)
= As each 1/G c(v) > maXyeredw) L(U; ,V)
communications are smaller than
1/G(TG) zv 0 Longest Path in TG C(V)

= Linear clustering cannot increase the overall
computation time

= Bad idea if communications are expensive

Min. Processor Linear Clustering

= Linear clustering is a node disjoined path
covering 1

= Obviously | |=P
= Minimal path cover of TG=(N,E) is maximum
matching in bipartite graph:
M=({x, v O N}O{y, v O N}, {(%,.%) | (uv) O E)
= Computable in polynomial time O(|N|¥2+ |E|)

26

Example
ORI

2 maximum matchings in
bipartite graph

Y 00006000 v

LOEO® OREGOEEODE(E X

28

Lower Bound Optimum Clustering

= Lower bound t;(v) for t(v) in Cgpr:
= Layer-wise in TG, begin in first layer t.;, (v)=0
= Compute all transitive predecessors Anc(v) of v
= Assume they where direct predecessors
= Order all u, 0 Anc(v) non-increasingly in
tinU;) + (U) + L(Y; V)
= Compute t.;,(v, X) for the x first u; in that order:
= Reorder u,...u, by non-decreasing minimum starting times t;, (u;)
w Coin(ViX) = MaX; 11y g toin (U +Zcq iy C(U)
o tin(ViX) = max (Cin(ViX) 5 trin(Uyeq) + (U 1) + LUy V)
= Compute t; (V)
= inM) = MM gy (V%)

Fine Granularity Clustering

= Use lower bound t, (v) for t(v) in Cgpy for
fine grained task graphs clustering
= Compute each v on a separate processor p(v)
= Let X be the smallest x making t.;,(v.X)=t (V)
= Set p(u;) = p(v) the first X non-increasingly in
trin(U)+c(u;)+L(u; ,v) ordered predecessors
= Receive results from other predecessors
= Compute all tasks earliest
= For any task graph TG a this clustering C(TG)
guarantees: T(C) < 2 T(Copy)

Example: L=2, c=1

ee@@ tmin (6): tmin (7) :tmin (8) :tmin (9)

tin(6,0)=6 t.,,(6,1..4)=4 t,.(6,5)=5

Obvious simplifications

= Only schedule output
and sending tasks

= Compute each task
sending its results
only once.

Example: L=2, c=1
©)@e)(9) trin(1...4)=0

tmin(5, 1...3)=3 tmin(5,4):4
(5)
N- \-
2][3]/4] 3]/4] 4]

Example Schedule: L=2, c=1

Contains a lot of redundant computations

[1][2] 3] [4]

Proof obligations

= t,, (V) is @ lower bound for the optimum:
Show that no task can be scheduled before
tmin (V)

= T(C) < 2 T(Cqpr) guaranteed:
Show that each task can be scheduled before
2 tmin (V)

Brent Schedule

= Reduce the number of processors by greedy
packing
= Layer-wise schedule computations

= Let t(p) be the completion time of computations
on processor p (initially t(p)=0 for all processors)

= Schedule task v on a processor p until t(p) value
larger (Z, ;e C(V)) /P
= Layer-wise schedule communications (if
necessary)

Schedule a layer

(Z c(v) /P

]

v [Layer

Performance of Brent Schedule

= Obviously requires P processors as each does work
(%) 0 Layer C(V)) / P OF more

= Error < max, e (V)

= Schedule of each layer T(S) <2 T(Syer) Since:
= T(SOPT) > Zvu Longest Pathin TG C(V)= max, g Layer C(V)
= T(Sopr) 2 (Zy076 €V) / P = (25 1ae S(V)) /P

= Ignoring communication costs and assuming
uniform computation costs in the layers:
T(9=<2T(Ser)

= Communication cost additionally 1/G max, ;e C(V)

= With uniform communication cost:
T(9 < (2+VUG(TG)) T (Sopr)

41

Schedule a layer

(ZVE Layer C(V)) / P

1

Schedule a layer

(ZVE Layer C(V)) / P

]

40

Generalization for LogP

= Somewhat harder as communication costs
processor time

= Makes it impossible to simply generalize
results on delay model

= Correct, but too conservative to set:
= Computation ¢ = c+20+(0dg(v)+idg(v)-2)max(g,0)
= Communication L ,p(uv) = L

2

Send/Receive graphs (revisited)

= Optimum polynomial time solutions for delay model
= NP hard to find the optimum LogP schedule

= There is an |N|2 algorithm computing a receive
graph schedule with performance guarantee

T(Soge) < (10/3 = 1/3P)) T (S ogp-0pr)

= There is an |N|2max(log |N|,P?) algorithm computing
a send graph schedule with performance guarantee
T(S ogp) < (713 = 1)) T(S ogpopr)

43

Performance (proof sketch)

= Join of kitems, must be received sequentially
and compute the final task
20+ L+ (k-L)max(g,0) + c(v) < T(Sopr (K))

= Schedule tasks on P processors:
T(K)=(4/3-1/3P) T (Sppr (K))
T(S(K) < T(K) + T(Sopr (K)

= Schedule last n-k tasks on processor P sequential
and hence optimal
T(SK)) = (4/3 =1/P) T (Sopr (K) + 2T (Sopr (K)

= Overall schedule selects minimum T(S(k)):
T(S = (10/3 -1/®) T (Sopr (K)

45

Coarse Granularity

Computations dominate:

¢ Brent schedule computations

o All to all communication between two layers
« Sparse out unnecessary communication

Performance:
4Topr(G) 2 T ogp

47

Receive graph schedule (sketch)

= Compute a schedule allowing exactly k
receive operations for k= 1...nand choose
then the minimum one:
= Order al u, non-increasingly in c(u;)
= Schedule first kon P processors by longest

processing time minimizing heuristic (greedy)
= Schedule remaining (if any) on last processor
= Schedule v on last processor

= Schedule communications to last processor from
first k tasks scheduled of first P-1 processors

a4

Generalization of Granularity

= Generalize from delay model
= L(u,v) = 20+ L+ (odg(u)+idg(v)-2) max@,0)
= Granularity G(v) of a task v:
G(V) = mln.(G‘in (V)1C"out (V))
Gin (V) = MiNyrpreae: C(U;)/MaXyiopredw) L(Y; ,V)
Goul (V) = mlnumguco(v): C(Ui)/maXUiDguco(v) L(Ui ,V)
= Granularity G(TG) of a task graph TG= (N ,E):
G(TG) = minygn: G(V)
= Task graph TG is coarse grained iff G(TG) > 1
= Task graph TG is fine grained iff G(TG) < 1

46

Fine Granularity

Communication dominates
= Delay communication until computation dominates
= Allow imbalanced computation
= Allow redundant computation
= Bundle communication
» LogP model with communication functions
x L) < N L)
= Within the remaining freedom
» Balance computations
= Eliminate unnecessary redundant computation

48

Results

= Balanced Trees

B+e) T(Spn) 2T (9

= Balanced task graphs

(4+8) T(Spn) 2T (9

= Affine Index computations

(4+8) T(Spn) 2T (9

49

Conclusion

= Only approximations of the optimum
= Compilers can give good results
= Sometimes not good enough
= Therefore programmers must be able to find
better solutions for specific problems “by hand”

= Good news: “easy” new results

