
Thread Scheduling for Multiprogrammed
Multiprocessors

Nimar S. Arora Robert D. Blumofe C. Greg Plaxton

Mattias Eriksson — mater@ida.liu.se

16th March 2007

Traditional thread scheduling

◮ Not multiprogrammed
◮ Dedicated processors
◮ Threads dynamically mapped

Multiprogrammed scheduling

◮ The processors are not dedicated
◮ Number of available processors varies over time
◮ We can not control it

Two levels of scheduling

◮ User level: Threads mapped to processes
◮ Kernel level: Processes mapped to current processor set

The model of the program

◮ A dag
◮ T1

◮ T∞

◮
T1
T∞

◮ P, the set of processes
◮ P = |P|, number of processes

The model of execution

◮ Synchronous
◮ Time steps

A kernel schedule:
ks : N → 2P

pi = |ks(i)|

Processor average over T time steps:

PA =
1
T

T∑

i=1

pi

Execution schedule

◮ which instructions are executed at each time step
◮ determined by both schedulers!
◮ the length is defined as T

Example:

Work stealing user level scheduler

/∗ On every process ∗ /
Thread ∗thread = NULL ;
if (myRank == 0)

thread = rootThread ;

while (! computationDone) {
while (thread != NULL) {

/∗ a l l spawns are pushed on bottom ∗ /
dispatch (thread) ;
thread = self−>popBottom () ;

}
/∗ no more work , become THIEF ∗ /
yield () ; /∗ but f i r s t , g ive up the cpu ∗ /
Process ∗victim = randomProcess () ;
thread = victim−>deque .popTop () ;

}

The deque

◮ One for every process
◮ Concurrent access → synchronization
◮ Lock-free implementation with cas (atomic)

cas (word ∗addr , word ∗old , word ∗_new)
{
if (∗addr == ∗old)
SWAP (addr , _new) ; /∗ success ! (∗ o ld == ∗_new) ∗ /

else
∗_new = ∗addr ; /∗ f a i l u r e ! ∗ /

}

Deque operations

Thread ∗popTop ()
{
oldAge = age ;
localBot = bot ;
if (localBot <= oldAge .top)
return NULL ; /∗ empty ∗ /

thr = deq [oldAge .top] ;
newAge = oldAge ;
newAge .top++;

/∗make sure t h r i s s t i l l ok ∗ /
cas(&age,&oldAge,&newAge) ;
if (oldAge == newAge)
return thr ;

/∗ popTop () can f a i l ∗ /
return ABORT ;

}

There is also popBottom() and pushBottom()

The kernel is an adversary

Three kinds of kernels:
◮ The benign adversary chooses pi for each i
◮ The oblivious adversary chooses both pi and which

processes to execute offline
◮ The adaptive adversary does the same thing online

We use the yield() system call to influence the kernels’ choice
of processes

Execution time

In the presence of an adversary and yield()

E [T] = O(
T1

PA
+

T∞P
PA

)

And for ǫ > 0:

T = O(
T1

PA
+ (T∞ + log(

1
ǫ
))

P
PA

)

with probability at least 1 − ǫ

→ linear speedup when P << T1
T∞

Conclusion

[...]the non-blocking work stealer executes with
guaranteed high performance in [multiprogrammed]
environments. [...] the non-blocking work stealer
executes any multithreaded computation with work T1

and critical-path length T∞, using any number P of
processes, in expected time O(T1/PA + T∞P/PA),
where PA is the average number of processors on
which the computation executes.

