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Motivation

Previous work shows that lock-free
approaches are optimal for high
concurrency

Many applications use hash tables

Requirements
Support for high concurrency - many
parallel threads
Extensibility - the table should be able to
grow

Lock-free parallelism

For high concurrency, locks become
large bottlenecks!

Example: shared counter

shared int counter;

shared Mutex lock;

;cqulreflock(lock);

counter++;
release_lock (lock);

Lock-free parallelism

Basic problem: cannot perform counter++
atomically

Use compare-and-swap (CAS), supported in
hardware!

bool CAS(int * p, int old, int new) {
atomic {
if (*p == old) {
*p = new;
return true;

return false;

}
}
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Lock-free parallelism

Now, counter++ can be implemented
using a fetch-and-add (FAA) operation

void FAA(int * p, int value) {
int old;
do {
old = *p;
} while (!CAS(p, old, old+value));
}




Hash tables: brief review

Insert, delete, find in O(1)
Assumed a good, balanced hash-function

Hash tables: brief review

Rehashing, extensibility

When load increases, O(1) cannot be
maintained

Solution
Increase array size

Rehash items (redistribute items among
buckets)

Solution

Rehashing expensive, breaks
concurrency

Instead of “moving items among
buckets”, let’s “move buckets among
items”
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Solution

Keep single list, let buckets provide
shortcuts into the list

Extending bucket array should not require
changing list
Sort order: recursive split-order !
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Solution

Hash function: modulo 2!

Array size: power of two (doubles at
each extension)
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Solution
Hash function 2»
13,, = 0000101,
9,, = 00001001,
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Solution

Sorting: recursive split-order?
Binary reversal
13,, = 00001101,
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Dummy node Regular node

Solution

Lock-free
Based on previously known CAS lock-free
list

Benefits
No reordering of the list items

Items can be reached at all “hashing
recursion levels” (parallel threads could
operate on different levels)
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Results

Compared with lock-based resizable
hash table [Lea, 2003]
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FiG.9. Throughput of both algorithms. Standard deviation is denoted by vertical bars.

FiG. 10, Varying operation distribution.
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Conclusions

Hash table that requires no
redistribution of items when extended

Offers significantly better performance
than lock-based alternatives when
concurrency is high

Split-ordering can possibly also
improve sequential implementations




