Split-Ordered Lists: Lock-
Free Extensible Hash Tables
Gunnar Johansson

Paper by Ori Shalev, Nir Shavit
(Tel-Aviv University)

Presentation outline

Motivation

The lock-free idea (basics)
Hash tables: Brief review
Solution

Results

Conclusions

Motivation

Previous work shows that lock-free
approaches are optimal for high
concurrency

Many applications use hash tables

Requirements
Support for high concurrency - many
parallel threads
Extensibility - the table should be able to
grow

Lock-free parallelism

For high concurrency, locks become
large bottlenecks!

Example: shared counter

shared int counter;

shared Mutex lock;

;cqulreflock(lock);

counter++;
release_lock (lock);

Lock-free parallelism

Basic problem: cannot perform counter++
atomically

Use compare-and-swap (CAS), supported in
hardware!

bool CAS(int * p, int old, int new) {
atomic {
if (*p == old) {
*p = new;
return true;

return false;

}
}

[Datormagazin, no 7/2006]

Lock-free parallelism

Now, counter++ can be implemented
using a fetch-and-add (FAA) operation

void FAA(int * p, int value) {
int old;
do {
old = *p;
} while (!CAS(p, old, old+value));
}

Hash tables: brief review

Insert, delete, find in O(1)
Assumed a good, balanced hash-function

Hash tables: brief review

Rehashing, extensibility

When load increases, O(1) cannot be
maintained

Solution
Increase array size

Rehash items (redistribute items among
buckets)

Solution

Rehashing expensive, breaks
concurrency

Instead of “moving items among
buckets”, let’s “move buckets among
items”

0001 01 10010001 11000000
00020000 01000000 10000000 10110001 11100001

G0 D BODED G D

0
1
-'

Solution

Keep single list, let buckets provide
shortcuts into the list

Extending bucket array should not require
changing list
Sort order: recursive split-order !

00010001 01000001 10020001 11000000
0 01000000 10000000 10110001 11100001

(R DD T D@D I

Solution

Hash function: modulo 2!

Array size: power of two (doubles at
each extension)

00010001 01000001
00090090 01000000 10

Cobels D2 L2 B 1 Do D - 3 (7 D

10010001 11000000
1000000 10110001 11100001

Solution
Hash function 2»
13,, = 0000101,
9,, = 00001001,

0001000 010000 100-00(] 100000
00800600 h1000000 2000000 1011008 1110000

Co L B2 Do [y 1 E0o D13 By 3 (7 D

Solution

Sorting: recursive split-order?
Binary reversal
13,, = 00001101,

~_

Dummy node Regular node

Solution

Lock-free
Based on previously known CAS lock-free
list

Benefits
No reordering of the list items

Items can be reached at all “hashing
recursion levels” (parallel threads could
operate on different levels)

o[8[[IS Eas
0
1
T
Results

Compared with lock-based resizable
hash table [Lea, 2003]

ops/ms

2 2 2 3 °
2 2

0
10+
20

2 B
threads

FiG.9. Throughput of both algorithms. Standard deviation is denoted by vertical bars.

FiG. 10, Varying operation distribution.
8000
New, 8 threads
7000 New, 16 threads -
] New, 32 threads =
6000 £ New, 48 threads <
A Lea, 8 threads o
. Lea, 16 threads - »
£ Lea, 32 threads -
< P Lea, 48 threads -
3000 b

2000

1000

.
il
i

-

0

0:0:100
10:0:90
20:0:80
30:0:70

g2 7
= S 2
§ %

70:0:30
80:0:20

% of insert: % of delete: % of find

Conclusions

Hash table that requires no
redistribution of items when extended

Offers significantly better performance
than lock-based alternatives when
concurrency is high

Split-ordering can possibly also
improve sequential implementations

