
Thread Sheduling for MultiprogrammedMultiproessorsNimar S. Arora Robert D. Blumofe C. GregPlaxtonA summary.∗Mattias Erikssonmater�ida.liu.se19th Marh 20071 IntrodutionWhen the paper by Arora et al. was published in 1998 traditional analysis ofthread sheduling was not multiprogrammed. A set, P , proessors was onsid-ered to be dediated. And the task of the thread sheduler was to map threadsto the proessors with the goal to ahieve P -fold speedup.In addition to dediated environments this paper studies multiprogrammedenvironments, i.e., the set of proessors is not �xed and may vary while the pro-gram is exeuting. The number of proessors available to a ertain appliationis not ontrolled by the appliation itself, but by the kernel level sheduler.The exeution of an appliation is ontrolled by two levels of shedulers, auser level sheduler and a kernel level sheduler, see Figure 1.
Figure 1: The user level sheduler maps threads to proesses while the kernellevel sheduler maps proesses to a varying set proessors.In the analysis of program exeution we onsider the proessors to exeutesynhronously in disrete time steps1.

∗This was made during the CUGS APP ourse 2007.1The assumption of synhronous exeution is not realisti, but it makes the analysis of1

Listing 1: The work stealing algorithm./∗ On every proe s s ∗/Thread ∗ thread = NULL;i f (myRank == 0)thread = rootThread ;while (! omputationDone){while (thread != NULL){/∗ a l l spawns are pushed on bottom ∗/d i spath (thread) ;thread = s e l f −>popBottom () ;}/∗ no more work , beome THIEF ∗/y i e l d () ; /∗ but f i r s t , g i v e up the pu ∗/Proess ∗ vit im = randomProess () ;thread = vit im−>deque . popTop () ;} We de�ne pi to be the number of available proessors at time step i ∈ N,and the proessor average over T time steps to be
PA =

1

T

T∑

i=1

piMany of the proofs in the paper is based on bounding the exeution time, T ,by onsidering
1

PA

T∑

i=1

pi2 The work stealing algorithmThe proposed user level sheduler is based on work stealing. One proess, alledthe root proess, begins the exeution on the initial thread. The rest of theproesses, whih do not have any work, are thiefs. A thief will try to stealwork from a random proess, and when it sueeds it will reform and beome aregular worker. A sketh of the work stealing algorithm is shown in Listing 1.The work stealing algorithm relies on every proess having a loal dequewith threads ready to be exeuted. If a thread spawns a new thread during itsexeution this new thread (or the running thread) is pushed on the bottom ofthe loal deque. And when a proess is bloked or �nished exeuting a thread itpops another thread from the bottom of the loal deque and exeutes that one.When a proess steals itpops a thread of the top of another proess' deque.Sine more than one proess may aess a ertain deque onurrently thereis a need for synhronization. All the dequeus are implemented with lok-freesynhronization by using a ompare-and-swap operation supported by hardware.program exeution simpler. The assumption is not neessary for the proposed user levelsheduler to work. 2

See Figure 2 for a sketh of the deque. The deque operations are lok-free, andthis is leverly made possible by an additional tag-value used together with theas-operation. The prie for having a lok-free implementation is in this asethat the popTop-operation an fail, that is, not returning a thread to the allereven if there is one available.
Figure 2: There is a deque on every proess. It supports the operations pop-Bottom(), popTop() and pushBottom() (but no pushTop()!).3 The adversaryThe fous in the paper is on the user-level sheduler, and the kernel is viewedas an adversary. There are three kinds of adversaries

• Benign adversary hooses pi for eah time step i and selets proesses toexeute at random,
• Oblivious adversary hooses (o�-line) both pi and whih proesses to ex-eute at eah time step,
• Adaptive adversary does the same as the oblivious adversary but on-line.To reate good shedules when an adversary makes the kernel shedule re-quires us to use yield system alls. When the adversary is benign we do not needa yield system all to get good expeted exeution times. In the presene of anoblivious adversary we use a yieldTo(x) all that restrits the kernel shedulesuh that the proess that alled yieldTo(x) will not be exeuted until proessx has exeuted at least one. The more powerful adaptive adversary requires amore powerful yield, yieldToAll(). When a proess alls yieldToAll() it willnot be exeuted untill all other proesses has been exeuted at least one. Notethat the restritions imposed by the yield alls does not put any restritions on

pi, only whih proesses are exeuted on the available proessors.In the presene of adversaries and yield system alls it is proven that whenthe work is T1, the ritial path length is T∞ and the number of proesses is P

E[T] = O(
T1

PA

+
T∞P

PA

)And for ǫ > 0:
T = O(

T1

PA

+ (T∞ + log(
1

ǫ
))

P

PA

)with probability at least 1− ǫ. With this result we see that if we assume that if
P << T1/T∞ the speedup is linear (asymptotialy) sine T∞P is insigni�antompared to T1. 3

