Linnéuniversitetet -

Static Single Assignment (SSA) Form

Construction - Analyses - Optimizations

Welf Léwe
Welf.lowe@Inu.se

Intermediate Representations

Intermediate representations (like BB, SSA graphs)
separate compiler front-end (source code related
representation) from back-end (target code related
representation)

Analyses and optimizations can be performed independently
of the source and target languages

Tailored for analyses and optimizations

Static Single Assignment - SSA

Goal:
= increase efficiency of inter/intra-procedural analyses and optimizations
= speed up dataflow analysis
= represent def-use relations explicitly
Idea:
= Represent triples of assignment 7 := z¢'¢t" with ¢, ¢/, 1" a variable/label/register
= Represent program as a directed graph of operations zwith explicit def-use
edges (¢ t') connecting operations
SSA-Property: there is only one single (static) position (label) in a
program/procedure defining ¢
= Does not mean ¢ computed only once (due to iterations the program point is
in general executed more than once, possibly each time with different
values)
= But there is no doubt which static variable definition is used in arguments of
operations

Outline

Introduction to SSA

= Motivation

= Value Numbering

= Definition, Observations

= Construction, Destruction

= Theoretical, Pessimistic, Optimistic Construction

= Destruction

= Memory SSA,

= Interprocedural analysis based on Memory SSA: example P2SSA
How to capture analysis results

Optimizations

What makes an IR tailored for
analyses and optimizations?

Represents dependencies of operations in the program
= Control flow dependencies
= Data dependencies
Only essential dependencies (approximation)
= A dependency s;s ~ of operations is essential iff execution s ;s
changes observable behavior of the program
= Computation of essential dependencies is not decidable
Compact
= Representation of dependencies
= No (few) redundant expression

Avoid redundant computations

Assign each (partial) expression a unique number (label).
= Good optimization in itself as values can be reused instead of
recomputed
= Basic idea for SSA
Syntactic different computations that produce provably
equivalent values get the same number
How to statically find computations with provably equivalent
values?
= Can be computed by data flow analysis
= |t's a forward, must problem
= Known as value numbering

Equivalent Values

= Two expressions are semantically equivalent, iff they
compute the same value - Not decidable

= Two expressions are syntactically equivalent, iff the
operator is the same and the operands are the same or
syntactically equivalent

= Generalization towards semantic equivalence using

algebraic identities, e.g., ata =2*a

In practice, provable equivalence (conservative

approximation): two expressions are congruent, iff they are

syntactically equivalent or algebraically identical (according

to a number of algebraic rules implemented)

Value Numbering

= Type of value numbers:
= INT for integer constants; BOOL for Boolean constants etc.
= Otherwise, ids (labels): {vn,, ..., vn,}
= Data structures:
= Process tuples 7 := 7' t"” with T is a constant operator symbol,
= We construct a mapping of the original label 7 to its value number vn
= We construct an auxiliary mapping such that a lookup of t va(t') va(t")
gives a unique value number vn or void, if not known yet
+ vn becomes the value number of ¢,
« vn(t') va(t") are value numbers of tuples labeled ¢'¢"
« We make sure vn(t') vn(t") always already computed or are constants.
= For a first try:
= Computation basic block local
= One such mapping ¢ to vn per basic block.

Example
Original Result
t:ST >a< 2 vi: ST >a< 2
t: LD <a>
t: LD <x> vy LD <x>
ty: MUL t, 5} vi: MUL 2 %)
ts: ADD t 1 v4: ADD vy 1
te: ST >b< 15 v ST >b< vy
t: LD <x>
ty: MUL 2 17
to: ST >a< g ve: ST >a< v
tio: LD <a>
t1:ADD t;p 1
ty: LD
ts: ADD t, t vi:ADD vy vy
hae: ST >c< 113 vg: ST >c<

11

Idea of Value Numbering

= Congruent values get the same value number (in general a label)

= Values are defined by operations and used by other operations

= Values computed only once (by one operation) and then reused
(referring to the value number of that operation)

= Algorithmic idea to prove equality of expression values at different
program points (congruence of tuples) follows the congruence definition:

Basic case: constants are easy to proof equivalent

Induction: see definition of syntactic equivalence: if inputs of two operations
equal and the operator is equal the computed values are also equal

Also apply algebraic identities to prove congruence

= Problems (postponed):

Alias/Points-to problem: Addresses, hence address content, is not exactly
computable. Where are values stored in and later loaded from in, e.g., an
array with index expressions? Not decidable.

Meets in control flow: which definition holds? Simple trick.

8
8
Value Numbering
with Local Variables without Alias Problem
(1) Initially: value number vi(constanty=constant; vn(t) = void for all tuples 1.
(2) for all tuple ¢ in program order:
case (a)t=ST>local<t' - write to a local variable
vn(t) := vn(ST >local< va(t')
if va(f) = void then
vn(LD <local >):= vn(t),
vn(f):= new value number,
generate: va(r): ST >local< vn(t)
(b) t = LD <local> - read from a local variable
vn(t) := va(LD <local>).
if va(f) = void then
vn(f):= new value number,
generate: va(r): LD <local>
cyr=1r't" - any operation ©
v(t) = (e vat') v ()
if va(f) = void then
vn(f):= new value number,
generate: va(r): © va(t) vn(t").
(d)t=call proct't"... - analogously to () with t = call proc
10
10
Value Number Graph of Basic Block
Result
vi: ST >a< 2
v LD <x>
vi: MUL 2 v
v4: ADD vy 1
vs: ST >b< vy
ve: ST >a<
viiADD vy vy
vg: ST >c<
12

12

Value Numbering

with Global Variables without Alias Problem

= Case (a’) as before case (a) for local variables
case (a’)t =ST >global< t'
vn(t) = vn(ST >global< vn(t"))
if va (¢) = void then
vn (LD <global >) := vn(t'),
vn(t) := new value number,
generate: vn (¢): ST >global< vn(t)

= Procedures:
= Case (d) as before
= But as global (potentially) redefined in proc, set value number for tuple
ST >global< t', LD <global> to void

= Improvement for non-recursive sequential leaf procedures:

= New case (d): analyze procedure as if it was inlined
= Too complex if proc has more than one basic block (interprocedural analysis)

13

13

Remarks

= Values numbering gets complex when involving
= Global variables
= Procedure calls
= Indirect address computations
= So-called strong updates of value numbers required additional
= Dataflow analyses, especially, def-use and points-to analyses
= In an interprocedural way
= On what IR? We are about to construct an IR that is suitable for
these dataflow analyses.

= Recommendation: for constructing value numbers and SSA, take
an easy conservative implementation: in case of doubt set the
computed value numbers to void especially:
= After call proc, entries of global variables get void
= A store operation ST >a<t'sets void all va(LD <a'>) and
vn(ST <a'>t") if it is not clear, whether a = a’ or a # a’ (alias-problem).
Special case: arrays with index expressions

15

Value number graph — SSA

= SSA-Property: there is only one position in a
program/procedure defining ¢

= Halfway to SSA representation due to value numbering, i.e.,
value number graph is SSA graph of a basic block

= Problem: What to do with variables having assignments on
more then one position?

= Eg.

if .. then i:=1 else i:=2 end; x:=i

i:=0; while ..Toop ..; i:=i+l; .. end; x:=i

17

General Value Numbering

-- t' is an address with unknown value (no compile time constant address, no variable)
-- computed in an operation with value number vn(t')
Case (e)t=ST't"
va(t) := va(ST va(i") va(t"))
if va() = void then
va(LD vn(r")) = vn(t"),
vn(t):= new value number,
Generate: va(z): ST va(t") vn(t")
if 7' may be an alias of another address : -- requires points-to analysis
va(ST vn(tt) ...) := void,
va(LD vn(tt)) = void,
Case (f)t=LD 1"
v (¢) := va(LD vn(t"))
if va (¢) = void then
vn(t):= new value number,
Generate: va(t): LD vn (1)

14
14
Observation

= Value number graph of a basic block

= No (provable) unnecessary dependencies

= No (provable) redundant computation
= |nitially all value numbers are set to void (for each basic

block)
= By knowing the values of predecessor basic blocks, this
initialization can be improved
= Such an initializations over basic block leads to SSA form
16
16
Simple trick: ¢-Functions

= Solution:

= Each assignment to a variable a defines a new version ai,

= This version is actually the value number of the assigned expression

= At meets in the control flow, weg’ust add a pseudo expression selecting a value

number from the control flow predecessor blocks

= Defining itself a new version (value number) of that variable a3 := ¢(a1,a2)
= Eg.

if .. then i1:=1 else i2:=2 end; i3:=¢(i1,i2); x:=i3

i1:=0; while i3:=¢(i1,i2); .. Toop .. ; i2:=i3+1; .. end; x:=i3

= ¢-functions
= always occur at the beginning of a block

are non-strict; switches selecting the either of the arguments

are all evaluated simultaneously for a block, with all having the same selection
behavior

. gua,rzg?tee that there is exactly one static definition/assignment for each use of a
Variable

= Assignment i == ¢(i,,...,i;) in a basic block indicates that the block has k
direct predecessors in the controi flow

18

Compact representation of
dependencies

= Previous: #def x #use dependency edges
= Now: #def + #use dependency edges

i3 ...

T

ig 2= §(iy, in, i3)

Example Program and Basic Block Graph

(1) a=1;
(2) b=2;

while true{
(3) c=a+tb;
(4) if (d=c-a)
(5) while (d=b*d) {
(6) d=a+b;
(7) e=etl;

! (5) d=b*d

(8) b=a+b;
(9) if (e=c-a) break; \

} (6) d=a+tb (8) b=a+b
(10) a=b*d; (7) e=e+l (9) e=c-a
(11)b=a-d; | I

(10) a=b*d
(11) b=a-dl0
20

SSA-Graph before and after Constant
and Copy Propagation

a;=1
[
52=0 (01, b3) L2=¢ (2, CT)
e2=¢ (e1, es) eo=¢ (e1,d1)
ci=ait+bz c1=1+b2
40, a0 |« Jar=ci-a: 4 (dr, 00 | Ja=ci-1

es=¢ (e2, ea)

es=¢ (e2, eq)

19
Basic Block and SSA Graph
a;=1
b,=2
5=615", 55
e2=¢ (e1, es)
c1=aitbz
do=¢ (d1, da) /d1:cra1
(5) d=b*d es=0 (e2, ea) l
\ ds=bz*d, \d'i‘[}(dw,d’)
(6) d=a+b (8) b=atb p3=aitb2
(7) e=e+l (9) e=c-a ds=aitbz esTcimal
I es=e3+l
(10) a=b*d S
(11) b=a-d

21
SSA-Graph before and after using
Algebraic ldentities
— —h
SZas Apaaesn; D=9t2, T
eo=¢ (e1,d1) e2=¢ (e1, b2)
do=¢ (d1, c1) /gl;ii’)l/ do=¢ (b2, c1) /C171+b2
3= (e2, e4) e3=¢ (e2, e4)
ds=b,*d; \m:q')(m,cu) ds=bz*d; \a':q')mr,m)

23

eq=e3+l

az=c1*ds
ba=az-ds

[

23

ds=b,*d, \c::¢(£,ds) ds=bo*d, \d5:¢(£\,d3)

los=ait+bz
es=ci-a1
L (I
@a2=bs3*ds a2=ci1*ds
loa=az-ds be=az-ds
22

22

Implementation
SSA graph

(|

Consti /
[Consi 7]
Addi
- s
n

24

24

SSA properties

P1: Typed in-/output of nodes: in- and output of operation node connected by
edges have the same type.

P2: Operation nodes and edges of a basic block are a DAG.
Note: correspondence to value number graphs and expression trees

P3: Input of §-operations have same type as their output.

P4: i-th operand of a ¢-operation is available at the end of the i-th predecessor
BB.

P5: A start node Start dominates all BBs of a procedure; an end node End post-
dominates all nodes of a procedure.

P6: Every block has exactly one of nodes End, Jump, Cond, Ret

P7: If operation x in a BB Bx defines an operand of operation y in a BB By then
there is a path Bx —* By.

P7a: (Special case of P7) operation y is a ¢-operation and x is defined in Bx = By
then there is a cyclic path By —»* By.

P8: Let XY be BBs each with a definition of « that may reach a use of « in BB Z.
Let Z' be the first common BB of execution paths X »* Z, Y »" Z.
Then Z' contains a ¢-operation for a.

25
25
Outline
= Introduction to SSA
= Motivation
= Value Numbering
= Definition, Observations
= Construction, Destruction
= Theoretical, Pessimistic, Optimistic Construction
= Destruction
= Memory SSA,
= Interprocedural analysis based on Memory SSA: example P2SSA
= How to capture analysis results
= Optimizations
36

36

Extended Initialization

(1) Initialization of mapping for current block Z
(A) always: va(constant)z = constant;
(B) if Z = start block: va(r) = void for all tuples .
(C) else: let Pred={X, Y, ...} be the predecessors of Z in basic block graph
for all variables ¢ used in current block Z:
it vn(Ox#vn(t)yr# ...
va(t)z == new value number
generate: va(1)z := (va(t)x va(t)y ...)
if vn(x=vn(t)yr=...
vi(t)z := va(t)x

(2) for all tuple 7 in program order:
-- as before

39

39

Property P8 revisited

Let XY be BBs each with a definition of « that may reach a use of « in BB Z.
Let Z' be the first common BB of execution paths X »* Z, Y »" Z.
Then Z' contains a ¢-operation for a.

Remark: Z'is in the dominance frontier of .X, Y. This is often used to explain
the placement of ¢ nodes. Our lazy approach leads to the same result. 2%

26

Remainder Value Numbering

(1) Initially: value number vi(constanty=constant; vn(t) = void for all tuples 1.
(2) for all tuple ¢ in program order:
case (a)t=ST>local<t'
vn(t) := vn(ST >local< va(t')
if va(f) = void then
va(LD <local >):= vn({'),
vn(f):= new value number,
generate: va(r): ST >local< vn(t)
(b) t = LD <local>
vn(t) := va(LD <local>).
if va(f) = void then
vn(f):= new value number,
generate: va(r): LD <local>
cyr=1r't" - any operation ©
v(t) = (e vat') v ()
if va(f) = void then
vn(f):= new value number,
generate: va(r): © va(t) vn(t").
(d)t=call proct't"... - analogously to () with t = call proc

- write to a local variable

- read from a local variable

38
38
Extended Value Numbering
Z:az= (I)((ll, az) ok
l o

40

Extended Initialization

(1) Initialization of mapping for current block Z
(A) always: vn(constant)z = constant;
(B) if Z = start block: vn(7) = void for all tuples .

(C) else: let Pred={X, Y, ...} be the predecessors of Z in basic block graph

for all variables ¢ used in current block Z:
if for any B e Pred: vn(1)s= void
recursively, initialize block B with (1) and get vn(7)s
it vn()x# vn(t)y
vn(t)z = new value number
generate: vn(f)z := d(va(t)x v(f)y)
it vn()x=vn(t)y
vn(f)z == vn(f)x

(2) for all tuple 7 in program order:
-- as before

41

Extended Initialization

(1) Initialization of mapping for current block Z
(A) always: va(constant)z =constant;
(B) if Z = start block: vn(r) = void for all tuples 1.

41

(C) else: let Pred={X, Y, ...} be the predecessors of Z in basic block graph

for all variables ¢ used in current block Z:
if for any Be Pred= unvisited
vn(t)s = guess a new special value number
if for any B e Pred: va(t)s= void
recursively, initialize block B with (1) and get vn(/)s
if vn()x = vn(t)y
vn(f)z == new value number
generate: va()z := d(vn(?)x va(t)y)
if va(r)xor va(r)r is guessed
generate: va(1)z := ¢'(va(t)x va(t)y)
it vn(H)x=vn(t)y
vn(t)z = vn(t)x

(2) for all tuple 7 in program order:
-- as before

43

Example |: Mature ¢'-Functions

Y.‘LH: Y:a;z

43

Extended Value Numbering

rar]| [ror] [rar-]

o]

¥ “y

42

Eliminate/Mature ¢'-Functions

= After value numbering is finished for each block X:

replace the guessed value numbers in ¢'-functions of X by last valid

real value numbers in pre(X)

replace ¢'-functions by mature ¢-functions using real value numbers
delete: va(t), = d(va(t)y va(t)z)

if # not changed in previously unvisited blocks, no ¢ function required
replace then use of vn(r); by va(t)y

= |nsight:

= deletion could prove some other ¢-functions unnecessary
= iterative deletion till fix point

Example Il: Mature ¢'-Functions

Y:a;= ...

¥ " ¥

Z:..=..a;3... Not visited ‘ Z: .=

45

X:az=¢'(a1,?)

Z:.=..a;3.. Not visited

Example lll: Mature ¢'-Functions

" H I "

auntouched? ‘ Z:..=..aj..

a untouched

47

SSA Construction Block 1

49

SSA Construction Block 2

a;=1 1
b,=2

a=¢tar, o) 2
3 b2=¢' (b1, b5)

c1=az2+b2
/d1:c1—az

51

Example Program and BB Graph

(1) a=1;
(2) b=2;

while true{
(3) c=a+tb;
(4) if (d=c-a)
(5) while (d=b*d) {
(6) d=a+b;
(7) e=e+1;

} (5) d=b*d

(8) b=a+b;
(9) if (e=c-a) break; \

} (6) d=atb (8) b=a+b
(10) a=b*d; (7) e=e+l (9) e=c-a
(11)b=a-d;

(10) a=b*d

(11) b=a-dps

48
SSA Construction Block 2 -
Initialization
1
b,=2
a2=0" (ai, as) 2
3 b2=¢' (b1, b5)
l e
N |
5
4
| I
e
50
SSA Construction Block 3 -
Initialization
1
b,=2
a=¢"(ar, a5)] 2
3 bo=¢' (b1, b5)
bs=¢' (b2 b4)/3iaztb2 M a1
dy:¢'(dw:d4)
4
52

53

55

57

SSA Construction Block 3

3

ds=bs*d,

/d1=c1—az

[o3=¢' (b2, b4
o= (dz, d4

SSA Construction Block 4

SSA Construction Block 5

do=¢' (d1, d
e3=¢' (e2,e4
ds=bs*d,

4

\m:wfﬁwm) 5

a=¢'(ar, as 2
b2=¢' (b1, b5
c1=a2+b2

k3

b2=¢' (b1, b5
eo=¢' (e1,e5
ci=az+b2
di=ci-az

— !
az=¢' (ai, ad 2

aZ=¢'(ar, as 2
b2=¢' (b1, b5
eo=¢' (e1,e5
c1=a2+b2
di=ci-az

bs=az+ba
e4=Cl—az

54

56

58

SSA Construction Block 4 -

Initialization
1
a=¢'(ar, 2 2

3 b2=¢' (b1, b5

c2=¢' (e1,e5
B o S
d2=¢' (d1, d4 di=c1-az
e3=¢' (e2,e4
d,=bs*d,
4

SSA Construction Block 5 -
Initialization

e2=¢' (e1,e5
ci=az+b2
d2=¢' (d1, d4 di=ci-az

ei=¢' (e2,ed \07 '3
d,=b;*d, AR

(10) a=b*d|
(11) b=a-d|

56

SSA Construction Block 6 -

Initialization
1
a=¢(ar, a5 2
3 b2=¢' (b1, b5
e2=¢' (e1,e5
ci=az+b2
dz=¢' (d1, d4 di=c1-az
es=¢' (e2,ed \ —
s =g thT, 077 4
d5=b3*dz 4 ds=¢ (d3, d1)
bs=az+ba
es=Ccl—az
| |

59

61

63

SSA Construction Block 6

ar=¢*{ar, a5 2
b2=¢' (b1, b5
eo=¢' (e1,e5
c1=a2+b2
di=ci-az

M)
p=gthT 7 5
ds=¢ (dz, d1)
bs=az+bs

SSA Mature Block 2

B=¢ (b1, b5)| 2
co=¢ (e1, es)
ci=aitb2
di=ci-a1

b::¢(*bz,b7) 5
ds=¢ (ds, d1)
bs=ai+ba

a3=bs*ds 6
bs=a3-ds

SSA Mature Block 3

1
—
B2=¢ (b1, b5) 2

eo= (e1, e5)
c1=a1+b2
di=ci-a1

]
=§(b;,52)] 5

ds=¢ (ds, d1)
bs=ait+ba
es=Ccl—-ail
J
a3=bs*ds 6
(10) a=b*d|
bemax-ds

63

SSA Mature Block 2

ar=¢(ai,az) 2
3 b2=¢ (b1, bs)
/ez—d)(e,,eb)
ci1=aztb2
di=ci-a2
\m—(i)(ﬁs,m) 5
ds=¢ (ds, d1)
bs=az+b4

3 2,
do=¢' (d1,d4
e3=¢' (e2,e4

60
SSA Mature Block 3
1
2
3
53)], |
do=¢ (di,dy)
5= (ez,e0) 5055, 57)
\d':d)(da,d\) 3
bs=a1t+b4
es=Cci—-ai
| I
as=bs*ds 6
be=as—-ds
62
62

SSA Mature Block 3

B=¢ (b1, b5]]
e2=¢ (e1, e5)
ci=ai+b2
di=ci-a1

M2
T=¢aT,ATT] 5
bs=a1+b2z
es=Ccl—al

|

a3=bs*ds 6
be=as-ds

10) a=o*q|
(11)

64

64

65

67

80

Final Simplifications

1 1
B=§ (51,557 9 B=¢2,c1)
eo=¢ (e1, e5) e2=¢ (e1,b2)

c1=1+b2
di==b2

ci1=a1+b2
di=ci-a1

MR) M2
=G, AT 5 d=¢ 145,27 §

bs=ai+bz

os==c1
es==b2

I |

as=ci1*ds 6
o

65

Construction Algorithm

Generate BB graph and perform Definition-Use-Analysis (data flow
analysis) for all variables:
= V)T . Variable v defined in statement (i)
= uG= 7(... Vixpz.) ...) Variable v used defined (may reaching definitions) in
statements (x,y,z,...)
Set v = u, for all v, ug;in the program
Iterate until a fixed point over:
= Set vm?/umfor:
* vi)= constant and u()# constant
* vi=n(..) and up# n(...)
+ vo= (1) and ug = a(x2y2) but xi#x2 or yi £y2
Find a unique value number for each equivalence class

Replace variables consistently by value number for each equivalence
class

Insert, if necessary, ¢-functions eventually at the dominance frontiers or
during the fixed-point iteration

67

SSA — Construction from AST

Left-Right Traversal (1. Round):
= compute for each syntactic expression its basic block number
= compute precedence relation on basic blocks

= generate expression triples into the BBs

Right-Left Traversal (2. Round):

= compute, for each live (beginning with the results of a procedure)
expressions, the value numbers (contains ¢’) using the data
structures known from value numbering

Left-Right Traversal (3. Round):
= Mature ¢-functions
= generate SSA for nonempty blocks

Further eliminations on SSA graph

80

66

79

81

Optimistic SSA Construction

Idea:
= all values (value numbers) are equal until the opposite is proven
= opposite is proven by:
« Values are different constants
+ Values are generated form syntactical different operations

« Values are generated form syntactical equivalent operations with proven
different values as operands

Advantage:

= Detects sometimes congruence that are not detected by pessimistic
construction

= No ¢-functions to mature
Disadvantage:

= Detects sometimes congruence not that are detected by pessimistic
construction (e.g., algebraic identities)
Requires Definition-Use-Analyses on BB graph on construction

Requires computation of iterated dominance frontiers to position ¢—functions

66

Minimal SSA-Form

Insight:

¢-functions guarantee that for each use of a variable there is exact
one definition (“variable” means program- or auxiliary temp variable)
Encodes solution of the (may) Reaching-Definitions-Problem
Problems with array elements and indirectly addressed variables
remain (to be discussed and solved later)

Minimal SS4-form: set ¢-function ay := ¢(ai, as,...) in block B iff
value q is live in B.

= Use data flow analysis liveln(B) and check a € liveln(B).

Faster but potentially larger:

= generate value numbers only on demand

= lazy initialization integrated in the construction algorithms
= generates code for transitively dead variables, hence, larger result

el

SSA from AST

One left-right tree traversal if we use lazy initialization
instead of live analysis,
= Construct BBs
= Construct SSA code for the basic blocks (value number graphs)
= Construct control flow between BBs
For each statement type (AST node type) there is different
set of actions when visiting the nodes of that type including:
= Assignment to local variables and expressions: like local value
numbering in a left-to-right traversal
Procedure calls like any other operation expressions

While, If, Exception, ... on the fly introduce new BB nodes and
control flow edges

81

SSA from AST

= while AST and BB h
while an grap Parent

hi
@@
(i) o et
a al
S

End

82

82

Deconstruction of SSA

= Serialize the SSA graph
= Replace data dependency edges by variables
= Remove ¢-functions ag := §(a, az, ...) :

= Assume each variable a, designates a “register”

= Copy values qa,, a,, ... at the end of the predecessor basic blocks into that
register a,
Requires possibly new blocks on some edges as a, a,, ... may be used
in other successor blocks

= Perform copy propagation to avoid unnecessary copy operations
= Allocate registers for the variables

= Fixed number of registers

= In general, more variables than registers

SSA from AST

= while actions

83

Caren)
Finalize current block B(Parent) @
Create a new current block B(Expr) i
Add control flow B(Paret) to B(Expr) @ Body
Recursively, generate code for Expr
computing value numbers locally
Finalize current block B(Expr)
Create a new current block Bstart(Body)
Add control flow B(Expr) to Bstart(Body)
Recursively, generate SSA code for Body

After return current block is Bend(Body),
finalize it (Bstat and Bend may be different)

Add control flow Bend(Body) to B(Expr)
Create a new current block Bstart(Succ)
Add control flow B(Expr) to Bstart(Succ)

Return with Bstart(Succ) as current block

Example Program and BB Graph

a=1;
b=2;
while true{
c=atb;
if (d=c-a)
while (d=b*d) {
d=a+b;
e=etl;
}
b=a+b;
if (e=c-a) break;

}

Idea: assign variables with non overlapping lifetimes to the same

register
Later problem

84

86

86

(10)a=b*d;

(11)b=a-d;

85

Introduce Variables for Edges

3 e2=¢ (e1,bz)
c1=1+b2
(=1
es=¢ (e4, e2) @) b2
=b,*
ds=b;*d; N
4
ea=e3+1

87

11

Remove ¢-functions

Remove ¢-functions

e2=¢ (e1, b2)
c1=1+b2

e3=((e1,e2)

ds=b,*d, \

es=e3+l

es=¢ (e1,e2)
ds=b,*d,

a5=q)(én,m;

ea=es3+l

88 89

Remove ¢-functions Copy Propagation

91
90 91
Remove Empty Block Memory SSA
= By now we can only handle simple variables
= Extension:
= Node: memory changing operations
= Edges:
8 + Data- and control flow.
3 Anti- / out dependencies between memory changing operations
de=cu | 7 = Functional modeling of memory changing operations
d-=b,*d, es=e2 b2=c1
e2=b2
v
5
— 4
es=e3+l 9
d2=b2 Mav M a M a
es=es —ee == o M, M Memory state
tore Load Call a Address
M My M v Value
92 93
92

93

12

Why Load Defines Memory?

Anti-depending memory operations:
Read an address essentially before
Redefine the value

94

Properties of Memory SSA

P1-P8: as before

P9: New! Lifetime of memory states do not overlap if they
define different values of the same memory slot

= Otherwise, we would need to keep two versions of the
memory alive

= Memory does not fit into a register (usually)

= Would make the programs non-implementable

= Note: if we only have to analyze the program and not to
generate code, P9 could be ignored

9%

96

Example Points-to-SSA

public class List {
Object value = null;
List next = null;

=)
‘ Euhﬁ”‘ﬁ
tj

public List (Object v) {
value = v;

public void append(Object v) {
if (next == null
next = new List(v);
else
next.append(v);

3

i

MCall

public void putAt(int n,Object v) { e

int count = 0; Exit L

List 1 = this; Lo
while (count < m) { [Mewpni
1 = l.next; 7
countii+; I

1.value = v;

98

95

97

99

Memory SSA

To capture only essential dependencies, distinguish disjoint memory
fragments
= In general, not decidable
= Approximated by analyses
= Initial distinctions are easier, e.g.
+ Heap vs. Stack
« Different arrays on the stack
« Heap partitions for different object types
Distinction often only locally possible
= Union necessary
= Sync operation unifies disjoint memory fragments
= Like ¢- functions but sync is strict

Reduced SSA Representations

Not the whole program is directly relevant for all analyses

= Certain data types are uninteresting, e.g., value types such as Int, Bool in
Points-to analysis

Consequently, operation nodes consuming/defining values of
these types and edges connecting them can be removed
More compact program representation

= Faster in analysis

= Still SSA properties hold
Example: Points-To SSA capturing only reference information necessary
for Points-To analysis (ignoring basic types and operations)

o7
Cliffhanger from the earlier today
Inter-Procedural analysis
Call graph construction
Points-to analysis
Points-to analysis (fast and precise)
9

100

102

Recall Points-to Analysis (P2A)

Computes reference information:

= Which abstract objects may a variable refer to.

= Which are possible abstract target objects of a call.

= In general: for any expression in a program, which are the abstract

objects that are possibly bound to it in an execution of that program.

“Static” or “dynamic” dispatch:

= Call graph construction is required for P2A (static dispatch)

= Can be integrated in P2A (dynamic dispatch)

100

Fast and Accurate P2A

Data values

= allocation site abstract from objects O

= abstract heap memory: 0 x F-0 (F set of fields) heap size: Int
Data-flow graph: Points-to-SSA graph for each method (constructor)

= Nodes with ports represent operations relevant for P2A, ports correspond to
operands, special ¢-nodes for merge points in control flow

= Edges represent intra-procedural control- and data-flow

= Reduced general SSA graph

Transfer function:

= update the heap according to the abstract semantics of the node kinds
= Special for ¢-nodes: U on O values and max on Int values, resp.
Initialization: @ for 0 ports and 0 for Int ports, resp.

Simulated execution

102

1: Types addr, size and mem

addr mem

Each static allocation site i = Is the global data structure modeling
corresponds to the heap memory (singleton)
an abstract object oi € O = Is not a value in the SSA graph edges

= An address in the analysis is a
subset of the finite set of abstract
objects: P?

= Alloc produces addr values and
Load, Store, Call uses them

size

= The memory size is an indicator of
the current size of the heap
abstraction and guarantees the
order of memory related operations

= |mplemented as a special Integer

= Used instead of a heap memory
value in the SSA graph edges

104

but updated as side effect of node
interpretation

A memory slot is a pair of abstract
object and field

[oi, field] e O x F

A state of a memory slot is a pair of
memory slot and an addr value:
([oi, /1~ addr) e Ox Fx ®°

A state of the memory is the state of
all memory slots

Memory mem < O x F x @°
Functions ser and get to access the
addr value of a slot

Recall Points-to Analysis (P2A)

Construction of a Points-to Graphs (P2G):
= Node for objects and variables,
= Edges for assignments and calls
Propagate objects along edges, i.e., data-flow analysis on that graph

The baseline P2G approach is locally flow-insensitive; it focuses on
data-dependencies over variables and ignores the intraprocedural
control flow

= An analysis is flow-sensitive if it takes into account the order in which
statements in a program are execute

= In principle, additional def-use analysis avoids this problem at the expenses
of higher memory and analysis costs
The baseline P2G approach is context-insensitive
An analysis is context-sensitive if distinguishes different contexts in which
procedures/methods are called

Object-sensitivit: distin@uish methods by the abstract objects they are called
on - can be understood as copies of the method’s graph

Scales but is quite slow

101

101

1: Representation of Memory in P2A

Assume there is only one abstract heap memory value
(mem) valid at all program points during analysis, we can
use global memory data structure

= Mapping (abstract objects, attributes) — stored values

= Note, stored values are references, i.e., a (set of) abstract object(s)
Update heap memory value data structure as side effect of

= Store and Alloc operations

= Weak updates, i.e., generate/add but never kill/delete information
Distinguish between abstract heap memory (mem) and
abstract heap memory size values (size), we can use
memory size as type of memory edge values in SSA

= Changed size indicates changed memory speeds up the fixed-point
iteration

= Phi-functions over memory size

103

103

2: Points-to-SSA Graphs

public class List {
Object value = null;
List next = null;

public List (Object v) {
value = v;

public void append(Object v) {
if (next == null
next = new List(v);
else
next.append(v);

L

o
MCaM
™

}

public void putAt(int n,Object v) { 4
int count = 0; Exit
List 1 = this;
while (count < n) {

1 = l.next;
count+;

1.value = v;

105

14

3: Transfer functions

if input changes, update as below else skip:

_ C — % 2
i:Alloc Load Store
Lv] [v] X7
Pt(v)={o} (unique i) PHV)=Usi < pa) get(0f) VoicPt(a):

set (0,f, get(o;,f) UPH(V))
size(x’) = heap.size

106

106

Flow-sensitivity

= The Points-to-SSA approach has two features that
contribute to flow-sensitivity:

1. Locally flow-sensitive: We have SSA edges imposing the correct
ordering among all operations (calls and field accesses) within a
method.

2. Restricted globally flow-sensitive: simulated execution follows the
inter-procedural control-flow from one method to another.

= Effect:

= An access a;.x will never be affected by another a, . x that we
process after a;. x.

= Each return only contains contributions from previously processed
calls, i.e., reduced mixing of values returned by calls targeting the
same method.

= But: information is accumulated in method arguments (method
summaries) to avoid exponential explosion and guarantee
scalability.

108

108

Context-sensitivity

= Context-insensitive analysis
= Actual arguments of calls targeting the same method were mixed in
the formal arguments.

Advantage scalability: ensures termination for recursive call
sequences and reaches a fix point quickly

Disadvantage accuracy: inaccurate due to mixed return values
= Context-sensitive analysis

Divide calls targeting a given method a.m(v ...) into a finite
number of different categories

Analyze them separately — as if they defined different copies of that

method.
= We can define contexts as an abstraction of call stack situations:
context: [m, call id, a, vi,.. , vo] - C

110

110

5: Simulated Execution

= Interleaving of process method and update call nodes’ transfer function
= Processes a method:

= Starts with main,

= propagates data values analog the edges in P2-SSA graph

= updates the heap and the data values in the nodes according to their
transfer functions

= If node type is a call then ...
= Call nodes’ transfer function; if input changes:
= Interrupts the processing of a caller method
= Propagates arguments Pf(vi...vn) to the all callees Pt(a)
= Processes the callees (one by one) completely
(iterate in case of recursive calls)
= Propagates back and merges the results P(r) of the callees
= Updates heap size size(x)
= Continue processing the caller method ...

x1[allvi] [va]

can &7
1—-J

107
107
Example: Global flow-sensitivity
ry=a;.m(vy);
7’\\ -
. 7 S vmew v
rp=a,.m(vy) return v;
-
\ }
i _ 7
ry=a;.m(vy); -
Flow-insensitive Result
Pt(r) = Pt(r) = Pt(r3) = Pt(vi) U Pt(v2) U Pt(v3)
Flow-sensitive Result
Pt(n) = Pt(v),
Pt(r) = Pt(vi)U Pt(va),
Pt(r3) = Pt(vi) U Pt(v2) U Pt(v3) 109
109
Context-sensitive call handling
Call(m, call, Xin, @, V1, ... , Vo] = [Xout, I']
[Xou, r1=10, L]
for all c € context [m, call id, a, vi,.. , v,] do
if [Xin, @, V1, ... , Vo] = previous arguments (m, c) then
r = previous return (m, c)
Xout = Xin
else
args = previous args (m, ¢)[xi, @, V1, ... , Vil
args previous (m, c) = args
[Xouts T'] = [Xouts T] LIprocessMethod(m, args)
previous return (m,c) =r
end if
end for

return [Xout, ']

m

111

15

Examples: Context abstractions

Object-sensitivity This-sensitivity

= A context is given by a pair = A context is given by a pair
(m,0) (m, this)

= where o € O is a unique abstract = where this e ®P?is the unique
object in the points-to value
analyzed for the call target
variable this.

points-to value (set of abstract
objects) analyzed for the call
target variable this.

® Linear (in program size) many = Exponentially many contexts (in
contexts, practice ok),
= In practice slightly more precise .

In practice an order of magnitude

than This-sensitivity. faster than Object-sensitivity.

12

112

Results

= Fast and accurate P2A
= Points-to SSA = locally flow sensitive PTA
= Simulated execution = globally flow-sensitive PTA, fast
= Context-insensitive in the baseline version

= More accurate (in theory and practice ca. 20%) and 2x as fast
compared to classic flow- and context-insensitive P2A

= Fast: <1 min on javac with > 300 classes.
= Context-sensitive variant this sensitivity even more accurate

= As fast and up to 3x as precise compared to classic flow- and
context-insensitive P2A

= As precise and 10x as fast compared to the best-known context-
sensitive variant (object sensitivity) P2A

= Shows in clients analyses like synchronization removal and
static garbage collection (escape and side effect analysis)

14

114

Examples: Precision

In favor of Object-sensitivity

113

115

Method definitions:
m() {field = this; }
V n() {return field; }
Call 1:
Pt(ai) : {01, 02}
a;.m()
Call 2:
Pt(az) : {01 }
r2 = az.n()

Object-sensitivity: Pt(rp) : {04 }
This-sensitivity: Pt(r,) : {01, 02}

In favor of This-sensitivity

Method definition:
V m(V v) {return v; }

Call 1:
Pt(ar) : {01}, Pt(v4) : {03 }
ry =ag;m(vyq)
Call 2:
Pt(az) : {01, 02}, Pt(v2) : {04 }
r; = a.m(v)

Object-sensitivity: Pt(ry) = {03, 04}.
This-sensitivity: Pt(r,) = {04 }.

13

Outline

Introduction to SSA
= Motivation
= Value Numbering

= Definition, Observations

Construction, Destruction

= Theoretical, Pessimistic, Optimistic Construction

Destruction
Memory SSA,

Interprocedural analysis based on Memory SSA: example P2SSA

How to capture context-sensitive analysis results

Optimizations

15

16

