
The Open-Source Modelica Compiler

Martin Sjölund

Department of Computer and Information Science
Linköping University

2021-02-12

Overview

Part I Background
Part II Implementation of a Modelica Compiler

Part I

Background

The Phases of the Classic Compiler
Source program

Lexical
analysis

 Sequence of chars:
 'IF sum=5 THEN...'

Syntactic
analysis

 Sequence of tokens:
 'IF' 'sum' '=' '5'

Error management

Semantic
analysis and
intermediate

code generation

 Parse tree, derivation tree

Code
optimization

 Internal form, intermediate code

Code
generation

 Internal form, intermediate code

Object program

Table management

Systems Engineering

I Handling large, complex projects.
I Combining requirements, modeling,

simulation, deployment, support,
etc.

I Inter-disciplinary.
I You often end up with many

different tools because different
domains traditionally used different
tools.

Systems Engineering – Example Tools

I Early stage – Administrators and managers email
around Word (contracts) and Excel
(requirements) sheets

I Requirements are formalized and stored in a
database somewhere

I Requirements are mapped to UML models
I UML is mapped to a design (empty classes)
I The actual code is written (perhaps C)
I The code is adapted/generated to run on a

certain platform (MISRA C perhaps?)
I The code tested/certified, etc

Domain-Specific Languages

I Many are similar to classic, general-purpose programming
languages (e.g. PHP).

I Examples include unix shells, SQL, HTML, regular expressions,
parser generators, some XML schemas, and many more.

I Compilers are usually implemented partially using
domain-specific languages (grammars, special languages to
describe architectures, etc).

I Why? It is easier to program and maintain such code.

DSLs: Markup Languages

<!DOCTYPE html>
<html>
<body>

<h1>My first HTML page</h1>

<p>Hello, world!</p>

</body>
</html>

DSLs: Template Languages

<!DOCTYPE html>
<html>
<body>

<h1>My first PHP page</h1>
<?php
echo $_SERVER["REMOTE_ADDR"];
?>
</body>
</html>

DSLs: Embedded Scripting Languages

<!DOCTYPE html>
<html>
<body>

<p id="demo"></p>

<script>
document.getElementById("demo").innerHTML = "Hello World!";
</script>

</body>
</html>

DSLs: Regular expressions

grep "status: *correct" "$test"
grep -R "openmodelica[.]org" /etc/apache2

Modelica

I An equation-based object-oriented
modeling language (a DSL).

I Modeling using a graphical user
interface (or the equivalent textual
representation).

I Used for simulation and/or control
of multi-domain (physical) systems.

I Centered around making it easy for
a (mechanical, electrical, etc)
engineer to use Modelica.

p
v

+
-

C
=
1
e
-6

c

R=1e6

r

g

Figure: An RC-circuit
implemented in Modelica.

Simulating the RC-circuit

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5

V
o
lt

a
g

e
 [

V
]

time [s]

Figure: Result of simulating the RC-circuit.

Equations

Physics is described by equations, not statements. Thus, Modelica
primarily uses equations instead of imperative programming (like
C).
I Equations look like V

R = I
However, code needs to be translated to imperative programming
(or similar) in order to run numerical solvers on a CPU. So it could
be solved as either of:
I V := R ∗ I
I I := V

R
I R := V

I

Ordinary Differential Equations (ODEs)

The numerical solvers we use require an ODE formulation. For
example:

∂x
∂t = y (1)

d = 2.0 ∗ t (2)
∂y
∂t = −d ∗ x (3)

Where these equations can be solved sequentially and the start
value for each state variable is known or can be solved during
initialization.

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00
x 3.00
y 2.00
∂x
∂t = y
d = 2.0 ∗ t
∂y
∂t = −d ∗ x

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00
x 3.00
y 2.00
∂x
∂t = y 2.00
d = 2.0 ∗ t
∂y
∂t = −d ∗ x

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00
x 3.00
y 2.00
∂x
∂t = y 2.00
d = 2.0 ∗ t 0.00
∂y
∂t = −d ∗ x

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00
x 3.00
y 2.00
∂x
∂t = y 2.00
d = 2.0 ∗ t 0.00
∂y
∂t = −d ∗ x 0.00

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00 0.25
x 3.00 3.50
y 2.00
∂x
∂t = y 2.00
d = 2.0 ∗ t 0.00
∂y
∂t = −d ∗ x 0.00

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00 0.25
x 3.00 3.50
y 2.00 2.00
∂x
∂t = y 2.00
d = 2.0 ∗ t 0.00
∂y
∂t = −d ∗ x 0.00

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00 0.25
x 3.00 3.50
y 2.00 2.00
∂x
∂t = y 2.00 2.00
d = 2.0 ∗ t 0.00 0.50
∂y
∂t = −d ∗ x 0.00 -1.75

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00 0.25 0.50
x 3.00 3.50 4.00
y 2.00 2.00 1.5625
∂x
∂t = y 2.00 2.00
d = 2.0 ∗ t 0.00 0.50
∂y
∂t = −d ∗ x 0.00 -1.75

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00 0.25 0.50
x 3.00 3.50 4.00
y 2.00 2.00 1.5625
∂x
∂t = y 2.00 2.00 1.5625
d = 2.0 ∗ t 0.00 0.50 1.00
∂y
∂t = −d ∗ x 0.00 -1.75 -4.00

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00 0.25 0.50 0.75
x 3.00 3.50 4.00 4.390625
y 2.00 2.00 1.5625 0.5625
∂x
∂t = y 2.00 2.00 1.5625
d = 2.0 ∗ t 0.00 0.50 1.00
∂y
∂t = −d ∗ x 0.00 -1.75 -4.00

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00 0.25 0.50 0.75
x 3.00 3.50 4.00 4.390625
y 2.00 2.00 1.5625 0.5625
∂x
∂t = y 2.00 2.00 1.5625 0.5625
d = 2.0 ∗ t 0.00 0.50 1.00 1.50
∂y
∂t = −d ∗ x 0.00 -1.75 -4.00 -6.5859375

Solving the Ordinary Differential Equation

Solving the ODE from t=0 to t=1 using a step size of 0.25 with
explicit (forward) Euler, using x(t = 0) = 3 and y(t = 0) = 2:
t 0.00 0.25 0.50 0.75 1.00
x 3.00 3.50 4.00 4.390625 4.53125
y 2.00 2.00 1.5625 0.5625 -1.083984375
∂x
∂t = y 2.00 2.00 1.5625 0.5625
d = 2.0 ∗ t 0.00 0.50 1.00 1.50
∂y
∂t = −d ∗ x 0.00 -1.75 -4.00 -6.5859375

Better Solutions for the Ordinary Differential Equation

Modelica tools need to know about ODEs, and
can solve them better than the explicit Euler.
The end values for different solvers:
I Euler stepSize=0.25, x=4.531, y=-1.084, 4 rhs calls

I Euler stepSize=0.10, x=4.087, y=-1.600, 10 rhs calls

I RK4 stepSize=1.00, x=3.667, y=-1.667, 4 rhs calls

I RK4 stepSize=0.25, x=3.747, y=-1.841, 16 rhs calls

I DASSL, tolerance=1e-3, x=3.745, y=-1.838, 15 rhs calls

I DASSL, x=3.747, y=-1.842, 67 rhs calls

I Euler stepSize=1e-5, x=3.747, y=-1.842, 10000 rhs calls

Ability to choose numerical solver based on needs
(predictable execution time, fast execution time, or
accurate).

model ODE
Real d=2*time;
Real x(start=3.0,

fixed=true);
Real y(start=2.0,

fixed=true);
equation
der(x) = y;
der(y) = -d*x;

end ODE;

Better Solutions for the Ordinary Differential Equation

Modelica tools need to know about ODEs, and
can solve them better than the explicit Euler.
The end values for different solvers:
I Euler stepSize=0.25, x=4.531, y=-1.084, 4 rhs calls

I Euler stepSize=0.10, x=4.087, y=-1.600, 10 rhs calls

I RK4 stepSize=1.00, x=3.667, y=-1.667, 4 rhs calls

I RK4 stepSize=0.25, x=3.747, y=-1.841, 16 rhs calls

I DASSL, tolerance=1e-3, x=3.745, y=-1.838, 15 rhs calls

I DASSL, x=3.747, y=-1.842, 67 rhs calls

I Euler stepSize=1e-5, x=3.747, y=-1.842, 10000 rhs calls

Ability to choose numerical solver based on needs
(predictable execution time, fast execution time, or
accurate).

model ODE
Real d=2*time;
Real x(start=3.0,

fixed=true);
Real y(start=2.0,

fixed=true);
equation
der(x) = y;
der(y) = -d*x;

end ODE;

Multi-Domain Approach: Systems Engineering

Modelica is a multi-domain approach based on math:
I It is suitable to simulate different physical domains

independently or multiple domains in the same model.
I Can be used to simulate full systems or synthesize parts of a

system (such as digital controllers).
I The language fulfills the requirements of Systems Engineering.

Part II

Implementation of a Modelica
Compiler

User in the Focus

Modelica is designed around the user of the language being the
focus:
I This makes implementation of the compiler harder.
I NP-hard problems need to be solved at compile-time.
I Compilation time is unbounded and includes interpretation of

arbitrary code.
I Certain language features are a little weird when you consider

the textual representation, but make sense when for the
graphical user interface.

User in the Focus – OMEdit / OMWebBook Demo

The Compiler Design

A Modelica compiler needs to have lots of domain knowledge. It
also depends on heuristics to translate equations into ODEs (the
main job of a Modelica compiler), which are translated to
executable code.
I The heuristics may fail to create an ODE from the given code

even when a solution exists.
I Solutions do not necessarily exist.
I Numerical solvers may fail to solve the model (require infinite

resolution).
I Solution: good error messages and debuggers.

In practice, this works very well.

OpenModelica Overview

I Written in MetaModelica (general-purpose programming
extension to Modelica).

I The code generator uses our own DSL Susan for text
generation (which translates Susan code to MetaModelica).

I ANTLR parser which translates an ANTLR grammar with a
C-code target, which uses the C interface to MetaModelica to
create data types.

I Our own flex-based lexer which generates a
MetaModelica-based lexer.

I Kernel written in Modelica, MetaModelica, C, C++, Susan,
ANTLR, flex. DSL’s almost everywhere.

OpenModelica Parts

I Parser (using the ANTLR parser generator).
I Front-end (semantic analysis, like a traditional compiler). Old

version was one huge monolithic step.
I Equation back-end (symbolic math, outputs imperative code

from equations). (Very) old version was one huge monolithic
step.

I Code generator (takes imperative code and generates of
C-code, skipping middle-end and back-end of a traditional
compiler).

I Utilities.
I Scripting environment.
I Front-end + code generator handles MetaModelica

(functions).
I The compiler is also written in MetaModelica (bootstrapping).

Modelica code for RC-circuit (GUI annotations stripped)

model RC
Modelica.Electrical.Analog.Basic.Ground g;
Modelica.Electrical.Analog.Basic.Resistor r(R = 1e6);
Modelica.Electrical.Analog.Basic.Capacitor c(C = 1e-6);
Modelica.Electrical.Analog.Sources.SineVoltage sineVoltage;

equation
connect(r.n, c.p);
connect(c.n, g.p);
connect(sineVoltage.p, r.p);
connect(g.p, sineVoltage.n);

end RC;

FrontEnd phases
I FrontEnd - loaded program (parsing dependent libraries, etc)
I Absyn->SCode (Real[3] x[2], y[4]; -> Real x[2,3];

Real y[4,3];)
I NFInst.instantiate
I NFInst.instExpressions
I NFInst.updateImplicitVariability (Real arr[x] // x is

structural)
I NFTyping.typeComponents (Real r)
I NFTyping.typeBindings (Real r = 1.5)
I NFTyping.typeClassSections (equations)
I NFFlatten.flatten
I NFFlatten.resolveConnections
I NFEvalConstants.evaluate
I NFSimplifyModel.simplify (“constant folding”)
I NFPackage.collectConstants
I NFFlatten.collectFunctions (removes now unused functions)
I NFFlatModel.toFlatString

Flat Modelica IR; can be fed into a Modelica compiler
class 'RC'

public Real 'g.p.v'(unit = "V", quantity = "ElectricPotential");
public Real 'g.p.i'(unit = "A", quantity = "ElectricCurrent");
public parameter Real 'r.R'(start = 1.0, unit = "Ohm", quantity = "Resistance") = 1000000.0;
public parameter Real 'r.T_ref'(nominal = 300.0, start = 288.15, min = 0.0, displayUnit = "degC", unit = "K", quantity = "ThermodynamicTemperature") = 300.15;
public parameter Real 'r.alpha'(unit = "1/K", quantity = "LinearTemperatureCoefficient") = 0.0;
public Real 'r.v'(unit = "V", quantity = "ElectricPotential");
// ...

equation
'r.n.v' = 'c.p.v';
'g.p.v' = 'sineVoltage.n.v';
'g.p.v' = 'c.n.v';
'sineVoltage.p.v' = 'r.p.v';
'c.p.i' + 'r.n.i' = 0.0;
'sineVoltage.n.i' + 'c.n.i' + 'g.p.i' = 0.0;
'sineVoltage.p.i' + 'r.p.i' = 0.0;
'g.p.v' = 0.0;
assert(1.0 + 'r.alpha' * ('r.T_heatPort' - 'r.T_ref') >= 1e-15, "Temperature outside scope of model!", 'AssertionLevel'.error);
'r.R_actual' = 'r.R' * (1.0 + 'r.alpha' * ('r.T_heatPort' - 'r.T_ref'));
'r.v' = 'r.R_actual' * 'r.i';
'r.LossPower' = 'r.v' * 'r.i';
'r.T_heatPort' = 'r.T';
0.0 = 'r.p.i' + 'r.n.i';
'r.i' = 'r.p.i';
'r.v' = 'r.p.v' - 'r.n.v';
'c.i' = 'c.C' * der('c.v');
0.0 = 'c.p.i' + 'c.n.i';
'c.i' = 'c.p.i';
'c.v' = 'c.p.v' - 'c.n.v';
'sineVoltage.signalSource.y' = 'sineVoltage.signalSource.offset' + (if time < 'sineVoltage.signalSource.startTime' then 0.0 else 'sineVoltage.signalSource.amplitude' * sin(6.283185307179586 * 'sineVoltage.signalSource.f' * (time - 'sineVoltage.signalSource.startTime') + 'sineVoltage.signalSource.phase'));
'sineVoltage.v' = 'sineVoltage.signalSource.y';
0.0 = 'sineVoltage.p.i' + 'sineVoltage.n.i';
'sineVoltage.i' = 'sineVoltage.p.i';
'sineVoltage.v' = 'sineVoltage.p.v' - 'sineVoltage.n.v';

end 'RC';

FrontEnd-Backend conversion phases

I NFScalarize.scalarize (Real r[3] -> Real 'r[1]'; Real
'r[2]'; Real 'r[3]';)

I NFVerifyModel.verify
I NFConvertDAE.convert (convert to the scalar-only backend)
I FrontEnd - DAE generated
I Transformations before Dump
I DAEDump done
I Misc Dump
I Transformations before backend

Backend conversion phases (except initialization)
I Generate backend data structure
I preOpt normalInlineFunction
I preOpt evaluateParameters
I preOpt simplifyIfEquations
I preOpt expandDerOperator (der(2*x) -> 2*der(x))
I preOpt clockPartitioning
I preOpt findStateOrder
I preOpt replaceEdgeChange
I preOpt inlineArrayEqn
I preOpt removeEqualRHS (x = f(...); y = f(...) -> x =

f(...); y = x;)
I preOpt removeSimpleEquations (x = -y;, x = 2.0; removed and

reconstructed during plotting)
I preOpt comSubExp (bad name)
I preOpt evalFunc
I preOpt encapsulateWhenConditions

Note Which optimizations run can be configured at runtime. And there
are many flags to change algorithms used in them. Compilation may fail
if some optimization phases are disabled.

Why is it OK that optimization changes the result?

Matching and sorting (different example)

class RC // 5 equations and variables
// 14 alias variables 5 constants

algorithm // The equations are now ordered
// 1
sinevoltage.signalSource.y := sinevoltage.signalSource.offset + (if time < sinevoltage.signalSource.startTime then 0.0 else sinevoltage.signalSource.amplitude * sin(6.28318530717959 * (sinevoltage.signalSource.freqHz * (time - sinevoltage.signalSource.startTime)) + sinevoltage.signalSource.phase));
// 2
r.v := c.v -sinevoltage.signalSource.y;
// 3
c.i := -r.v / r.R_actual;
// 4
r.LossPower := -r.v * c.i;
// 5
der(c.v) := c.i / c.C;

end RC;

Backend conversion phases (except initialization)
I postOpt lateInlineFunction (inline after matching)
I postOpt wrapFunctionCalls
I postOpt inlineArrayEqn
I postOpt constantLinearSystem
I postOpt simplifysemiLinear
I postOpt removeSimpleEquations
I postOpt simplifyComplexFunction
I postOpt solveSimpleEquations
I postOpt tearingSystem (method for solving nonlinear systems)
I postOpt inputDerivativesUsed
I postOpt calculateStrongComponentJacobians (extra runtime information)
I postOpt calculateStateSetsJacobians
I postOpt symbolicJacobian
I postOpt removeConstants
I postOpt simplifyTimeIndepFuncCalls
I postOpt simplifyAllExpressions (constant folding everywhere)
I postOpt findZeroCrossings
I postOpt collapseArrayExpressions
I sorting global known variables
I sort global known variables
I remove unused functions

Code generation (dump C-code)

I Create SimCode IR from backend IR (populate some
hashtables, etc to make code generation easier)

I Templates (SimCode to C-code)

Intermediate representations
I Abstract syntax tree (from parser) including comments. Used in the

API to update the program without changing the textual
representation. Real numbers represented by strings.

I Exploded syntax tree. A canonical form of the AST used by the
front-end.

I A single ”New Frontend” data structure, including classes (such as
functions) and the instantiated components. This is lowered step by
step. At the final step, it is typed and a lot of language features no
longer exist.

I The old frontend data structure. This is scalar (no arrays remain).
I The backend data structure is generated from the old frontend data

structure. It is a set of time-dependent partitions and common
known variables. It starts simple (preOpt modules), and after
sorting/matching it contains an adjacency matrix (adjacency list) of
variables/equations as well as having sorted all equations.

I The SimCode data structure is generated from the sorted equations
and gives final indexes of everything, and more information.

Functions (algorithmic code)

Functions are similar to imperative programming languages, and a
few optimization are performed:
I Function inlining
I Constant propagation
I Constant folding
I Dead code elimination
I Finding potential use of uninitialized variables

Some of these might only be implemented in the old frontend /
bootstrapping.
The backend can also create specialized functions for some
constant inputs to functions (eliminating a lot of branches,
assertions, or allowing inlining).

More Reading

I https://modelica.org
I https://openmodelica.org

https://modelica.org
https://openmodelica.org

www.liu.se

	Background
	Implementation of a Modelica Compiler

