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Heterogeneous Systems with Distributed Memory

Distributed memory, explicit operand transfers  

High data transfer cost (esp. over PCIe / IP...):    a N + b

High startup cost 

significant for small messages,  e.g.  b / a ~ 104

Goal:  Message fusion for operand transfers  

→ reduce #startups

Accelerator, 

e.g. GPU, FPGA, Cloud

Kernel
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float *v1 = malloc( 3N );

float *v2 = v1+N;

float *v3 = v1+2N;

cudaMalloc( &g_v1, 3N );

g_v2 = g_v1 + N;

g_v3 = g_v1 + 2N;

...

cudaMemcpy( v1, g_v1, 3N, ...);

vector_add3( g_v1, g_v2, g_v3 ...);

Example:  1 kernel call,  3 input operands

float *v1 = malloc(N); ...

float *v2 = malloc(N); ...

float *v3 = malloc(N);

cudaMalloc( &g_v1, N ); ...

cudaMalloc( &g_v2, N ); ...

cudaMalloc( &g_v3, N );

...

cudaMemcpy( v1, g_v1, N, ...);

cudaMemcpy( v2, g_v2, N, ...);

cudaMemcpy( v3, g_v3, N, ...);

vector_add3( g_v1, g_v2, g_v3 ...);

3 calls

3 calls

3 upload messages,

time 3(aN+b)

(a) Arbitrary operand order 

in memories:

(b) Operands consecutive

in both memories:

1 upload message, 

time 3aN + b

vector_add3

v1 v3
v2

Allocation fusion

Transfer fusion
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Saving Potential on a Concrete GPU
By Transfer Fusion

Binary Vector-Add 
(1 Transfer Fusion) vector_add2

v1 v2Nvidia Kepler K2100, CUDA 8, driver 390.87

• Memory allocation time not 

included

• Decent relative savings 

for up to 1M float elements 

(at low arithmetic intensity)
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Saving Potential on a Concrete GPU
By Transfer and Allocation Fusion

Ternary Vector-Add 
(2 Transfer + Allocation Fusions) vector_add3

v1 v3
v2Nvidia Kepler K2100, CUDA 8, driver 390.87

• Memory allocation time included 
(except a dummy first cudaMalloc)

• Decent relative savings 

for up to 4M elements 

(at low arithmetic intensity)

• Largest impact observed for 

medium-length operands

• Anomaly observed for binary-add:

slowdown for small operand sizes

1 x cudaMalloc(2N) can be slower 

than 2 x cudaMalloc(N) 
• cause is unclear (stateful specul. 

optimization in cudaMalloc?)



6

Saving Potential on a Concrete GPU
Parallel Kernel Fusion on-Par with Transfer Fusion

Ternary Vector-Add 
(2 Transfer Fusions 

+ Parallel Kernel Fusion) 

vector_add3

v1 v3
v2Nvidia Kepler K2100, CUDA 8, driver 390.87

• Memory allocation 

time not included 

• Operands (v1+v4, ...) 

consecutive in 

memory in both cases

• Decent relative 

savings for up to 

1M float elements 

(at low arithmetic 

intensity)

• Speedups in the same 

order of magnitude as 

by transfer fusion

vector_add3

v4 v6
v5
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Motivation

Transfer fusion gain (kernel startup time) on our system almost 

as high as parallel kernel fusion gain (kernel launch time)

Parallel kernel fusion is not always applicable/beneficial,

but transfer fusion may still apply

We will focus on transfer fusion in this work.

Objective: Maximize # transfer fusions in a program

Global scope → more fusion options across multiple kernel calls

Allocation fusion as side effect may give further speedup
(where not suffering from the single-fusion anomaly of our GPU)

vector_add3

v1 v3
v2

vector_add3

v4 v6
v5



8

Global Scope of Allocation

Kernel-Vector Data Flow Graph

Call nodes:  Kernel0, Kernel1, ...

Synchronous calls

Mapping to device/host given

Fixed schedule given 
→ trace of calls, relative time: 0, 1, ...

Vector (data) nodes:  A, B, C, ...

Static single assignment

Some live-on-entry, some live-on-exit

Data flow edges

No control flow

Base-line code generation: 
Each vector transfered to/from device 
at most once, in a separate message



9

Global Scope of Allocation

Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

Calculating earliest and latest time 
points for uploads and downloads:

depend e.g. on relative time of the 
producing resp. earliest consuming 
kernel calls

Details in the paper

Uploads (earliest ... latest):
 Flexibility
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Global Scope of Allocation

Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

Calculating earliest and latest time 
points for uploads and downloads:

depend e.g. on relative time of the 
producing resp. earliest consuming 
kernel calls

Details in the paper

Uploads (earliest ... latest):
 Fusion possibility (2 startups)
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Global Scope of Allocation

Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

Calculating earliest and latest time 
points for uploads and downloads:

depend e.g. on relative time of the 
producing resp. earliest consuming 
kernel calls

Details in the paper

Uploads (earliest ... latest):
 Fusion possibility (1)

 Fusion possibility (1)
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Affinity graph

Nodes = vectors

Undirected edges 
{ u, v } with weight
= affinity of u, v

expected fusion gain
of allocating u, v
consecutive in memory

By finding overlapping  
earliest-latest intervals

+1.0 if uploads resp. 
downloads of u and v
can be fused if u and v are 
consecutive in memory

Bonus for tight solutions possible

Has at least 2 connected components 

>1 for uploaded vectors, 
>1 for downloaded vectors
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Affinity graph, 

Max-Weight Hamiltonian Paths

Hamiltonian path 
of a graph 
= a path of n-1 edges 
visiting each of the 
n nodes exactly once

Goal: Find a 
maximum-weight
Hamiltonian path in 
each connected 
component of the 
affinity graph

NP-complete 
(related to TSP)

Linear-time heuristic 
based on DFS 
(see paper)

Gives a total fusion-

optimized memory 

ordering of all vectors

e.g.  B – A – C – F – E –

D – I – J – K – L – M 
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Emitting the Fused Code   

optimized ordering:

B – A – C – F – E – D – I – J – K – L – M 

Total savings:

7 startups

Greedy

fusion
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Emitting the Fused Code,  Alternative

optimized ordering:

B – A – C – F – E – D – I – J – K – L – M 

Total savings:

7 startups

Tight

fusion

Later uploads 

→ lower 

memory 

pressure on 

device
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Evaluation of # Saved Transfer Startups

and Optimization Time  

Savings in

comparison to 

single operand 

vector uploads  

/ downloads

(no fusion)
(in parentheses: savings with higher-effort Hamiltonian heuristic)
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Evaluation of # Saved Transfer Startups 

and Optimization Time, cont.

Special task graph topologies and application-derived task graphs
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4 x 4 Block Cholesky Factorization

Affinity Graph:
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Evaluation of # Saved Transfer Startups 

and Optimization Time, cont.

Special task graph topologies and application-derived task graphs
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Linear Chain (N=20)

Affinity Graph:
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Evaluation of # Saved Transfer Startups 

and Optimization Time, cont.

Special task graph topologies and application-derived task graphs
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Horner’s Polynomial Evaluation,

Degree 10 (N=20)

Affinity Graph:
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Evaluation of Generated 

Transfer-Fusion Optimized CUDA Code

• Allocation time not included

• Speedups between 5% and 170% at 4K float vectors

• Speedup decreases with operand size, 

but remains significant until 1M floats 

for kernels with low arithmetic intensity 

(e.g. vector-add, saxpy)

• Speedup quickly drops off for >64K floats for 

computation-heavy kernels, 

as transfer time gets insignificant

(e.g. sgemm in Cholesky and MatMul)

Random Dataflow Graph

(vector-add like kernels)

7 transfer fusions
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Evaluation of Generated 

Transfer-Fusion Optimized CUDA Code
4x4 Cholesky

(linear-work kernels)

14 transfer fusions

• Allocation time not included

• Speedups between 5% and 170% at 4K float vectors

• Speedup decreases with operand size, 

but remains significant until 1M floats 

for kernels with low arithmetic intensity 

(e.g. vector-add, saxpy)

• Speedup quickly drops off for >64K floats for 

computation-heavy kernels, 

as transfer time gets insignificant

(e.g. sgemm in Cholesky and MatMul)
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Evaluation of Generated 

Transfer-Fusion Optimized CUDA Code
4x4 Cholesky

(sgemm kernels)

14 transfer fusions

• Allocation time not included

• Speedups between 5% and 170% at 4K float vectors

• Speedup decreases with operand size, 

but remains significant until 1M floats 

for kernels with low arithmetic intensity 

(e.g. vector-add, saxpy)

• Speedup quickly drops off for >64K floats for 

computation-heavy kernels, 

as transfer time gets insignificant

(e.g. sgemm in Cholesky and MatMul)

4x4 Cholesky

(cubic-work kernels)

14 transfer fusions
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CUDA code,

including 

Fused Memory 

Allocations

Due to the memory 

allocation fusion

anomaly on our GPU 

at 2-operand-fusions
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Summary and Outlook

Global-scope reordering of vector variables in memory
to optimize operand upload / download message fusion
in distributed heterogeneous systems

1. Analyze the Kernel-Vector Data-Flow Graph

2. Build the Affinity Graph

3. Max-weight Hamiltonian Paths in Affinity graph CCs

4. Emitting code:  Greedy vs. Tight strategy

Experiments for synthetic kernel graphs

Low optimization time,  good # transfer-fusions

Decent speedups for up to 1M elements and kernels of low oper. intensity

Prototype source code: www.ida.liu.se/~chrke/transferfusion

Future work: Tuning to decide up to which vector sizes to apply;  
work around the allocation fusion anomaly; use of optimized kernels

Possible usage scenarios

Static optimization in kernel compilers (e.g., DSL)

Dynamic optimization: lazy execution builds runtime graph

 Amortize optimization time over multiple iterations over same graph

Future extensions: Combine with scheduling (and more...)



Questions?
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Random DAG, N=24    

25 startups saved
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2x2 Block Matrix-Matrix Multiply

Gain: 11 startups
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Conjugate Gradient Solver, Main Loop

Gain: 2 startups


