Global Optimization of
Operand Transfer Fusion
In Heterogeneous Computing

Christoph Kessler

Link6ping University
Sweden

Presented at

ONVERSITY scoreszo0 () @XA2PFO

St. Goar, Germany

II LINKOPING
o UNIVERSITY

Heterogeneous Systems with Distributed Memory

CPU

Core

Core

Core

Core

Main Memory

Accelerator,
e.g. GPU, FPGA, Cloud

Kernel
call

Device

operand
emor

<€

upload
download IIIIIIII

aN+b

0 Distributed memory, explicit operand transfers

0 High data transfer cost (esp. over PCle /IP...): aN+Db

0 High startup cost
significant for small messages, e.g. b/a~ 104

0 Goal: Message fusion for operand transfers
- reduce #startups |

LINKOPING
II." UNIVERSITY

Example: 1 kernel call, 3 input operands

vl

(a) Arbitrary operand order
INn memories:

float *v1 = malloc(N); ...
float *v2 = malloc(N); ... 3 calls

float *v3 = malloc(N);

cudaMalloc(&g _v2, N); ... 3 calls

cudaMalloc(&g_v1, N); }
cudaMalloc(&g Vv3, N);

3 upload messages,
time 3(aN+Db)

cudaMemcpy(vl, g vi, N, ...);
cudaMemcpy(v2,g v2, N, ...);

cudaMemcpy(v3,g Vv3, N, ...);

vector add3(g_vl1,g v2,g v3..);

=

v3

(b) Operands consecutive
INn both memories:

float *v1 = malloc(3N);
float *v2 = v1+N;
float *v3 = v1+2N:;

cudaMalloc(&g_v1, 3N);

g v2=g vl+N,;
g v3=g vl+ Zmion fusion]

1 upload message,
time 3aN + b

cudaMemcpy(vl, g vi, 3N, ...);

mer fusion]

vector add3(g_vl1,g v2,g v3..);

II LINKOPING
o UNIVERSITY

Saving Potential on a Concrete GPU
By Transfer Fusion

Nvidia Kepler K2100, CUDA 8, driver 390.87 |1 V2

Binary Vector-Add
(1 Transfer Fusion)
Vector Transfer Fusion Only

Length | Time/Call Saving Saving | Memory allocation time not
[floats] [ps] [ps] [%] included
1K 36 6 18.9%
4K 44 8 19.7% | * Decent relative savings
8K 54 4 8 59 for up to 1M float elements
16K 892 9 267 | (atlow arithmetic intensity)
32K 132 15 12.0%
64K 210 17 8.2%
128K 368 13 3.8%
256K 676 70 10.4%
512K 1162 70 6.0%
1M 2313 39 3.9%
4M 9300 88 1.0%

II LINKOPING
o UNIVERSITY

Saving Potential on a Concrete GPU
By Transfer and Allocation Fusion

Nvidia Kepler K2100, CUDA 8, driver 390.87 4 V2 V3

Ternary Vector-Add N ¢
(2 Transfer + Allocation Fusions) ’
Vector | Transfer Fusion Plus Fusing

Length | Three Vector Allocations |+ Memory allocation time included
Time/Call = Saving Saving (except a dummy first cudaMalloc)
[floats] [ps] [ps] [%] |. Decent relative savings
1K 404 27 6.7% | for up to 4M elements
4K 418 35 8.5% | (at low arithmetic intensity)
1861; 14212 i’g Z:;’: . Larg_est Impact observed for
39K 496 09 450 medium-length operands
64K 570 23 4.0% |+ Anomaly observed for binary-add:
128K 1058 345 32.6% slowdown for small operand sizes
256K 1699 737 43.4% 1 x cudaMalloc(2N) can be slower
512K 2242 756 33.7% | than 2 x cudaMalloc(N)
M 3409 749 21 8% « cause is unclear (stateful specul.

optimization in cudaMalloc?)

4M 10317 799 7.8%

Saving Potential on a Concrete GPU

LINKOPING
II." UNIVERSITY

Parallel Kernel Fusion on-Par with Transfer Fusion

Nvidia Kepler K2100, CUDA 8, driver 390.87

Ternary Vector-Add

(2 Transfer Fusions

+ Parallel Kernel Fusion)

vl

v2

Vector | No Kernel Fusion Kernel Fusion
Length Time Per Call | Saving Saving
[floats] [p25] [p5] [%]
1K 35 5 16.4%
4K 43 6 15.7%
16K 30 3 10.0%
64K 204 9 4.6%
256K 664 22 3.7%
1M 2276 54 2.4%
1M 9236 140 1.5%

Memory allocation
time not included

Operands (v1+v4, ...)
consecutive in
memory in both cases

Decent relative
savings for up to
1M float elements
(at low arithmetic
intensity)

Speedups in the same
order of magnitude as
by transfer fusion

II LINKOPING
o UNIVERSITY

Motivation

0 Transfer fusion gain (kernel startup time) on our system almost
as high as parallel kernel fusion gain (kernel launch time)

0 Parallel kernel fusion is not always applicable/beneficial,
but transfer fusion may still apply

0 We will focus on transfer fusion in this work.

0 Objective: Maximize # transfer fusions in a program

» Global scope = more fusion options across multiple kernel calls

0 Allocation fusion as side effect may give further speedup

(where not suffering from the single-fusion anomaly of our GPU)
7

Global Scope of Allocation

0 Kernel-Vector Data Flow Graph

0 Call nodes: KernelO, Kernell, ...
» Synchronous calls
» Mapping to device/ given Kernel 1

» Fixed schedule given
- trace of calls, relative time: 0, 1, ...

0 Vector (data) nodes: A, B, C, ...
» Static single assignment

» Some live-on-entry, some live-on-exit
0 Data flow edges
0 No control flow

0 Base-line code generation:
Each vector transfered to/from device
at most once, in a separate message L

T3
Y

Global Scope of Allocation

0 Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

0 Calculating earliest and latest time
points for uploads and downloads:

0 depend e.g. on relative time of the

Uploads (earliest ... latest):
Q:

.
2:
3:
4

Kernell

producing resp. earliest consuming
kernel calls

» Details in the paper

A BlC| S ey
Acl. . ..
Jcl. L F .

3
Y

Global Scope of Allocation

0 Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

0 Calculating earliest and latest time
points for uploads and downloads:

0 depend e.g. on relative time of the
producing resp. earliest consuming
kernel calls

» Details in the paper

Kernell

Uploads (earliest ... latest):

©: A B C .
. C ...
. C . . F .

.
2:
3:
4

1V

Global Scope of Allocation

0 Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

0 Calculating earliest and latest time
points for uploads and downloads:

0 depend e.g. on relative time of the
producing resp. earliest consuming
kernel calls

» Details in the paper

Uploads (earliest ... latest):

©: A B C .
. C ..
.. C . . F .

.
2:
3:
4

11

Affinity graph [T e

0 Nodes = vectors

0 Undirected edges A
{u, v} with weight \
= affinity of u, v

0 expected fusion gain
of allocating u, v
consecutive in memory

/

C

0 By finding overlapping I
F

earliest-latest intervals

0 +1.0 if uploads resp.
downloads of u and v
can be fused if u and v are
consecutive in memory

0 Bonus for tight solutions possible
0 Has at least 2 connected components

0 >1 for uploaded vectors,
>1 for downloaded vectors

12

Affinity graph,
Max-Weight Hamiltonian Paths

O

Hamiltonian path

of a graph

= a path of n-1 edges
visiting each of the

n nodes exactly once

Goal: Find a
maximum-weight
Hamiltonian path in
each connected
component of the
affinity graph

NP-complete
(related to TSP)

Linear-time heuristic
based on DFS
(see paper)

A

Gives a total fusion-
optimized memory
ordering of all vectors

eg. B-A-C-F-E-
D-1-J-K-L-M

13

LINKOPING
UNIVERSITY

II LINKOPING
o UNIVERSITY

Emitting the Fused Code
=] [&] 0 optimized ordering:

/Greedy

g | D fusion

Total savings:
[startups

B-A-C-F-E-D-1-J-K-L-M

before @: upload B from location 0
before @: upload A from location 1
before @: upload C from location 2
Kernelo (R(B), R(A), W(D), W(E))
after 0: download E to location 4
after 0: download D to location 5
Kernell (R(E), R(B), W(F), W(G))
before 2: upload F from location 3
Kernel2 (R(C), R(F), W(H), W(I))
Kernel3 (R(F), R(H), W(JI), WK))
Kernel4 (_R(H)Y. R(E), W(L), WM)
after 4: download I to location 6

after 4: download J to location 7
after 4: download K /to location 8
after 4: download L [to location 9
after 4: download M to location 10

II LINKOPING
o UNIVERSITY

Emitting the Fused Code, Alternative
][] F© optimized ordering:

m
f

usion

Total savings:
[startups

Later uploads
- lower
memory

pressure on
device

B-A-C-F-E-D-1-J-K-L-M

before @: upload B from location @
before 0: upload A from location 1
Kerneld (R(B), R(A), W(D), W(E))
after 0: download E to location 4
after 0: download D to location 5
Kernell (R(E), R(B), W(F), W(G))
before 2: upload C from location 2
before 2: upload F from location 3
Kernel2 (R(C), R(F), W(H), W(I))
Kernel3 (R(F), R(H), W(JI), WK)
Kernel4 (R(H). R(E), W(L), WM))
after 4: download I to location 6

after 4: download J to location 7
after 4: download K /to location 8
after 4: download L to location 9
after 4: download M to location 10

LINKOPING

Evaluation of # Saved Transfer Startups"°
and Optimization Time

Table 1: Synthetic Programs, Savings in Transfer Startups

N M;,; Indegree Outdegree Saving, Saving, Opt.

min/max min/max Greedy = Tight Time

\)75 3 2.2 2...2 7 7/ 0.1ms

8 12 2.3 1..1 7(9) 7(8) 0.2ms

10 5 2..4 1...2 11 11 0.2ms

16 12 1...4 1...2 14 14 0.3ms

16 16 2...3 1...2 19 17 0.3ms

18 8 1..2 1...2 12 12 0.2ms

18 8 2..2 1...2 16 15 0.4ms

20 8 1...1 1...1 11 11 0.2ms

Savings in 20 8 1...3 1...2 18 17 0.2ms

comparison to |24 10 2.3 2.2 28 26 0.6ms

single operand |48 10 2..2 1...2 41 (42) 38 (41) 0.9ms

vectoruploads |60 10 1.2 1.2 40 37 2.0ms

fdownloads | g 15 5 2 1.2 75 70| 5.7ms
(no fusion)

16 (in parentheses: savings with higher-effort Hamiltonian heuristic)

Evaluation of # Saved Transfer Startups
and Optimization Time, cont.

LINKOPING
II." UNIVERSITY

Special task graph topologies and application-derived task graphs

20 1 Linear chain 0 0/0.1ms
15 1 Out-bound bin. tree, all GPU 15 15]0.2ms
15 1 Dto., random device 50% 14 14{0.2ms
15 16 In-bound bin. tree, all GPU 15 810.2ms
15 16 Dto., random device 50% 14 11]0.2ms
31 32 In-bound bin. tree, all GPU 31 16|0.5ms
31 32 Dto., random device 50% 27 1710.5ms

20
12
7

4 Dto., SYRK calls also on CPU
8 2x2 blocks Matrix multiply
2 Conj. Grad. loop, steady st.

9
11
2

20 12 Horner’s rule polynom. eval. 11 11]0.3ms
20 4 4x4 blocks Cholesky factoriz. 14 14]0.2ms

3
11
2

0.2ms
0.1ms
0.1ms

17

LINKOPING
II." UNIVERSITY

Evaluation of # Saved Transfer Startups
and Optimization Time, cont.

Special task graph topologies and application-derived task graphs

20 1 Linear chain 0 0]/0.1ms
15 1 Out-bound bin. tree, all GPU 15 15]0.2ms
15 1 Dto., random device 50% 14 14{0.2ms
15 16 In-bound bin. tree, all GPU 15 810.2ms
15 16 Dto., random device 50% 14 11]0.2ms
31 32 In-bound bin. tree, all GPU 31 16|0.5ms
31 32 Dto., random device 50% 27 1710.5ms
20 12 Horner’s rule polynom. eval. 11 11{0.3ms
20 4 4x4 blocks Cholesky factoriz. 14 14{0.2ms
20 4 Dto., SYRK calls also on CPU 9 810.2ms
12 8 2x2 blocks Matrix multiply 11 11{0.1ms

7 2 Conj. Grad. loop, steady st. 2 2(0.1ms

19

II LINKOPING
o UNIVERSITY

b

= Linear Chain (N=20)

e’ P
Cema 2>

}

D

E
b
’wl(_pmd :‘;

2 H
. f
) [

=
me— 8

A
&

f
[
El
N

;\)
el
V) Vo)
| =)
v

|
S

Affinity Graph:

£
)

(Al e[[e][F][c]|[n][1][y]]] N [o][P][Q][rR|[S][T][U]

=
5

“"A"\

{!

&
i = H

Vs |

Eemel 17
T
(’i{fr.m,jé_ ™

o 20

Evaluation of # Saved Transfer Startups
and Optimization Time, cont.

II LINKOPING
o UNIVERSITY

Special task graph topologies and application-derived task graphs

20
15
15
15
15
31
31
20
20
20
12

7

1 Linear chain
1 Out-bound bin. tree, all GPU
1 Dto., random device 50%

16 In-bound bin. tree, all GPU

16 Dto., random device 50%

32 In-bound bin. tree, all GPU

32 Dto., random device 50%

12 Horner’s rule polynom. eval.
4 4x4 blocks Cholesky tactoriz.
4 Dto., SYRK calls also on CPU
8 2x2 blocks Matrix multiply
2 Conj. Grad. loop, steady st.

0
15
14
15
14
31
27
11
14

9
11

0
15
14

3
11
16
17
11
14

3
11

0.1ms
0.2ms
0.2ms
0.2ms
0.2ms
0.5ms
0.5ms

0.3ms
0.2ms
0.2ms
0.1ms
0.1ms

21

| Lo 3] (6] (] [&] [34] [0 (@] (5] [0]

N

LINKOPING
I I.u UNIVERSITY

Horner’s Polynomial Evaluation,
Degree 10 (N=20)

Affinity Graph:

[alclElc] T[] m][o][e][s] U] N =N = =0 N N = 5 = =
e N N N N (N N N N

22

Evaluation of Generated oo
Transfer-Fusion Optimized CUDA Code

Vector No Transfer Transfer Speedup
Length Fusion Fusion
[floats] [ps] [ps] [%]
Random Dataflow Graph (N =5, M;pi; = 3)
4K 211 141 49.6%
16K 415 327 26.9%
64K 1136 1028 10.5%
256K 4010 3641 10.1%
M 14455 13907 3.9%
4M 55421 55464 -0.1%
Random Dataflow Graph (N = 24, M;,;; = 10)
4K 818 302 170.9%
16K 1850 1451 27.5%
64K 5744 5086 12.9%
256K 23188 23000 0.8%
1M 95858 94608 1.3%
4M 368109 374662 -1.7%
Horner’s Rule Polynomial Evaluation (N = 20)
4K 550 492 11.8%
16K 952 873 9.0%
64K 2567 2272 13.0%
256K 8355 7600 9.9%
M 27836 26989 3.1%
4M 105938 105644 0.3%
4x4 Blocks Cholesky Factorization, Linear-Work Kernels
4K 471 422 11.6%
16K 900 847 6.3%
64K 2583 2498 3.4%
256K 9119 8748 4.2%
M 33391 33012 1.1%
4M 130660 131693 -0.8%
4x4 Blocks Dense Cholesky Factorization
4K 543 421 29.0%
16K 1757 1586 10.8%
64K 11634 11304 0.3%
256K 85341 84500 0.0%
M 681376 680848 0.0%
4M 6748217 6752271 -0.0%
2x2 Blocks Matrix Multiply, Linear-Work Kernels
4K 330 256 28.9%
16K 651 572 13.8%
04K 1952 1765 10.6%
256K 7185 6505 10.5%
1M 25401 24930 1.9%
4M 100026 99363 0.7%
Conjugate Gradient loop, steady state, SPMV on CPU
4K 148 141 5.0%
16K 271 271 0.0%
64K 769 753 2.1%
256K 2656 2581 2.9%

M 9540 9492 0.5%

60,0 Random Dataflow Graph
50,0 (vector-add like kernels)
40,0 7 transfer fusions

30,0

20,0
10,0
N .
10,0 4K 16K 64K 256K 1M AM

Allocation time not included

Speedups between 5% and 170% at 4K float vectors
Speedup decreases with operand size,

but remains significant until 1M floats

for kernels with low arithmetic intensity

(e.g. vector-add, saxpy)

Speedup quickly drops off for >64K floats for
computation-heavy kernels,

as transfer time gets insignificant

(e.Q. sgemm iIn Cholesky and MatMul)

Evaluation of Generated oo
Transfer-Fusion Optimized CUDA Code

Vector No Transfer Transfer Speedup
Length Fusion Fusion
[floats] [ps] [ps] [%]
Random Dataflow Graph (N =5, M;pi; = 3)
4K 211 141 49.6%
16K 415 327 26.9%
64K 1136 1028 10.5%
256K 4010 3641 10.1%
M 14455 13907 3.9%
4M 55421 55464 -0.1%
Random Dataflow Graph (N = 24, M;,;; = 10)
4K 818 302 170.9%
16K 1850 1451 27.5%
64K 5744 5086 12.9%
256K 23188 23000 0.8%
1M 95858 94608 1.3%
4M 368109 374662 -1.7%
Horner’s Rule Polynomial Evaluation (N = 20)
4K 550 492 11.8%
16K 952 873 9.0%
64K 2567 2272 13.0%
256K 8355 7600 9.9%
M 27836 26989 3.1%
4M 105938 105644 0.3%
4x4 Blocks Cholesky Factorization, Linear-Work Kernels
4K 471 422 11.6%
16K 900 847 6.3%
64K 2583 2498 3.4%
256K 9119 8748 4.2%
M 33391 33012 1.1%
4M 130660 131693 -0.8%
4x4 Blocks Dense Cholesky Factorization
4K 543 421 29.0%
16K 1757 1586 10.8%
64K 11634 11304 0.3%
256K 85341 84500 0.0%
M 681376 680848 0.0%
4M 6748217 6752271 -0.0%
2x2 Blocks Matrix Multiply, Linear-Work Kernels
4K 330 256 28.9%
16K 651 572 13.8%
64K 1952 1765 10.6%
256K 7185 6505 10.5%
1M 25401 24930 1.9%
4M 100026 99363 0.7%
Conjugate Gradient loop, steady state, SPMV on CPU
4K 148 141 5.0%
16K 271 271 0.0%
64K 769 753 2.1%
256K 2656 2581 2.9%

M 9540 9492 0.5%

30,0 4x4 Cholesky

25,0 (linear-work kernels) /-K
20,0 14 transfer fusions '\

] b
(-
\‘b

15,0

10,0
5|'D I I
0,0

16K 64K 256K AM
Allocation time not included

Speedups between 5% and 170% at 4K float vectors
Speedup decreases with operand size,

but remains significant until 1M floats

for kernels with low arithmetic intensity

(e.g. vector-add, saxpy)

Speedup quickly drops off for >64K floats for
computation-heavy kernels,

as transfer time gets insignificant

(e.Q. sgemm iIn Cholesky and MatMul)

Evaluation of Generated

II LINKOPING
o UNIVERSITY

Transfer-Fusion Optimized CUDA Code

Vector No Transfer Transfer Speedup
Length Fusion Fusion
[floats] [ps] [ps] [%]
Random Dataflow Graph (N =5, M;pi; = 3)
4K 211 141 49.6%
16K 415 327 26.9%
64K 1136 1028 10.5%
256K 4010 3641 10.1%
M 14455 13907 3.9%
4M 55421 55464 -0.1%
Random Dataflow Graph (N = 24, M;,;; = 10)
4K 818 302 170.9%
16K 1850 1451 27.5%
64K 5744 5086 12.9%
256K 23188 23000 0.8%
1M 95858 94608 1.3%
4M 368109 374662 -1.7%
Horner’s Rule Polynomial Evaluation (N = 20)
4K 550 492 11.8%
16K 952 873 9.0%
64K 2567 2272 13.0%
256K 8355 7600 9.9%
IM 27836 26989 3.1%
4M 105938 105644 0.3%
4x4 Blocks Cholesky Factorization, Linear-Work Kernels
4K 471 422 11.6%
16K 900 847 6.3%
64K 2583 2498 3.4%
256K 9119 8748 4.2%
M 33391 33012 1.1%
4M 130660 131693 -0.8%
4x4 Blocks Dense Cholesky Factorization
4K 543 421 29.0%
16K 1757 1586 10.8%
64K 11634 11304 0.3%
256K 85341 84500 0.0%
M 681376 680848 0.0%
4M 6748217 6752271 -0.0%
2x2 Blocks Matrix Multiply, Linear-Work Kernels
4K 330 256 28.9%
16K 651 572 13.8%
04K 1952 1765 10.6%
256K 7185 6505 10.5%
1M 25401 24930 1.9%
4M 100026 99363 0.7%
Conjugate Gradient loop, steady state, SPMV on CPU
4K 148 141 5.0%
16K 271 271 0.0%
64K 769 753 2.1%
256K 2656 2581 2.9%

M 9540 9492 0.5%

22 4x4 Cholesky
220 (cubic-work kernels)
20,0 14 transfer fusions

15,0

10,0

5,0

0,0 _—
64K 256K 1M AM
uded

etween 5% and 170% at 4K float vectors
eedup decreases with operand size,

but remains significant until 1M floats

for kernels with low arithmetic intensity

(e.g. vector-add, saxpy)

Speedup quickly drops off for >64K floats for
computation-heavy kernels,

as transfer time gets insignificant

(e.Q. sgemm iIn Cholesky and MatMul)

CUDA code,
Including

Fused Memory

Allocations

Due to the memory
allocation fusion

anomaly on our GPU
Kat 2-operand-fusions

N—

Vector No Allocation Allocation Speedup |
Length Fusion Fusion

[floats] [ps] [ps] (%]

Random Dataflow Graph (N =5, M;,;; = 3)
4K 645 1165 -44.6%
16K 824 -38.9%
31 63.4%
4865 133.8%
14839 96.3%
95382 3.6%

/H(orner’s Rule Polynomial Evaluation (N = 20)

4K 891 1106 -19.4%
16K 2020 1787 13.0%
64K 5756 4738 21.5%
256K 18437 13951 32.2%
1M 28265 23890 18.3%
4M 67899 65024 4.4%
Conjugate Gradient loop, steady state, SPMV on CPU
4K 557 850 -34.5%
16K 649 999 -35.0%
64K 1871 1829 2.3%
256K 6523 5583 16.8%
1M 17224 16455 4.7%
4M 60741 59841 1.5%

LINKOPING
II." UNIVERSITY

Summary and Outlook

O

Global-scope reordering of vector variables in memory
to optimize operand upload / download message fusion
in distributed heterogeneous systems

1. Analyze the Kernel-Vector Data-Flow Graph
2. Build the Affinity Graph
3. Max-weight Hamiltonian Paths in Affinity graph CCs
4. Emitting code: Greedy vs. Tight strategy
Experiments for synthetic kernel graphs
Low optimization time, good # transfer-fusions
Decent speedups for up to 1M elements and kernels of low oper. intensity
Prototype source code: www.ida.liu.se/~chrke/transferfusion

Future work: Tuning to decide up to which vector sizes to apply;
work around the allocation fusion anomaly; use of optimized kernels

Possible usage scenarios
0 Static optimization in kernel compilers (e.g., DSL)
0 Dynamic optimization: lazy execution builds runtime graph
» Amortize optimization time over multiple iterations over same graph
Future extensions: Combine with scheduling (and more...)

O
O
O
O

Questions?

LINKOPING
II.“ UNIVERSITY

References

This paper:

O

Christoph Kessler: Global optimization of operand transfer
fusion in heterogeneous computing. Proc. 22nd
International Workshop on Software and Compilers for
Embedded Systems (SCOPES-2019), St. Goar, Germany,
May 2019. ACM. DOI: 10.1145/3323439.3323981

Lu Li, Christoph Kessler: Lazy Allocation and Transfer
Fusion Optimization for GPU-based Heterogeneous
Systems. Proc. Euromicro PDP-2018 Int. Conf. on Parallel,
Distributed, and Network-Based Processing, Cambridge, UK,
Mar. 2018, IEEE.

Prototype implementation source code:

https://www.ida.liu.se/~chrke55/transferfusion/
29

BACKUP SLIDES

II LINKOPING
[UNIVERSITY

Random DAG, N=24

D

’

/¥
o' 25 startups saved

a

Kerel_16

& 200,0

150,0
100,0

50,0

0,0 . [|

4K 16K 64K 256K imMm AM
-50,0

31

Gain: 11 startups

32

v
Conjugate Gradient Solver, Main Loop

Gain: 2 startups

33

