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Heterogeneous Systems with Distributed Memory

CPU

Core

Core

Core

Core

Main Memory

Accelerator,
e.g. GPU, FPGA, Cloud

Kernel
call

Device

operand
emor

<€

upload
download IIIIIIII

aN+b

0 Distributed memory, explicit operand transfers

0 High data transfer cost (esp. over PCle /IP...): aN+Db

0 High startup cost
significant for small messages, e.g. b/a~ 104

0 Goal: Message fusion for operand transfers
- reduce #startups |
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Example: 1 kernel call, 3 input operands

vl

(a) Arbitrary operand order
INn memories:

float *v1 = malloc(N); ...
float *v2 = malloc(N); ... 3 calls

float *v3 = malloc(N);

cudaMalloc( &g _v2, N); ... 3 calls

cudaMalloc( &g_v1, N ); }
cudaMalloc( &g Vv3, N);

3 upload messages,
time 3(aN+Db)

cudaMemcpy(vl, g vi, N, ...);
cudaMemcpy(v2,g v2, N, ...);

cudaMemcpy(v3,g Vv3, N, ...);

vector add3(g_vl1,g v2,g v3..);

=

v3

(b) Operands consecutive
INn both memories:

float *v1 = malloc( 3N );
float *v2 = v1+N;
float *v3 = v1+2N:;

cudaMalloc( &g_v1, 3N );

g v2=g vl+N,;
g v3=g vl+ Zmion fusion]

1 upload message,
time 3aN + b

cudaMemcpy(vl, g vi, 3N, ...);

mer fusion ]

vector add3(g_vl1,g v2,g v3..);
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Saving Potential on a Concrete GPU
By Transfer Fusion

Nvidia Kepler K2100, CUDA 8, driver 390.87 |1 V2

Binary Vector-Add
(1 Transfer Fusion)
Vector Transfer Fusion Only

Length | Time/Call Saving Saving | Memory allocation time not
[floats] [ps] [ps] [%] included
1K 36 6 18.9%
4K 44 8 19.7% | * Decent relative savings
8K 54 4 8 59 for up to 1M float elements
16K 892 9 267 | (atlow arithmetic intensity)
32K 132 15 12.0%
64K 210 17 8.2%
128K 368 13 3.8%
256K 676 70 10.4%
512K 1162 70 6.0%
1M 2313 39 3.9%
4M 9300 88 1.0%
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Saving Potential on a Concrete GPU
By Transfer and Allocation Fusion

Nvidia Kepler K2100, CUDA 8, driver 390.87 4 V2 V3

Ternary Vector-Add N ¢
(2 Transfer + Allocation Fusions) ’
Vector | Transfer Fusion Plus Fusing

Length |  Three Vector Allocations |+ Memory allocation time included
Time/Call = Saving  Saving (except a dummy first cudaMalloc)
[floats] [ps] [ps] [%] |. Decent relative savings
1K 404 27 6.7% | for up to 4M elements
4K 418 35 8.5% | (at low arithmetic intensity)
1861; 14212 i’g Z:;’: . Larg_est Impact observed for
39K 496 09 450 medium-length operands
64K 570 23 4.0% |+ Anomaly observed for binary-add:
128K 1058 345  32.6% slowdown for small operand sizes
256K 1699 737  43.4% 1 x cudaMalloc(2N) can be slower
512K 2242 756  33.7% | than 2 x cudaMalloc(N)
M 3409 749 21 8% « cause is unclear (stateful specul.

optimization in cudaMalloc?)

4M 10317 799 7.8%




Saving Potential on a Concrete GPU
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Parallel Kernel Fusion on-Par with Transfer Fusion

Nvidia Kepler K2100, CUDA 8, driver 390.87

Ternary Vector-Add

(2 Transfer Fusions

+ Parallel Kernel Fusion)

vl

v2

Vector | No Kernel Fusion Kernel Fusion
Length Time Per Call | Saving Saving
[floats] [p25] [p5] [%]
1K 35 5 16.4%
4K 43 6 15.7%
16K 30 3 10.0%
64K 204 9 4.6%
256K 664 22 3.7%
1M 2276 54 2.4%
1M 9236 140 1.5%

Memory allocation
time not included

Operands (v1+v4, ...)
consecutive in
memory in both cases

Decent relative
savings for up to
1M float elements
(at low arithmetic
intensity)

Speedups in the same
order of magnitude as
by transfer fusion
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Motivation

0 Transfer fusion gain (kernel startup time) on our system almost
as high as parallel kernel fusion gain (kernel launch time)

0 Parallel kernel fusion is not always applicable/beneficial,
but transfer fusion may still apply

0 We will focus on transfer fusion in this work.

0 Objective: Maximize # transfer fusions in a program

» Global scope = more fusion options across multiple kernel calls

0 Allocation fusion as side effect may give further speedup

(where not suffering from the single-fusion anomaly of our GPU)
7



Global Scope of Allocation

0 Kernel-Vector Data Flow Graph

0 Call nodes: KernelO, Kernell, ...
» Synchronous calls
» Mapping to device/ given Kernel 1

» Fixed schedule given
- trace of calls, relative time: 0, 1, ...

0 Vector (data) nodes: A, B, C, ...
» Static single assignment

» Some live-on-entry, some live-on-exit
0 Data flow edges
0 No control flow

0 Base-line code generation:
Each vector transfered to/from device
at most once, in a separate message L

T3
Y



Global Scope of Allocation

0 Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

0 Calculating earliest and latest time
points for uploads and downloads:

0 depend e.g. on relative time of the

Uploads (earliest ... latest):
Q:

.
2:
3:
4

Kernell

producing resp. earliest consuming
kernel calls

» Details in the paper

A BlC| S ey
Acl. . ..
Jcl. L F .
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Global Scope of Allocation

0 Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

0 Calculating earliest and latest time
points for uploads and downloads:

0 depend e.g. on relative time of the
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Global Scope of Allocation

0 Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

0 Calculating earliest and latest time
points for uploads and downloads:

0 depend e.g. on relative time of the
producing resp. earliest consuming
kernel calls

» Details in the paper

Uploads (earliest ... latest):

©: A B C .
. C ..
.. C . . F .

.
2:
3:
4

11



Affinity graph [T e

0 Nodes = vectors

0 Undirected edges A
{u, v} with weight \
= affinity of u, v

0 expected fusion gain
of allocating u, v
consecutive in memory

/

C

0 By finding overlapping I
F

earliest-latest intervals

0 +1.0 if uploads resp.
downloads of u and v
can be fused if u and v are
consecutive in memory

0 Bonus for tight solutions possible
0 Has at least 2 connected components

0 >1 for uploaded vectors,
>1 for downloaded vectors

12



Affinity graph,
Max-Weight Hamiltonian Paths

O

Hamiltonian path

of a graph

= a path of n-1 edges
visiting each of the

n nodes exactly once

Goal: Find a
maximum-weight
Hamiltonian path in
each connected
component of the
affinity graph

NP-complete
(related to TSP)

Linear-time heuristic
based on DFS
(see paper)

A

Gives a total fusion-
optimized memory
ordering of all vectors

eg. B-A-C-F-E-
D-1-J-K-L-M

13

LINKOPING
UNIVERSITY




II LINKOPING
o UNIVERSITY

Emitting the Fused Code
=] [&] 0 optimized ordering:

/Greedy

g | D fusion

Total savings:
[ startups

B-A-C-F-E-D-1-J-K-L-M

before @: upload B from location 0
before @: upload A from location 1
before @: upload C from location 2
Kernelo ( R(B), R(A), W(D), W(E) )
after 0: download E to location 4
after 0: download D to location 5
Kernell ( R(E), R(B), W(F), W(G) )
before 2: upload F from location 3
Kernel2 ( R(C), R(F), W(H), W(I) )
Kernel3 ( R(F), R(H), W(JI), WK) )
Kernel4 (_R(H)Y. R(E), W(L), WM )
after 4: download I to location 6

after 4: download J to location 7
after 4: download K /to location 8
after 4: download L [to location 9
after 4: download M to location 10
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Emitting the Fused Code, Alternative
][] F© optimized ordering:

m
f

usion

Total savings:
[ startups

Later uploads
- lower
memory

pressure on
device

B-A-C-F-E-D-1-J-K-L-M

before @: upload B from location @
before 0: upload A from location 1
Kerneld ( R(B), R(A), W(D), W(E) )
after 0: download E to location 4
after 0: download D to location 5
Kernell ( R(E), R(B), W(F), W(G) )
before 2: upload C from location 2
before 2: upload F from location 3
Kernel2 ( R(C), R(F), W(H), W(I) )
Kernel3 ( R(F), R(H), W(JI), WK )
Kernel4 ( R(H). R(E), W(L), WM) )
after 4: download I to location 6

after 4: download J to location 7
after 4: download K /to location 8
after 4: download L to location 9
after 4: download M to location 10
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Evaluation of # Saved Transfer Startups"°
and Optimization Time

Table 1: Synthetic Programs, Savings in Transfer Startups

N M;,; Indegree Outdegree Saving, Saving, Opt.

min/max min/max Greedy = Tight Time

\)75 3 2.2 2...2 7 7/ 0.1ms

8 12 2.3 1..1 7(9)  7(8) 0.2ms

10 5 2..4 1...2 11 11 0.2ms

16 12 1...4 1...2 14 14 0.3ms

16 16 2...3 1...2 19 17 0.3ms

18 8 1..2 1...2 12 12 0.2ms

18 8 2..2 1...2 16 15 0.4ms

20 8 1...1 1...1 11 11 0.2ms

Savings in 20 8 1...3 1...2 18 17 0.2ms

comparison to |24 10 2.3 2.2 28 26 0.6ms

single operand |48 10  2..2 1...2 41 (42) 38 (41) 0.9ms

vectoruploads |60 10 1.2 1.2 40 37 2.0ms

fdownloads | g 15 5 2 1.2 75 70| 5.7ms
(no fusion)

16 (in parentheses: savings with higher-effort Hamiltonian heuristic)



Evaluation of # Saved Transfer Startups
and Optimization Time, cont.
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Special task graph topologies and application-derived task graphs

20 1 Linear chain 0 0/0.1ms
15 1 Out-bound bin. tree, all GPU 15 15]0.2ms
15 1 Dto., random device 50% 14 14{0.2ms
15 16 In-bound bin. tree, all GPU 15 810.2ms
15 16 Dto., random device 50% 14 11]0.2ms
31 32 In-bound bin. tree, all GPU 31 16|0.5ms
31 32 Dto., random device 50% 27 1710.5ms

20
12
7

4 Dto., SYRK calls also on CPU
8 2x2 blocks Matrix multiply
2 Conj. Grad. loop, steady st.

9
11
2

20 12 Horner’s rule polynom. eval. 11 11]0.3ms
20 4 4x4 blocks Cholesky factoriz. 14 14]0.2ms

3
11
2

0.2ms
0.1ms
0.1ms

17
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Evaluation of # Saved Transfer Startups
and Optimization Time, cont.

Special task graph topologies and application-derived task graphs

20 1 Linear chain 0 0]/0.1ms
15 1 Out-bound bin. tree, all GPU 15 15]0.2ms
15 1 Dto., random device 50% 14 14{0.2ms
15 16 In-bound bin. tree, all GPU 15 810.2ms
15 16 Dto., random device 50% 14 11]0.2ms
31 32 In-bound bin. tree, all GPU 31 16|0.5ms
31 32 Dto., random device 50% 27 1710.5ms
20 12 Horner’s rule polynom. eval. 11 11{0.3ms
20 4 4x4 blocks Cholesky factoriz. 14 14{0.2ms
20 4 Dto., SYRK calls also on CPU 9 810.2ms
12 8 2x2 blocks Matrix multiply 11 11{0.1ms

7 2 Conj. Grad. loop, steady st. 2 2(0.1ms

19
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b

= Linear Chain (N=20)
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Evaluation of # Saved Transfer Startups
and Optimization Time, cont.
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Special task graph topologies and application-derived task graphs

20
15
15
15
15
31
31
20
20
20
12

7

1 Linear chain
1 Out-bound bin. tree, all GPU
1 Dto., random device 50%

16 In-bound bin. tree, all GPU

16 Dto., random device 50%

32 In-bound bin. tree, all GPU

32 Dto., random device 50%

12 Horner’s rule polynom. eval.
4 4x4 blocks Cholesky tactoriz.
4 Dto., SYRK calls also on CPU
8 2x2 blocks Matrix multiply
2 Conj. Grad. loop, steady st.

0
15
14
15
14
31
27
11
14

9
11

0
15
14

3
11
16
17
11
14

3
11

0.1ms
0.2ms
0.2ms
0.2ms
0.2ms
0.5ms
0.5ms

0.3ms
0.2ms
0.2ms
0.1ms
0.1ms
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Horner’s Polynomial Evaluation,
Degree 10 (N=20)

Affinity Graph:

[alclElc] T[] m][o][e][s] U] N =N = =0 N N = 5 = =
e N N N N (N N N N

22



Evaluation of Generated oo
Transfer-Fusion Optimized CUDA Code

Vector No Transfer Transfer Speedup
Length Fusion Fusion
[floats] [ps] [ps] [%]
Random Dataflow Graph (N =5, M;pi; = 3)
4K 211 141 49.6%
16K 415 327 26.9%
64K 1136 1028 10.5%
256K 4010 3641 10.1%
M 14455 13907 3.9%
4M 55421 55464 -0.1%
Random Dataflow Graph (N = 24, M;,;; = 10)
4K 818 302 170.9%
16K 1850 1451 27.5%
64K 5744 5086 12.9%
256K 23188 23000 0.8%
1M 95858 94608 1.3%
4M 368109 374662 -1.7%
Horner’s Rule Polynomial Evaluation (N = 20)
4K 550 492 11.8%
16K 952 873 9.0%
64K 2567 2272 13.0%
256K 8355 7600 9.9%
M 27836 26989 3.1%
4M 105938 105644 0.3%
4x4 Blocks Cholesky Factorization, Linear-Work Kernels
4K 471 422 11.6%
16K 900 847 6.3%
64K 2583 2498 3.4%
256K 9119 8748 4.2%
M 33391 33012 1.1%
4M 130660 131693 -0.8%
4x4 Blocks Dense Cholesky Factorization
4K 543 421 29.0%
16K 1757 1586 10.8%
64K 11634 11304 0.3%
256K 85341 84500 0.0%
M 681376 680848 0.0%
4M 6748217 6752271 -0.0%
2x2 Blocks Matrix Multiply, Linear-Work Kernels
4K 330 256 28.9%
16K 651 572 13.8%
04K 1952 1765 10.6%
256K 7185 6505 10.5%
1M 25401 24930 1.9%
4M 100026 99363 0.7%
Conjugate Gradient loop, steady state, SPMV on CPU
4K 148 141 5.0%
16K 271 271 0.0%
64K 769 753 2.1%
256K 2656 2581 2.9%

M 9540 9492 0.5%

60,0 Random Dataflow Graph
50,0 (vector-add like kernels)
40,0 7 transfer fusions

30,0

20,0
10,0
N .
10,0 4K 16K 64K 256K 1M AM

Allocation time not included

Speedups between 5% and 170% at 4K float vectors
Speedup decreases with operand size,

but remains significant until 1M floats

for kernels with low arithmetic intensity

(e.g. vector-add, saxpy)

Speedup quickly drops off for >64K floats for
computation-heavy kernels,

as transfer time gets insignificant

(e.Q. sgemm iIn Cholesky and MatMul)




Evaluation of Generated oo
Transfer-Fusion Optimized CUDA Code

Vector No Transfer Transfer Speedup
Length Fusion Fusion
[floats] [ps] [ps] [%]
Random Dataflow Graph (N =5, M;pi; = 3)
4K 211 141 49.6%
16K 415 327 26.9%
64K 1136 1028 10.5%
256K 4010 3641 10.1%
M 14455 13907 3.9%
4M 55421 55464 -0.1%
Random Dataflow Graph (N = 24, M;,;; = 10)
4K 818 302 170.9%
16K 1850 1451 27.5%
64K 5744 5086 12.9%
256K 23188 23000 0.8%
1M 95858 94608 1.3%
4M 368109 374662 -1.7%
Horner’s Rule Polynomial Evaluation (N = 20)
4K 550 492 11.8%
16K 952 873 9.0%
64K 2567 2272 13.0%
256K 8355 7600 9.9%
M 27836 26989 3.1%
4M 105938 105644 0.3%
4x4 Blocks Cholesky Factorization, Linear-Work Kernels
4K 471 422 11.6%
16K 900 847 6.3%
64K 2583 2498 3.4%
256K 9119 8748 4.2%
M 33391 33012 1.1%
4M 130660 131693 -0.8%
4x4 Blocks Dense Cholesky Factorization
4K 543 421 29.0%
16K 1757 1586 10.8%
64K 11634 11304 0.3%
256K 85341 84500 0.0%
M 681376 680848 0.0%
4M 6748217 6752271 -0.0%
2x2 Blocks Matrix Multiply, Linear-Work Kernels
4K 330 256 28.9%
16K 651 572 13.8%
64K 1952 1765 10.6%
256K 7185 6505 10.5%
1M 25401 24930 1.9%
4M 100026 99363 0.7%
Conjugate Gradient loop, steady state, SPMV on CPU
4K 148 141 5.0%
16K 271 271 0.0%
64K 769 753 2.1%
256K 2656 2581 2.9%

M 9540 9492 0.5%

30,0 4x4 Cholesky

25,0 (linear-work kernels) /-K
20,0 14 transfer fusions '\

] b
(-
\‘b

15,0

10,0
5|'D I I
0,0

16K 64K 256K AM
Allocation time not included

Speedups between 5% and 170% at 4K float vectors
Speedup decreases with operand size,

but remains significant until 1M floats

for kernels with low arithmetic intensity

(e.g. vector-add, saxpy)

Speedup quickly drops off for >64K floats for
computation-heavy kernels,

as transfer time gets insignificant

(e.Q. sgemm iIn Cholesky and MatMul)
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Transfer-Fusion Optimized CUDA Code

Vector No Transfer Transfer Speedup
Length Fusion Fusion
[floats] [ps] [ps] [%]
Random Dataflow Graph (N =5, M;pi; = 3)
4K 211 141 49.6%
16K 415 327 26.9%
64K 1136 1028 10.5%
256K 4010 3641 10.1%
M 14455 13907 3.9%
4M 55421 55464 -0.1%
Random Dataflow Graph (N = 24, M;,;; = 10)
4K 818 302 170.9%
16K 1850 1451 27.5%
64K 5744 5086 12.9%
256K 23188 23000 0.8%
1M 95858 94608 1.3%
4M 368109 374662 -1.7%
Horner’s Rule Polynomial Evaluation (N = 20)
4K 550 492 11.8%
16K 952 873 9.0%
64K 2567 2272 13.0%
256K 8355 7600 9.9%
IM 27836 26989 3.1%
4M 105938 105644 0.3%
4x4 Blocks Cholesky Factorization, Linear-Work Kernels
4K 471 422 11.6%
16K 900 847 6.3%
64K 2583 2498 3.4%
256K 9119 8748 4.2%
M 33391 33012 1.1%
4M 130660 131693 -0.8%
4x4 Blocks Dense Cholesky Factorization
4K 543 421 29.0%
16K 1757 1586 10.8%
64K 11634 11304 0.3%
256K 85341 84500 0.0%
M 681376 680848 0.0%
4M 6748217 6752271 -0.0%
2x2 Blocks Matrix Multiply, Linear-Work Kernels
4K 330 256 28.9%
16K 651 572 13.8%
04K 1952 1765 10.6%
256K 7185 6505 10.5%
1M 25401 24930 1.9%
4M 100026 99363 0.7%
Conjugate Gradient loop, steady state, SPMV on CPU
4K 148 141 5.0%
16K 271 271 0.0%
64K 769 753 2.1%
256K 2656 2581 2.9%

M 9540 9492 0.5%

22 4x4 Cholesky
220 (cubic-work kernels)
20,0 14 transfer fusions

15,0

10,0

5,0

0,0 _—
64K 256K 1M AM
uded

etween 5% and 170% at 4K float vectors
eedup decreases with operand size,

but remains significant until 1M floats

for kernels with low arithmetic intensity

(e.g. vector-add, saxpy)

Speedup quickly drops off for >64K floats for
computation-heavy kernels,

as transfer time gets insignificant

(e.Q. sgemm iIn Cholesky and MatMul)




CUDA code,
Including

Fused Memory

Allocations

Due to the memory
allocation fusion

anomaly on our GPU
Kat 2-operand-fusions

N—

Vector No Allocation Allocation Speedup |
Length Fusion Fusion

[floats] [ps] [ps] (%]

Random Dataflow Graph (N =5, M;,;; = 3)
4K 645 1165 -44.6%
16K 824 -38.9%
31 63.4%
4865 133.8%
14839 96.3%
95382 3.6%

/H(orner’s Rule Polynomial Evaluation (N = 20)

4K 891 1106 -19.4%
16K 2020 1787 13.0%
64K 5756 4738 21.5%
256K 18437 13951 32.2%
1M 28265 23890 18.3%
4M 67899 65024 4.4%
Conjugate Gradient loop, steady state, SPMV on CPU
4K 557 850 -34.5%
16K 649 999 -35.0%
64K 1871 1829 2.3%
256K 6523 5583 16.8%
1M 17224 16455 4.7%
4M 60741 59841 1.5%
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Summary and Outlook

O

Global-scope reordering of vector variables in memory
to optimize operand upload / download message fusion
in distributed heterogeneous systems

1. Analyze the Kernel-Vector Data-Flow Graph
2. Build the Affinity Graph
3.  Max-weight Hamiltonian Paths in Affinity graph CCs
4. Emitting code: Greedy vs. Tight strategy
Experiments for synthetic kernel graphs
Low optimization time, good # transfer-fusions
Decent speedups for up to 1M elements and kernels of low oper. intensity
Prototype source code: www.ida.liu.se/~chrke/transferfusion

Future work: Tuning to decide up to which vector sizes to apply;
work around the allocation fusion anomaly; use of optimized kernels

Possible usage scenarios
0 Static optimization in kernel compilers (e.g., DSL)
0 Dynamic optimization: lazy execution builds runtime graph
» Amortize optimization time over multiple iterations over same graph
Future extensions: Combine with scheduling (and more...)

O
O
O
O



Questions?
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Random DAG, N=24
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Gain: 11 startups
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v
Conjugate Gradient Solver, Main Loop

Gain: 2 startups
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