
Global Optimization of

Operand Transfer Fusion

in Heterogeneous Computing

Christoph Kessler

Linköping University
Sweden

Presented at

SCOPES-2019

St. Goar, Germany

2

Heterogeneous Systems with Distributed Memory

Distributed memory, explicit operand transfers

High data transfer cost (esp. over PCIe / IP...): a N + b

High startup cost

significant for small messages, e.g. b / a ~ 104

Goal: Message fusion for operand transfers

→ reduce #startups

Accelerator,

e.g. GPU, FPGA, Cloud

Kernel

call

operand

upload

download

Device

memory

Core

Core

Core

Core

Main Memory

CPU

a N + b

3

float *v1 = malloc(3N);

float *v2 = v1+N;

float *v3 = v1+2N;

cudaMalloc(&g_v1, 3N);

g_v2 = g_v1 + N;

g_v3 = g_v1 + 2N;

...

cudaMemcpy(v1, g_v1, 3N, ...);

vector_add3(g_v1, g_v2, g_v3 ...);

Example: 1 kernel call, 3 input operands

float *v1 = malloc(N); ...

float *v2 = malloc(N); ...

float *v3 = malloc(N);

cudaMalloc(&g_v1, N); ...

cudaMalloc(&g_v2, N); ...

cudaMalloc(&g_v3, N);

...

cudaMemcpy(v1, g_v1, N, ...);

cudaMemcpy(v2, g_v2, N, ...);

cudaMemcpy(v3, g_v3, N, ...);

vector_add3(g_v1, g_v2, g_v3 ...);

3 calls

3 calls

3 upload messages,

time 3(aN+b)

(a) Arbitrary operand order

in memories:

(b) Operands consecutive

in both memories:

1 upload message,

time 3aN + b

vector_add3

v1 v3
v2

Allocation fusion

Transfer fusion

4

Saving Potential on a Concrete GPU
By Transfer Fusion

Binary Vector-Add
(1 Transfer Fusion) vector_add2

v1 v2Nvidia Kepler K2100, CUDA 8, driver 390.87

• Memory allocation time not

included

• Decent relative savings

for up to 1M float elements

(at low arithmetic intensity)

5

Saving Potential on a Concrete GPU
By Transfer and Allocation Fusion

Ternary Vector-Add
(2 Transfer + Allocation Fusions) vector_add3

v1 v3
v2Nvidia Kepler K2100, CUDA 8, driver 390.87

• Memory allocation time included
(except a dummy first cudaMalloc)

• Decent relative savings

for up to 4M elements

(at low arithmetic intensity)

• Largest impact observed for

medium-length operands

• Anomaly observed for binary-add:

slowdown for small operand sizes

1 x cudaMalloc(2N) can be slower

than 2 x cudaMalloc(N)
• cause is unclear (stateful specul.

optimization in cudaMalloc?)

6

Saving Potential on a Concrete GPU
Parallel Kernel Fusion on-Par with Transfer Fusion

Ternary Vector-Add
(2 Transfer Fusions

+ Parallel Kernel Fusion)

vector_add3

v1 v3
v2Nvidia Kepler K2100, CUDA 8, driver 390.87

• Memory allocation

time not included

• Operands (v1+v4, ...)

consecutive in

memory in both cases

• Decent relative

savings for up to

1M float elements

(at low arithmetic

intensity)

• Speedups in the same

order of magnitude as

by transfer fusion

vector_add3

v4 v6
v5

7

Motivation

Transfer fusion gain (kernel startup time) on our system almost

as high as parallel kernel fusion gain (kernel launch time)

Parallel kernel fusion is not always applicable/beneficial,

but transfer fusion may still apply

We will focus on transfer fusion in this work.

Objective: Maximize # transfer fusions in a program

Global scope → more fusion options across multiple kernel calls

Allocation fusion as side effect may give further speedup
(where not suffering from the single-fusion anomaly of our GPU)

vector_add3

v1 v3
v2

vector_add3

v4 v6
v5

8

Global Scope of Allocation

Kernel-Vector Data Flow Graph

Call nodes: Kernel0, Kernel1, ...

Synchronous calls

Mapping to device/host given

Fixed schedule given
→ trace of calls, relative time: 0, 1, ...

Vector (data) nodes: A, B, C, ...

Static single assignment

Some live-on-entry, some live-on-exit

Data flow edges

No control flow

Base-line code generation:
Each vector transfered to/from device
at most once, in a separate message

9

Global Scope of Allocation

Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

Calculating earliest and latest time
points for uploads and downloads:

depend e.g. on relative time of the
producing resp. earliest consuming
kernel calls

Details in the paper

Uploads (earliest ... latest):
 Flexibility

10

Global Scope of Allocation

Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

Calculating earliest and latest time
points for uploads and downloads:

depend e.g. on relative time of the
producing resp. earliest consuming
kernel calls

Details in the paper

Uploads (earliest ... latest):
 Fusion possibility (2 startups)

11

Global Scope of Allocation

Kernel-Vector Data Flow Graph
(fixed schedule, fixed mapping)

Calculating earliest and latest time
points for uploads and downloads:

depend e.g. on relative time of the
producing resp. earliest consuming
kernel calls

Details in the paper

Uploads (earliest ... latest):
 Fusion possibility (1)

 Fusion possibility (1)

12

Affinity graph

Nodes = vectors

Undirected edges
{ u, v } with weight
= affinity of u, v

expected fusion gain
of allocating u, v
consecutive in memory

By finding overlapping
earliest-latest intervals

+1.0 if uploads resp.
downloads of u and v
can be fused if u and v are
consecutive in memory

Bonus for tight solutions possible

Has at least 2 connected components

>1 for uploaded vectors,
>1 for downloaded vectors

13

Affinity graph,

Max-Weight Hamiltonian Paths

Hamiltonian path
of a graph
= a path of n-1 edges
visiting each of the
n nodes exactly once

Goal: Find a
maximum-weight
Hamiltonian path in
each connected
component of the
affinity graph

NP-complete
(related to TSP)

Linear-time heuristic
based on DFS
(see paper)

Gives a total fusion-

optimized memory

ordering of all vectors

e.g. B – A – C – F – E –

D – I – J – K – L – M

14

Emitting the Fused Code

optimized ordering:

B – A – C – F – E – D – I – J – K – L – M

Total savings:

7 startups

Greedy

fusion

15

Emitting the Fused Code, Alternative

optimized ordering:

B – A – C – F – E – D – I – J – K – L – M

Total savings:

7 startups

Tight

fusion

Later uploads

→ lower

memory

pressure on

device

16

Evaluation of # Saved Transfer Startups

and Optimization Time

Savings in

comparison to

single operand

vector uploads

/ downloads

(no fusion)
(in parentheses: savings with higher-effort Hamiltonian heuristic)

17

Evaluation of # Saved Transfer Startups

and Optimization Time, cont.

Special task graph topologies and application-derived task graphs

18

4 x 4 Block Cholesky Factorization

Affinity Graph:

19

Evaluation of # Saved Transfer Startups

and Optimization Time, cont.

Special task graph topologies and application-derived task graphs

20

Linear Chain (N=20)

Affinity Graph:

21

Evaluation of # Saved Transfer Startups

and Optimization Time, cont.

Special task graph topologies and application-derived task graphs

22

Horner’s Polynomial Evaluation,

Degree 10 (N=20)

Affinity Graph:

23

Evaluation of Generated

Transfer-Fusion Optimized CUDA Code

• Allocation time not included

• Speedups between 5% and 170% at 4K float vectors

• Speedup decreases with operand size,

but remains significant until 1M floats

for kernels with low arithmetic intensity

(e.g. vector-add, saxpy)

• Speedup quickly drops off for >64K floats for

computation-heavy kernels,

as transfer time gets insignificant

(e.g. sgemm in Cholesky and MatMul)

Random Dataflow Graph

(vector-add like kernels)

7 transfer fusions

24

Evaluation of Generated

Transfer-Fusion Optimized CUDA Code
4x4 Cholesky

(linear-work kernels)

14 transfer fusions

• Allocation time not included

• Speedups between 5% and 170% at 4K float vectors

• Speedup decreases with operand size,

but remains significant until 1M floats

for kernels with low arithmetic intensity

(e.g. vector-add, saxpy)

• Speedup quickly drops off for >64K floats for

computation-heavy kernels,

as transfer time gets insignificant

(e.g. sgemm in Cholesky and MatMul)

25

Evaluation of Generated

Transfer-Fusion Optimized CUDA Code
4x4 Cholesky

(sgemm kernels)

14 transfer fusions

• Allocation time not included

• Speedups between 5% and 170% at 4K float vectors

• Speedup decreases with operand size,

but remains significant until 1M floats

for kernels with low arithmetic intensity

(e.g. vector-add, saxpy)

• Speedup quickly drops off for >64K floats for

computation-heavy kernels,

as transfer time gets insignificant

(e.g. sgemm in Cholesky and MatMul)

4x4 Cholesky

(cubic-work kernels)

14 transfer fusions

26

CUDA code,

including

Fused Memory

Allocations

Due to the memory

allocation fusion

anomaly on our GPU

at 2-operand-fusions

27

Summary and Outlook

Global-scope reordering of vector variables in memory
to optimize operand upload / download message fusion
in distributed heterogeneous systems

1. Analyze the Kernel-Vector Data-Flow Graph

2. Build the Affinity Graph

3. Max-weight Hamiltonian Paths in Affinity graph CCs

4. Emitting code: Greedy vs. Tight strategy

Experiments for synthetic kernel graphs

Low optimization time, good # transfer-fusions

Decent speedups for up to 1M elements and kernels of low oper. intensity

Prototype source code: www.ida.liu.se/~chrke/transferfusion

Future work: Tuning to decide up to which vector sizes to apply;
work around the allocation fusion anomaly; use of optimized kernels

Possible usage scenarios

Static optimization in kernel compilers (e.g., DSL)

Dynamic optimization: lazy execution builds runtime graph

 Amortize optimization time over multiple iterations over same graph

Future extensions: Combine with scheduling (and more...)

Questions?

29

References

This paper:

Christoph Kessler: Global optimization of operand transfer
fusion in heterogeneous computing. Proc. 22nd
International Workshop on Software and Compilers for
Embedded Systems (SCOPES-2019), St. Goar, Germany,
May 2019. ACM. DOI: 10.1145/3323439.3323981

Lu Li, Christoph Kessler: Lazy Allocation and Transfer
Fusion Optimization for GPU-based Heterogeneous
Systems. Proc. Euromicro PDP-2018 Int. Conf. on Parallel,
Distributed, and Network-Based Processing, Cambridge, UK,
Mar. 2018, IEEE.

Prototype implementation source code:
https://www.ida.liu.se/~chrke55/transferfusion/

BACKUP SLIDES

31

Random DAG, N=24

25 startups saved

32

2x2 Block Matrix-Matrix Multiply

Gain: 11 startups

33

Conjugate Gradient Solver, Main Loop

Gain: 2 startups

