
1

Christoph Kessler, IDA,
Linköpings universitet, 2009.

TDDC86 Compiler Optimizations and Code Generation

Introduction to
Static Single Assignment

(SSA) Form

Christoph Kessler, IDA,
Linköpings universitet, 2009.

TDDC86 Compiler Optimizations and Code Generation

Recall: Multi-Level IR,
Standard vs. SSA Form

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

3 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

Example with SSA-LIR

LIR:
s2 = s1
s4 = s3
s6 = s5

L1: if s2 > s6 goto L2
s7 = addr a
s8 = 4 * s9
s10 = s7 + s8
[s10] = 2
s2 = s2 + s4
goto L1

L2:

(adapted from Muchnick’97)

s21 = s1
s4 = s3
s6 = s5

s22 = φ (s21, s23)
s22 > s6 ?

s7 = addr a
s8 = 4 * s9
s10 = s7 + s8
[s10] = 2
s23 = s22 + s4

Y N

B1

B2

B3

s2 is assigned (written, defined)
multiple times in the program text
(i.e., multiple static assignments)

After introducing one
version of s2 for each

static definition and explicit
merger ops for different
reaching versions (phi

nodes, φ): Static single
assignment (SSA) form

4 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

Static Single Assignment (SSA) Form

Goal:

increase efficiency of inter/intra-procedural analyses and optimizations

speed up dataflow analysis

represent def-use relations explicitly

Idea:

Represent program as a directed graph of operations op

Represent statements / quadruples / instructions as assignments
v = v' op v'' with v, v', v'' a variable / label / symbolic register /
temporary (edge) connecting operations

SSA-Property:
There is only one position (statement, quadruple, instruction) in a
program/procedure defining a variable version v static value

Does not mean that v is computed only once at runtime:
Due to iteration / recursion, the program point may be executed more
than once with different dynamic values.

5 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

SSA Construction (1):
Value Numbering in a Single Basic Block

Assign a distinct name (e.g. variable name + index)
to each static value computed in the block

Can be done on-the-fly when constructing DAGs
(see Lecture 1)

Makes local Def-Use chains explicit

For several basic blocks: use (procedure-wide) unique indices

a = b + c;
b = a + c;
a = b * a;

…

a1 = b1 + c1 ;
b2 = a1 + c1 ;
a2 = b2 * a1 ;

…

Local value
numbering

6 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

SSA Construction (2) – Insert Phi nodes to
stitch DU-chains between blocks together

For different basic blocks X and Y both defining a variable v,
say vi in X and vj in Y, if non-empty paths X + Z and Y + Z exist in the
control flow graph to a common successor block Z containing a use vk of v
that is reached by both definitions, with Z’ being the first common node on
the two paths, then a Phi node vk = φ (vi , vj) must be inserted in Z’.

A Phi node in a block B has | Pred(B) | operands

Global value numbering

…
vi = … ;

…

…
vj = …;

…

vk = φ (vi , vj);
…

X Y

Z’

…
… = … vk …

Z

2

7 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

Algorithms for SSA Construction

Standard algorithm by Cytron et al. 1989
(iterated dominance frontiers)

See Muchnick, Section 8.11

Other algorithms for SSA construction exist

Optimize number of Phi nodes

Standard transformations like constant folding, arithmetic
simplification, common subexpression elimination can also
reduce the number of Phi nodes.

8 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

Some details…

Array variables??

Phi-node to copy entire array if only one element is written

Use special array Phi operators

Dynamically allocated objects??

Example:
while (…) {

ptr = new Listitem();
ptr->next = list;
list = ptr;

}

Different created Listitem fields can no longer be identified and named
statically

Memory-SSA

For target-level SSA form: Dependences between Load and Store
instructions through memory should be made explicit with special
memory-Phi nodes

9 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

Converting from SSA back to standard IR

Simply throwing away the indices and Phi nodes????

No!
Optimizations on SSA representation may have created
overlaps of different static values of the same variable…

Example:

a = …op1…;
b = a;
a = …op2… ;
c = a + b ;

a1 = …op1…;
b1 = a 1 ;
a2 = …op2… ;
c1 = a2 + b1 ;

construct
SSA

a1 = …op1…;
a2 = …op2… ;
c1 = a2 + a1 ;

optimize
on SSA

deconstruct
SSA ?

deconstruct
SSA

a = …op1…;
tmp27 = …op2… ;
c = tmp27 + a ;

10 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

References

R. Cytron, J. Ferrante, B. Rosen, et al.:
Efficiently computing static single assignment form.
Proc. POPL-1989, pp. 25-35, ACM.

Muchnick, Section 8.11

