TDDC86 Compiler Optimizations and Code Generation %‘i

*

o

Was s

Introduction to
Static Single Assignment
(SSA) Form

Christoph Kessler, IDA,
Linkdpings universitet, 2009.

Example with SSA-LIR (adapted from Muchnick'97) 5

s2 is assigned (written, defined)
multiple times in the program text
(i.e., multiple static assignments)

B1 | s2,=s1

m LIR:
s2=s1 B2

82, = ¢ (82, 525)

TDDC86 Compiler Optimizations and Code Generation %‘i

*

o

Was s

Recall: Multi-Level IR,
Standard vs. SSA Form

l
AST
HIR Y—— /SsA-HI
[
MIR SSA-MIR

l}
LIR SA-LIR,

Christoph Kessler, IDA,
Linkdpings universitet, 2009.

VLLIR (target code)

Fe
. . . H ]
Static Single Assignment (SSA) Form g&g
s
Goal:
m increase efficiency of inter/intra-procedural analyses and optimizations
m speed up dataflow analysis
m represent def-use relations explicitly
Idea:
m Represent program as a directed graph of operations op
o Represent statements / quadruples / instructions as assignments
v=Vop V' with v, v/, v"a variable / label / symbolic register /
temporary (edge) connecting operations
m SSA-Property:
There is only one position (statement, quadruple, instruction) in a
program/procedure defining a variable version v -> static value
o Does not mean that vis computed only once at runtime:
Due to iteration / recursion, the program point may be executed more
than once with different dynamic values.

C. Kessler. IDA, Linkdpings universitet 4

TDDCB6 Compiler Optimizations and Code Generation

s4=s3 §2,>567?
s6 =85
L1: if s2 > s6 goto L2
s7:ad*dra s7 = addr a
s8=4"s9 After introducing one s8=4*s9
s10 =87 +s8 version of s2 for each s10 =57 + S8
[s10]=2 static definition and explicit [s10] = 2
s2=82+5s4 merger ops for different §2, =82, + s4
goto L1 reaching versions (phi
L2: nodes, ¢): Static single
assignment (SSA) form
C. Kessler, IDA, Link3pings universitt bcss Compier Optimizations and Gage Generation
SSA Construction (1): S
Value Numbering in a Single Basic Block %%*j

m Assign a distinct name (e.g. variable name + index)
to each static value computed in the block

m Can be done on-the-fly when constructing DAGs
(see Lecture 1)
m Makes local Def-Use chains explicit
m For several basic blocks: use (procedure-wide) unique indices

Z:b+ci T a;=b;+c¢;;
=a+gc; ocal value b,=a,+¢;;
numbering

—b*a ’
a=b*a; a,=b,*a;

C. Kessler. IDA, Linkspings universitet. 5 TDDC86 Compiler Optimizations and Code Generation

SSA Construction (2) — Insert Phi nodes to TR
stitch DU-chains between blocks together %#j’

m For different basic blocks X and Y both defining a variable v,
say v;in Xand v;in Y, if non-empty paths X->*Z and Y->* Z exist in the
control flow graph to a common successor block Z containing a use v, of v
that is reached by both definitions, with Z being the first common node on
the two paths, then a Phinode v, = ¢(v;, v;) must be inserted in Z'.

m A Phinode in a block Bhas | Pred(B) | operands

X Y

- Global value numbering

C. Kessler, IDA, Linkpings universitet




# ",
Algorithms for SSA Construction a‘!‘;

m Standard algorithm by Cytron et al. 1989
(iterated dominance frontiers)

e See Muchnick, Section 8.11
m Other algorithms for SSA construction exist
o Optimize number of Phi nodes

m Standard transformations like constant folding, arithmetic
simplification, common subexpression elimination can also
reduce the number of Phi nodes.

C. Kessler, IDA, Linképings universitet. 7 TDDC8 Compiler Optimizations and Code Generation

Some details... B v/

m Array variables??
o Phi-node to copy entire array if only one element is written
o Use special array Phi operators
= Dynamically allocated objects??
o Example:
while (...) {
ptr = new Listitem();
ptr->next = list;
list = ptr;
}

o Different created Listitem fields can no longer be identified and named
statically

= Memory-SSA

o For target-level SSA form: Dependences between Load and Store
instructions through memory should be made explicit with special

IR
Converting from SSA back to standard IFﬁ%‘!:;'
m Simply throwing away the indices and Phi nodes????
e No!
Optimizations on SSA representation may have created
overlaps of different static values of the same variable...

o Example:

a=..opl.; el _ .

b=a; optimize & 77, || deconstruct’y 7|
a=..0p2...; ; | Lon SSA ’ SSA .
c=a+b; =

a=..opl.;
deconstruct \ | tmp27 = ...0p2... ;
SSA c=tmp27 +a;

C. Kessler, IDA, Linképings universitet. 9 TDDC86 Compiler Optimizations and Code Generation

¢ s on TIEMONY-Phi nodes . 10555 Cemplr Optmiations s Goce Corsion
o
AL

References Pe o
s

m R. Cytron, J. Ferrante, B. Rosen, et al.:
Efficiently computing static single assignment form.
Proc. POPL-1989, pp. 25-35, ACM.

® Muchnick, Section 8.11

C. Kessler, IDA, Linképings universitet. 10 TDDC8 Compiler Optimizations and Code Generation




